JPH0468789B2 - - Google Patents

Info

Publication number
JPH0468789B2
JPH0468789B2 JP57008175A JP817582A JPH0468789B2 JP H0468789 B2 JPH0468789 B2 JP H0468789B2 JP 57008175 A JP57008175 A JP 57008175A JP 817582 A JP817582 A JP 817582A JP H0468789 B2 JPH0468789 B2 JP H0468789B2
Authority
JP
Japan
Prior art keywords
well
output amplifier
charge
ccd
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57008175A
Other languages
Japanese (ja)
Other versions
JPS58125872A (en
Inventor
Hidetsugu Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57008175A priority Critical patent/JPS58125872A/en
Publication of JPS58125872A publication Critical patent/JPS58125872A/en
Publication of JPH0468789B2 publication Critical patent/JPH0468789B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures

Description

【発明の詳細な説明】 本発明は電荷結合素子に関する。[Detailed description of the invention] The present invention relates to charge coupled devices.

電荷結合素子(以後CCDと記す)は1970年に
発表されて以来、従来からの高度の集積回路技術
を基盤とし、その発展とともに急速な開発が進め
られ、近年固体撮像、アナログ遅延線、メモリ等
各種の応用がなされるようになつた。特にCCD
を用いた固体撮像素子あるいはアナログ遅延線は
低消費電力、小型軽量、高集積化が可能、高S/N
が得られる等、多くの特徴を有し近年その開発が
盛んである。これら電荷結合素子の出力部は通
常、浮遊拡散物およびMSゲートのオンチツプ
出力アンプによつて構成されているため、出力容
量が極めて小さく本質的に高いS/Nのデバイスが
実現される。
Since the charge-coupled device (hereinafter referred to as CCD) was announced in 1970, it has been based on conventional advanced integrated circuit technology, and has been rapidly developed along with its advancement. It has come to be used in various applications. Especially CCD
Solid-state imaging devices or analog delay lines using
It has many features such as the ability to obtain The output of these charge-coupled devices is typically constructed with an on-chip output amplifier of floating diffusions and MOS gates, resulting in an inherently high signal-to-noise ratio device with extremely low output capacitance.

ところで、近年種々の理由により、これら電荷
結合素子を半導体基板と反対導電型の半導体層内
に形成しようという試みがなされている。これは
例えばN型の半導智体板を用いたときにはP型の
半導体領域をこの基板表面にイオン注入あるいは
エピタキシヤル成長等の手段により形成する。こ
のP型半導体領域は通常Pウエルと呼ばれ、この
Pウエル上に電荷結合素子を形成しようとするも
のである。以後、説明の都合上このN型基板の場
合について説明する。
Incidentally, in recent years, for various reasons, attempts have been made to form these charge-coupled devices in a semiconductor layer of a conductivity type opposite to that of a semiconductor substrate. For example, when an N-type semiconductor smart body board is used, a P-type semiconductor region is formed on the surface of the substrate by means such as ion implantation or epitaxial growth. This P-type semiconductor region is usually called a P-well, and a charge-coupled device is intended to be formed on this P-well. Hereinafter, for convenience of explanation, the case of this N-type substrate will be explained.

通常このPウエルの不純物濃度は1015/cm2
度、厚さは数μm程度である。このためこのPウ
エルの比抵抗は数十kΩに達する。これは通常の
買バルク上に形成する場合に比べて約2桁大きな
抵抗値になつている。また、このPウエルに対す
る電位は通常デバイスの周辺部においてコンタク
トを設けて設定されるようになつており、通常の
バルク上に形成する場合にはデバイス下部全面に
わたつてコンタクトが設けられているのと比較す
るとPウエルの電位が動作時安定しにくいという
欠点がある。このため動作時にクロツクパルスの
誘導によりPウエル電位がゆらぎ、このゆらぎが
同一のPウエル上に形成された出力アンプへと伝
播するため出力アンプでのノイズが増大すること
になる。
Usually, the impurity concentration of this P-well is about 10 15 /cm 2 and the thickness is about several μm. Therefore, the specific resistance of this P-well reaches several tens of kilohms. This is a resistance value that is about two orders of magnitude larger than that when it is formed on a normal buying bulk. In addition, the potential for this P-well is usually set by providing contacts at the periphery of the device, and when forming on a normal bulk, contacts are provided over the entire bottom of the device. Compared to this, there is a drawback that the potential of the P well is difficult to stabilize during operation. Therefore, during operation, the P-well potential fluctuates due to the induction of clock pulses, and this fluctuation propagates to the output amplifier formed on the same P-well, resulting in an increase in noise at the output amplifier.

