JPH081387B2 - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH081387B2
JPH081387B2 JP60290114A JP29011485A JPH081387B2 JP H081387 B2 JPH081387 B2 JP H081387B2 JP 60290114 A JP60290114 A JP 60290114A JP 29011485 A JP29011485 A JP 29011485A JP H081387 B2 JPH081387 B2 JP H081387B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detection
magnetic sensor
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60290114A
Other languages
Japanese (ja)
Other versions
JPS62148813A (en
Inventor
正一 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60290114A priority Critical patent/JPH081387B2/en
Publication of JPS62148813A publication Critical patent/JPS62148813A/en
Publication of JPH081387B2 publication Critical patent/JPH081387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は自動車のエンジン等の回転体に連結した磁
性体を検出する磁気センサに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor for detecting a magnetic body connected to a rotating body such as an automobile engine.

従来の技術 従来のこの種磁気センサは、例えば特願昭57−180561
号に示されているように、第6図のような構造になって
いた。
2. Description of the Related Art A conventional magnetic sensor of this type is disclosed in, for example, Japanese Patent Application No. 57-180561.
As shown in No. 6, the structure was as shown in FIG.

すなわち、磁気センサは基板2上に強磁性薄膜抵抗素
子1(以下MR素子と称す)を形成し、基板2にバイアス
磁石3を接着して構成され、この磁気センサは近接した
凹凸のある磁性材4が移動することによりそのMR素子1
がX方向の磁界を検知し、その結果抵抗値が変化して位
置情報を得る。第6図(a)ではMR素子1に加えられる
磁界はHB1のように垂直となるためMR素子1のX方向の
磁界を検知できず抵抗値は変化しないが、磁性材4が移
動して第6図(b)の位置となったとき、磁界はHB2
ように曲げられることにより、X方向の磁界を検知し、
MR素子1に水平方向の磁界成分ができてMR素子1は抵抗
値変化する構造となっていた。
That is, the magnetic sensor is formed by forming a ferromagnetic thin film resistance element 1 (hereinafter referred to as MR element) on a substrate 2 and adhering a bias magnet 3 to the substrate 2. MR element 1 by moving 4
Detects a magnetic field in the X direction, and as a result, the resistance value changes and position information is obtained. In FIG. 6 (a), since the magnetic field applied to the MR element 1 is vertical like H B1 , the magnetic field in the X direction of the MR element 1 cannot be detected and the resistance value does not change, but the magnetic material 4 moves. At the position shown in FIG. 6 (b), the magnetic field is bent like H B2 to detect the magnetic field in the X direction,
The MR element 1 has a structure in which a horizontal magnetic field component is generated and the resistance value of the MR element 1 changes.

発明が解決しようとする問題点 しかしこのような構造であると、磁性材4とMR素子1
との距離が近接している場合はよく磁界が曲げられて高
い出力が得られるが、第7図に示すようにギャップが2m
m以上になると極端に出力が低下する。第7図ではMR素
子1に電圧5Vを印加し、磁性材4の凸部としてφ6×6
の鉄材を円板上に垂直に立てたものを回転し、MR素子1
の出力を測定した結果を示す。
Problems to be Solved by the Invention However, with such a structure, the magnetic material 4 and the MR element 1
When the distance between and is close, the magnetic field is often bent and a high output is obtained, but as shown in Fig. 7, the gap is 2m.
If it exceeds m, the output will drop extremely. In FIG. 7, a voltage of 5 V is applied to the MR element 1 and the magnetic material 4 is projected as a 6 × 6
MR element 1
The result of having measured the output of is shown.

また、MR素子1は電流と磁界とのなす角度により出力
電圧は第8図のようになり、MR素子1の磁石3に対する
電流とのなす角度で出力が変化する欠点があった。
The output voltage of the MR element 1 is as shown in FIG. 8 depending on the angle between the current and the magnetic field, and the output changes depending on the angle between the current of the MR element 1 and the magnet 3.

また、一般に、MR素子に働く磁界と抵抗値の関係は第
9図に示すようになっている。すなわち、第9図(b)
(c)のような膜面の抵抗値は、磁界が膜面に対して垂
直なZ方向に印加されるときは、第9図(a)のように
磁界の大きさに対して抵抗値の変化はないため磁気セン
サとして使用できない。しかし磁界が膜面に平行でかつ
電流と直角なX方向では、抵抗値は大きく変化し、Ni−
Feで約3%の抵抗値変化を示すためこの抵抗値を用いて
磁気センサとする。また、磁界が膜面に平行でかつ電流
と平行なY方向では、X方向のときの1/10以下のわずか
な抵抗値変化となるため、磁気センサとして使用は適さ
ない。
Further, generally, the relationship between the magnetic field acting on the MR element and the resistance value is as shown in FIG. That is, FIG. 9 (b)
When the magnetic field is applied in the Z direction perpendicular to the film surface, the resistance value of the film surface as shown in (c) corresponds to the magnitude of the magnetic field as shown in FIG. 9 (a). Since there is no change, it cannot be used as a magnetic sensor. However, in the X direction, where the magnetic field is parallel to the film surface and perpendicular to the current, the resistance value changes significantly,
Since Fe exhibits a resistance value change of about 3%, this resistance value is used for a magnetic sensor. Further, in the Y direction, in which the magnetic field is parallel to the film surface and parallel to the current, there is a slight change in resistance value, which is 1/10 or less of that in the X direction, and therefore it is not suitable for use as a magnetic sensor.

本発明は上記原理をふまえ取付角度による出力電圧変
動がなく、MR素子と磁性材とのギャップが広くても高精
度に検出できる磁気センサを提供するものである。
Based on the above principle, the present invention provides a magnetic sensor that does not fluctuate in output voltage due to the mounting angle and can detect with high accuracy even if the gap between the MR element and the magnetic material is wide.

問題点を解決するための手段 本発明は上記問題点を解決するために、膜面上に感磁
部が配置されて、磁石により検出磁性体の方向にバイア
スされる強磁性薄膜抵抗素子を用い、その抵抗値の変化
により前記検出磁性体を検出する磁気センサであって、
強磁性薄膜抵抗素子をその膜面上の感磁部が検出磁性体
の移動軌跡とバイアス磁石を含む平面内でかつ前記強磁
性薄膜抵抗素子の主電流方向が検出バイアス磁石の磁界
に対して略直角で平面内となるように配置した構成にし
たものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a ferromagnetic thin film resistance element in which a magnetic sensing section is arranged on a film surface and is biased toward a detection magnetic body by a magnet. A magnetic sensor for detecting the detection magnetic body by a change in its resistance value,
In the ferromagnetic thin film resistance element, the magnetic sensitive portion on the film surface is within a plane including the movement locus of the detection magnetic body and the bias magnet, and the main current direction of the ferromagnetic thin film resistance element is substantially equal to the magnetic field of the detection bias magnet. The configuration is such that they are arranged at a right angle and in a plane.

作用 この構成により、検出磁性体の移動に対してMR素子の
膜面上の感磁部に平行方向に常に磁界が加えられ、取付
角度により出力電圧が変らないようになり、MR素子とバ
イアス磁石の距離を大きくとることにより磁性体凹凸の
有無による磁界変動率を大きくして大きい出力が得られ
るとともにバイアス磁界をX方向の抵抗値変化の第9図
の中点付近(HB付近)のリニア領域に設定することによ
りギャップ変動による磁界変化の影響が減少する。
Function With this configuration, a magnetic field is always applied in parallel to the magnetic sensitive part on the film surface of the MR element with respect to the movement of the detection magnetic body, and the output voltage does not change depending on the mounting angle. A large output can be obtained by increasing the magnetic field variation rate due to the presence or absence of the magnetic material irregularities by increasing the distance of, and the bias magnetic field is linear near the middle point (near H B ) of the resistance value change in the X direction in FIG. By setting the area, the influence of the magnetic field change due to the gap change is reduced.