第1図は従来のPウエル上に形成された電荷結
合素子の主要部の断面図を示している。第1図に
おいて、1はN型の半導体基板、2はこの半導体
基板上に形成され、基板反対導電型を有する半導
体領域であり、本例ではPウエルである。3は
CCD出力部の浮遊拡散層、4は浮遊拡散相層3
をリセツトするためのトランジスタ(以後リセツ
トトランンジスタと記す)のドレイン拡散層(以
後リセツトドレインと記す)、16はリセツトト
ランジスタのゲート(以後リセツトゲートと記
す)、5は出力アンプのドレイン、6は出力アン
プの出力拡散層、7は出力アンブのグランド拡散
層、17は出力アンプの駆動トランジスタのゲー
ト、18は出力アンブの負荷トランジスタのゲー
トである。本例では出力アンブとしては一般のソ
ースフオロワアンプについて示している。また、
浮遊拡散層3と出力アンブのゲート17とは配線
19によつて結合されている。10〜15は
CCDの転送電極、20〜25は転送電極10〜
15へ所定の電圧を印加するための端子、26は
リセツトゲート16の端子、27はリセツトドレ
イン4の端子、28は出力アンブのドレイン5の
端子、29は出力端子、30はゲート18に所定
の電圧を印加するための端子、31はグランド端
子、9はPウエル2のコンタクト、8はPウエル
2に電圧を印加するための端子であり、通常この
コンタクトはデバイス周辺部に設けられている。
FIG. 1 shows a cross-sectional view of the main parts of a conventional charge coupled device formed on a P-well. In FIG. 1, 1 is an N-type semiconductor substrate, and 2 is a semiconductor region formed on this semiconductor substrate and having a conductivity type opposite to the substrate, which is a P well in this example. 3 is
Floating diffusion layer of CCD output section, 4 is floating diffusion phase layer 3
16 is the gate of the reset transistor (hereinafter referred to as reset gate), 5 is the drain of the output amplifier, and 6 is the output. The output diffusion layer of the amplifier, 7 is the ground diffusion layer of the output amplifier, 17 is the gate of the drive transistor of the output amplifier, and 18 is the gate of the load transistor of the output amplifier. In this example, a general source follower amplifier is shown as the output amplifier. Also,
The floating diffusion layer 3 and the gate 17 of the output amplifier are coupled by a wiring 19. 10-15 is
Transfer electrodes of CCD, 20 to 25 are transfer electrodes 10 to 25
26 is a terminal for the reset gate 16, 27 is a terminal for the reset drain 4, 28 is a terminal for the drain 5 of the output amplifier, 29 is an output terminal, and 30 is a terminal for applying a predetermined voltage to the gate 18. Terminals 31 are ground terminals for applying a voltage, 9 are contacts of the P well 2, and 8 are terminals for applying a voltage to the P well 2, and these contacts are usually provided at the periphery of the device.

ところで、このようなPウエル上にCCDを形
成したデバイスでは通常Pウエルの電位を0ボル
トとし、このPウエルに対して、駆動電極10〜
15の端子20〜25をはじめ各端子には正のパ
ルス電圧あるいは直流電圧が印加される。CCD
によつて転送された信号電荷は出力浮遊拡散層3
へと流入し、ここで浮遊拡散層に付随する各種の
容量によつて電圧に変換され出力アンブを介して
出力端子29よりとり出される。ところが、この
従来の構成のデバイスではPウエル2が非常に高
抵抗であるため、たとえコンタクト9によつてP
ウエル2の電位を固定しても転送電極に印加され
るパルスによつてPウエルは電位変動を受ける。
この電位変動はPウエルに寄生する分布容量ある
いは分布抵抗、駆動パルス等により様々な周波数
成分をもつようになる。この電位変動は直接出力
アンプ直下のPウエルを変動させることになる。
これはCCDが形成されているPウエルと出力ア
ンブが形成されているPウエルとが有限のPウエ
ル抵抗によつて結合されているためである。この
ため、従来CCDは高S/Nを有するにもかかわら
ず、このアンプ直下のPウエルの変動により駆動
パルスの誘導ノイズをひろい込むことになる。
By the way, in a device in which a CCD is formed on such a P-well, the potential of the P-well is usually set to 0 volts, and the drive electrodes 10 to 10 are connected to the P-well.
A positive pulse voltage or DC voltage is applied to each terminal including terminals 20 to 25 of No. 15. CCD
The signal charges transferred by the output floating diffusion layer 3
Here, the voltage is converted into a voltage by various capacitances associated with the floating diffusion layer, and is taken out from the output terminal 29 via the output amplifier. However, in a device with this conventional configuration, the P well 2 has a very high resistance, so even if the P well 2 is
Even if the potential of well 2 is fixed, the P well is subject to potential fluctuations due to pulses applied to the transfer electrode.
This potential fluctuation has various frequency components due to the distributed capacitance or resistance parasitic to the P-well, drive pulses, etc. This potential variation directly causes the P-well directly below the output amplifier to vary.
This is because the P-well in which the CCD is formed and the P-well in which the output amplifier is formed are connected by a finite P-well resistance. For this reason, although the conventional CCD has a high S/N ratio, the fluctuation of the P-well directly under the amplifier introduces induced noise in the drive pulse.