実施例 以下、本発明の一実施例を図面にもとづいて説明す
る。第1図は本発明の一実施例である磁気センサの概略
構成図を示し、6は導磁性材よりなる検出磁性体、7は
膜面上に感磁部9が蛇行して配置されたMR素子、8はMR
素子7をバイアスするためのバイアス磁石であり、この
バイアス磁石8とMR素子7とで磁気センサが構成されて
おり、この磁気センサのX方向はバイアス磁石8の磁界
HSと同方向に、Y方向は検出磁性体6の移動軌跡と同方
向に、Z方向はMR素子7の膜面に設けた感磁部9の垂直
面側に設けている。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration diagram of a magnetic sensor according to an embodiment of the present invention. 6 is a detection magnetic body made of a magnetic conductive material, and 7 is an MR in which a magnetic sensitive section 9 is arranged in a meandering manner on a film surface. Element, 8 is MR
This is a bias magnet for biasing the element 7, and the magnetic sensor is composed of this bias magnet 8 and the MR element 7. The magnetic field of the bias magnet 8 is in the X direction of this magnetic sensor.
It is provided in the same direction as H S , in the Y direction in the same direction as the movement locus of the detection magnetic body 6, and in the Z direction on the vertical surface side of the magnetic sensing portion 9 provided on the film surface of the MR element 7.

MR素子7は、その膜面が検出磁性体6の移動軌跡とバ
イアス磁石8を含む平面内で、かつMR素子7の感磁部9
の長手方向である主電流方向がバイアス磁石8の磁界HS
に対して直角となるよう配置され、X方向の磁界変化を
抵抗値の変化として出力する。
The MR element 7 has a film surface within a plane including the movement locus of the detection magnetic body 6 and the bias magnet 8, and the magnetic sensing section 9 of the MR element 7.
The main current direction, which is the longitudinal direction of the magnetic field, is the magnetic field H S of the bias magnet 8.
The magnetic field change in the X direction is output as a change in resistance value.

第2図は磁気センサとこれによる検出手段とを示す構
成図である。第2図において、回転円板5の周部にφ6
×10の鉄円柱からなる検出磁性体6が取付けられ、一
方、磁気センサは取付台10にそのMR素子7とφ10×10の
アルニコからなるバイアス磁石8が固定されて取付けら
れる。MR素子7は抵抗器11と直列に接続され、その両端
に電池12が接続される。MR素子7と抵抗器11の接続点に
はコンデンサ13を介して増幅器14、波形整形器15が接続
され、出力端子16より検出磁性体6の回転情報が得られ
る。MR素子7とバイアス磁石8と検出磁性体6の関係は
前記したように第1図の通りである。すなわち、MR素子
7は膜面が磁界HSと平行となり、MR素子7の感磁部9は
主電流通路が磁界HSと直角となるように配置され、検出
磁性体6の移動に伴い、MR素子7のX方向の磁界を検出
し抵抗値の変化として出力する。
FIG. 2 is a block diagram showing a magnetic sensor and a detecting means using the magnetic sensor. In FIG. 2, φ6 is formed around the rotating disk 5.
The detection magnetic body 6 made of a × 10 iron cylinder is attached, while the magnetic sensor is attached to the attachment base 10 with its MR element 7 and the bias magnet 8 made of alnico of φ10 × 10 fixed. The MR element 7 is connected in series with the resistor 11, and the battery 12 is connected to both ends thereof. An amplifier 14 and a waveform shaper 15 are connected to a connection point between the MR element 7 and the resistor 11 via a capacitor 13, and rotation information of the detected magnetic body 6 is obtained from an output terminal 16. The relationship among the MR element 7, the bias magnet 8 and the detection magnetic body 6 is as shown in FIG. 1 as described above. That is, the film surface of the MR element 7 is parallel to the magnetic field H S, and the magnetic sensitive portion 9 of the MR element 7 is arranged so that the main current path is perpendicular to the magnetic field H S. The magnetic field in the X direction of the MR element 7 is detected and output as a change in resistance value.

いま、MR素子7と検出磁性体6のギャップをL1(4m
m)とし、MR素子7とバイアス磁石8のギャップをL2
し、このL2を変えたときのMR素子7の位置で磁束密度を
測定した結果を第3図に示す。第3図の横軸はギャップ
比L2/L1を表わし、縦軸の左目盛は検出磁性体6がある
ときの磁束密度HS1を表わし、縦軸の右目盛は検出磁性
体6があるときの磁束密度HS1とないときの磁束密度HS2
との変化比HS1/HS2を表わす。一方、MR素子7は第9図
に示すように膜材質、膜厚、膜巾で決まる飽和磁界HK
あるので、出力を大きくとるためには、この変化比が大
きいことが必要である。第3図からわかるように、磁束
密度比HS1/HS2はギャップ比L2/L1が1.5倍以上で大きく
なっているので、本発明ではギャップ比を1.5以上とし
た。
Now, set the gap between the MR element 7 and the detection magnetic body 6 to L 1 (4 m
m), the gap between the MR element 7 and the bias magnet 8 is set to L 2, and the result of measuring the magnetic flux density at the position of the MR element 7 when this L 2 is changed is shown in FIG. The horizontal axis in FIG. 3 represents the gap ratio L 2 / L 1 , the left scale on the vertical axis represents the magnetic flux density H S1 when the detection magnetic body 6 is present, and the right scale on the vertical axis represents the detection magnetic body 6. Magnetic flux density H S1 and non-magnetic flux density H S2
Represents the change ratio H S1 / H S2 with. On the other hand, since the MR element 7 has a saturation magnetic field H K determined by the film material, film thickness and film width as shown in FIG. 9, this change ratio must be large in order to obtain a large output. As can be seen from FIG. 3, the magnetic flux density ratio H S1 / H S2 is large when the gap ratio L 2 / L 1 is 1.5 times or more, so the gap ratio is set to 1.5 or more in the present invention.

第2図の回転円板5を回転したときの出力波形を第4
図に示す。定速回転の出力時間とt/Tが一定であること
が必要であるのに対して、従来例の磁気センサではL0
ャップ2〜3mm、回転円板5の回転数20rpm〜3000rpmの
範囲内で10%〜100%まで変化し、広いギャップでの使
用には耐えられなかった。これに対し、本発明では第5
図に示すように、L1ギャップを2〜3mm、回転数20rpm〜
3000rpmの範囲で22%〜26%の狭い幅で変化し、出力時
間比t/Tを略一定にすることができた。
The output waveform when rotating the rotating disk 5 in FIG.
Shown in the figure. The output time of constant speed rotation and t / T need to be constant, whereas in the conventional magnetic sensor, the L 0 gap is 2 to 3 mm, the rotation speed of the rotating disk 5 is within the range of 20 rpm to 3000 rpm. It varied from 10% to 100%, and could not withstand use in a wide gap. On the other hand, in the present invention, the fifth
As shown in the figure, L 1 gap is 2-3 mm, rotation speed 20 rpm
In the range of 3000 rpm, the output time ratio t / T could be made almost constant by changing in a narrow range of 22% to 26%.

また、第1図および第2図からもわかるように、MR素
子をバイアス磁石の軸中心に固定することにより、取付
角度による出力変動が起らないようにでき、高精度の検
出が可能であり、自動車のエンジン等の回転変動、振動
などのある機器にも使用できる。
Also, as can be seen from FIGS. 1 and 2, by fixing the MR element to the axial center of the bias magnet, it is possible to prevent output fluctuations due to the mounting angle and to perform highly accurate detection. It can also be used for equipment with rotational fluctuations and vibrations such as automobile engines.