本発明の目的は前記した従来の欠点を除去せし
めた電荷結合素子を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a charge-coupled device which eliminates the above-mentioned conventional drawbacks.

本発明によれば、一導電性を有する半導体基板
上に形成され該半導体基板と反対導電型の半導体
領域上に形成され、電荷転送路部と電荷検出部と
出力アンブとを具備する電荷結合素子において、
出力アンブが形成される半導体領域直下の半導体
基板の少なとも一部領域は該半導体基板と同一導
電型でより高濃度の不純物を有する半導体領域が
形成されていることを特徴とする電荷結合素子が
得られる。
According to the present invention, a charge-coupled device is formed on a semiconductor substrate having one conductivity, is formed on a semiconductor region of the opposite conductivity type to the semiconductor substrate, and includes a charge transfer path section, a charge detection section, and an output amplifier. In,
A charge-coupled device characterized in that at least a part of the semiconductor substrate immediately below the semiconductor region where the output amplifier is formed is formed with a semiconductor region having the same conductivity type as the semiconductor substrate and having a higher concentration of impurities. can get.

第2図は本発明による電荷結合素子の他の実施
例を示す。第2図において第1図と同一番号は同
一対象物を示すものとする。第2図に示す本発明
によるデバイスと、第1図に示す従来のデバイス
との相違点は、第2図においては出力アンブ直下
のN型領域の少なくとも一部領域は高濃度のN型
領域60により形成されていることである。この
高濃度のN型領域は出力アンブ直下のPウエルと
の間に大きな接合容量を形成する。この接合容量
は他の寄生容量、およびCCD直下のPウエルと
出力アンブ直下のPウエルとの間に存在する有限
の抵抗とともに、高域阻止フイルタを形成する。
このためCCD直下のPウエル電位が外部のパル
スの誘導によりゆらぐことに起因するノイズ成分
が阻止され、出力アンブ直下のPウエル電位が安
定化される。このため高S/Nの出力アンブが実現
される。しかも面積を増加させずに済む。この第
2図の実施例は、CCD直下のPウエルと出力ア
ンブ直下のPウエルを基板により分離する事によ
りより効果的なデバイスの実現が可能である。さ
らに第2図においては出力アンブ直下にのみN型
の高濃度領域を形成しているが、この高濃度領域
はCCD直下のPウエル直下にも形成されてもよ
い。
FIG. 2 shows another embodiment of a charge coupled device according to the invention. In FIG. 2, the same numbers as in FIG. 1 indicate the same objects. The difference between the device according to the present invention shown in FIG. 2 and the conventional device shown in FIG. 1 is that in FIG. It is formed by This highly doped N-type region forms a large junction capacitance with the P-well directly below the output amplifier. This junction capacitance, together with other parasitic capacitances and the finite resistance that exists between the P-well directly below the CCD and the P-well directly below the output amplifier, forms a high-pass rejection filter.
Therefore, noise components caused by fluctuations in the P-well potential immediately below the CCD due to induction of external pulses are blocked, and the P-well potential immediately below the output amplifier is stabilized. Therefore, an output amplifier with high S/N is realized. Moreover, the area does not need to be increased. In the embodiment shown in FIG. 2, a more effective device can be realized by separating the P-well directly below the CCD and the P-well immediately below the output amplifier by the substrate. Further, in FIG. 2, the N-type high concentration region is formed only directly below the output amplifier, but this high concentration region may also be formed directly below the P well directly below the CCD.

これは、CCD直下のPウエルとN型基板との
間の接合容量を増大させ得ることができ、Pウエ
ルの電位の安定化がはかれるためである。このた
めCCD直下のPウエルの変動も少なくなり、こ
の結果、低雑音化がはかれることになる。
This is because the junction capacitance between the P-well directly under the CCD and the N-type substrate can be increased, and the potential of the P-well can be stabilized. Therefore, fluctuations in the P-well directly below the CCD are also reduced, resulting in lower noise.