発明の効果 以上のように本発明によれば、膜面上に感磁部が配置
されて、磁石により検出磁性体の方向にバイアスされる
強磁性薄膜抵抗素子を用い、その抵抗値の変化により前
記検出磁性体を検出する磁気センサであって、強磁性薄
膜抵抗素子をその膜面上の感磁部が検出磁性体の移動軌
跡とバイアス磁石を含む平面内でかつ前記強磁性薄膜抵
抗素子の主電流方向が前記バイアス磁石の磁界に対して
略直角で前記平面内となるように配置したので、検出磁
性体の移動に対してMR素子の膜面上の感磁部の主電流方
向の略直角方向に磁界が加えられるので取付角度により
出力電圧が変わらないため、MR素子とバイアス磁石の距
離を大きくとることにより磁性体の磁界変動率を大きく
して抵抗値の変化を大きくして大きい出力が得られると
ともに、バイアス磁界をX方向の抵抗値変化の中点付近
のリニア領域に設定することによりギャップ変動による
磁界変化の影響が減少し、出力電圧の低下を防止できる
とともに、出力時間比を略一定にできる。
EFFECTS OF THE INVENTION As described above, according to the present invention, a magnetic thin film resistance element, in which a magnetically sensitive portion is arranged on a film surface and is biased in the direction of a detection magnetic body by a magnet, is used. In the magnetic sensor for detecting the detection magnetic body, the ferromagnetic thin-film resistance element is provided in a plane in which the magnetic sensitive portion on the film surface includes the movement locus of the detection magnetic body and the bias magnet, and Since the main current direction is arranged so as to be substantially perpendicular to the magnetic field of the bias magnet and within the plane, the main current direction of the magnetic sensitive section on the film surface of the MR element is almost the same with respect to the movement of the detection magnetic body. Since the magnetic field is applied in the perpendicular direction, the output voltage does not change depending on the mounting angle.Therefore, by increasing the distance between the MR element and the bias magnet, the magnetic field fluctuation rate of the magnetic material is increased to increase the resistance value change and increase the output. As well as Reduces the influence of the magnetic field changes due to the gap variation by setting the bias magnetic field to the linear region near the midpoint of the X-direction of the resistance change, it is possible to prevent decrease in the output voltage can be output time ratio substantially constant.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す磁気センサの概略構成
図、第2図は本発明による磁気センサと検出磁性体の関
係を示す斜視図および電気回路を示す図、第3図はMR素
子と検出磁性体とバイアス磁石のギャップ比と、検出磁
性体があるときとないときの磁束密度比の関係を示すグ
ラフ、第4図は本発明の磁気センサの出力波形を示す
図、第5図は本発明の磁気センサのギャップ、回転数に
対する時間比の関係を示すグラフ、第6図(a)(b)
は従来例の磁気センサの原理を示す断面図、第7図は従
来例のMR素子のギャップと出力電圧の関係を示すグラ
フ、第8図はMR素子の取付角度と出力電圧の関係を示す
グラフ、第9図(a)〜(c)はMR素子に働く磁界と抵
抗値の関係を示すグラフと電流に対する配置関係を示す
図である。 5……回転円板、6……検出磁性体、7……MR素子、8
……磁石、9……感磁部。
FIG. 1 is a schematic configuration diagram of a magnetic sensor showing an embodiment of the present invention, FIG. 2 is a perspective view showing the relationship between the magnetic sensor according to the present invention and a detection magnetic body and a diagram showing an electric circuit, and FIG. 3 is an MR. FIG. 4 is a graph showing the relationship between the gap ratio between the element, the detection magnetic body, and the bias magnet and the magnetic flux density ratio with and without the detection magnetic body. FIG. 4 shows the output waveform of the magnetic sensor of the present invention. The figure is a graph showing the relationship between the gap of the magnetic sensor of the present invention and the time ratio with respect to the number of rotations.
Is a cross-sectional view showing the principle of the conventional magnetic sensor, FIG. 7 is a graph showing the relationship between the MR element gap and the output voltage of the conventional example, and FIG. 8 is a graph showing the relationship between the MR element mounting angle and the output voltage. 9 (a) to 9 (c) are graphs showing the relationship between the magnetic field acting on the MR element and the resistance value, and the diagram showing the arrangement relationship with respect to the current. 5 ... Rotating disk, 6 ... Detection magnetic body, 7 ... MR element, 8
...... Magnet, 9 ... Magnetic sensitive part.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】膜面上に感磁部が配置されて、磁石により
検出磁性体の方向にバイアスされる強磁性薄膜抵抗素子
を用い、その抵抗値の変化により前記検出磁性体を検出
する磁気センサであって、強磁性薄膜抵抗素子をその膜
面上の感磁部が検出磁性体の移動軌跡とバイアス磁石を
含む平面内でかつ前記強磁性薄膜抵抗素子の主電流方向
が前記バイアス磁石の磁界に対して略直角で前記平面内
となるように配置した磁気センサ。
1. A magnetic sensor for detecting a detection magnetic body by using a ferromagnetic thin film resistance element, in which a magnetically sensitive portion is arranged on a film surface and biased in the direction of the detection magnetic body by a magnet. In the sensor, the ferromagnetic thin film resistance element has a magnetic sensitive portion on a film surface thereof in a plane including a movement locus of a detection magnetic body and a bias magnet, and a main current direction of the ferromagnetic thin film resistance element is the bias magnet. A magnetic sensor arranged so as to be substantially perpendicular to the magnetic field and within the plane.
【請求項2】強磁性薄膜抵抗素子とバイアス磁石の距離
が強磁性薄膜抵抗素子と検出磁性体の距離の1.5倍以上
であることを特徴とする特許請求の範囲第1項記載の磁
気センサ。
2. The magnetic sensor according to claim 1, wherein the distance between the ferromagnetic thin film resistance element and the bias magnet is 1.5 times or more the distance between the ferromagnetic thin film resistance element and the detection magnetic body.
JP60290114A 1985-12-23 1985-12-23 Magnetic sensor Expired - Lifetime JPH081387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290114A JPH081387B2 (en) 1985-12-23 1985-12-23 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290114A JPH081387B2 (en) 1985-12-23 1985-12-23 Magnetic sensor

Publications (2)

Publication Number Publication Date
JPS62148813A JPS62148813A (en) 1987-07-02
JPH081387B2 true JPH081387B2 (en) 1996-01-10

Family

ID=17751977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290114A Expired - Lifetime JPH081387B2 (en) 1985-12-23 1985-12-23 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH081387B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527856B2 (en) * 1991-06-18 1996-08-28 三菱電機株式会社 Magnetic sensor
US5637995A (en) * 1992-12-09 1997-06-10 Nippondenso Co., Ltd. Magnetic detection device having a magnet including a stepped portion for eliminating turbulence at the MR sensor
CN103968860B (en) * 2013-02-01 2017-07-04 江苏多维科技有限公司 Absolute type magnetic rotary encoder
JP2016186476A (en) * 2015-03-27 2016-10-27 Tdk株式会社 Magnetic sensor and magnetic encoder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166125U (en) * 1983-04-21 1984-11-07 ティーディーケイ株式会社 magnetic sensor
JPS601515A (en) * 1983-06-20 1985-01-07 Nippon Denso Co Ltd Magnetism detecting device

Also Published As

Publication number Publication date
JPS62148813A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
EP1907797B1 (en) Asymmetrical amr wheatstone bridge layout for position sensor
JP3529784B2 (en) Sensor using magnetoresistive element
JP3618466B2 (en) Hall effect iron article proximity sensor
US6169396B1 (en) Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration
US7112957B2 (en) GMR sensor with flux concentrators
US6304078B1 (en) Linear position sensor
US5341097A (en) Asymmetrical magnetic position detector
US5021736A (en) Speed/position sensor calibration method with angular adjustment of a magnetoresistive element
JP3455706B2 (en) Non-contact position sensor using a tapered dipole magnet
US4492922A (en) Magnetic sensor with two series-connected magnetoresistive elements and a bias magnet for sensing the proximity of a relatively movable magnetically permeable member
JPH0379648B2 (en)
JPH11304414A (en) Magnetism detecting device
JP3487452B2 (en) Magnetic detector
JPH0350965B2 (en)
JPH081387B2 (en) Magnetic sensor
JP2628338B2 (en) Absolute encoder
JP3186656B2 (en) Speed sensor
JPH074986A (en) Reference position detector
JPH06147816A (en) Angle sensor
JPH069306Y2 (en) Position detector
JP3643222B2 (en) Magnetoresistive element and magnetic linear measuring device
JP2514338B2 (en) Current detector
JPH05322510A (en) Throttle position sensor
JPH0618279A (en) Detecting apparatus for position
JPS625284B2 (en)