以上述べたように、本発明によればPウエル上
に形成されたCCDでも極めて低雑音のデバイス
が実現できる。
As described above, according to the present invention, even a CCD formed on a P-well can realize an extremely low-noise device.

また、以上述べた説明は全てN型基板の場合で
あつたが、P型基板としても他の不純物の導電型
あるいは電圧関係を逆にすれば、本発明の主旨は
同様に適用し得る。
Furthermore, although all of the above explanations have been made in the case of an N-type substrate, the gist of the present invention can be similarly applied to a P-type substrate by reversing the conductivity type or voltage relationship of other impurities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCCDの断面図、第2図は本発
明によるCCDの一実施例を示す断面図である。 図においては、1は一導電型を有する半導体基
板、2はこの基板上に形成され、半導体基板とは
反対導電型を有する半導体領域、3は浮遊拡散
層、4はリセツトドレイン、5,6,7はそれぞ
れ出力アンプのドレイン、出力拡散層、グランド
拡散層、9は半導体領域2の電位を設定するため
のコンタクト、8はこの端子、10〜15は
CCDの転送電極、20〜25はこれらの端子、
16はリセツトゲート、17は出力アンプの駆動
トランジスタのゲート、18は負荷トランジスタ
のゲート、19は浮遊拡散層3およびゲート17
を結ぶ配線、26〜31は前記リセツトゲート1
6、リセツトドレイン4、アンプドレイン5、出
力拡散層6、ゲート18、グランド拡散層7の端
子である。60は半導体基板と同一導電型を有す
る高濃度不純物を含有する半導体領域である。
FIG. 1 is a sectional view of a conventional CCD, and FIG. 2 is a sectional view showing an embodiment of a CCD according to the present invention. In the figure, 1 is a semiconductor substrate having one conductivity type, 2 is a semiconductor region formed on this substrate and has a conductivity type opposite to that of the semiconductor substrate, 3 is a floating diffusion layer, 4 is a reset drain, 5, 6, 7 is the drain of the output amplifier, an output diffusion layer, and a ground diffusion layer, 9 is a contact for setting the potential of the semiconductor region 2, 8 is this terminal, 10 to 15 are
CCD transfer electrodes, 20 to 25 are these terminals,
16 is the reset gate, 17 is the gate of the drive transistor of the output amplifier, 18 is the gate of the load transistor, 19 is the floating diffusion layer 3 and the gate 17
Wirings 26 to 31 connect the reset gate 1.
6, terminals of the reset drain 4, amplifier drain 5, output diffusion layer 6, gate 18, and ground diffusion layer 7. Reference numeral 60 denotes a semiconductor region containing high concentration impurities and having the same conductivity type as the semiconductor substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型を有する半導体基板上に形成され該
半導体基板と反対導電型の半導体領域上に形成さ
れ、電荷転送路部と電荷検出部と出力アンプとを
具備する電荷結合素子において、出力アンプが形
成される半導体領域直下の半導体基板の少なくと
も一部領域は該半導体基板と同一導電型でより高
濃度の不純物を有する半導体領域が形成されてい
ることを特徴とする電荷結合素子。
1. A charge-coupled device formed on a semiconductor substrate having one conductivity type, formed on a semiconductor region of the opposite conductivity type to the semiconductor substrate, and comprising a charge transfer path section, a charge detection section, and an output amplifier, wherein the output amplifier is A charge-coupled device characterized in that at least a part of the semiconductor substrate immediately below the formed semiconductor region is formed with a semiconductor region having the same conductivity type as the semiconductor substrate and having a higher concentration of impurities.
JP57008175A 1982-01-21 1982-01-21 Charge coupled device Granted JPS58125872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008175A JPS58125872A (en) 1982-01-21 1982-01-21 Charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008175A JPS58125872A (en) 1982-01-21 1982-01-21 Charge coupled device

Publications (2)

Publication Number Publication Date
JPS58125872A JPS58125872A (en) 1983-07-27
JPH0468789B2 true JPH0468789B2 (en) 1992-11-04

Family

ID=11685979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008175A Granted JPS58125872A (en) 1982-01-21 1982-01-21 Charge coupled device

Country Status (1)

Country Link
JP (1) JPS58125872A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163761U (en) * 1984-04-05 1985-10-30 ソニー株式会社 charge coupled device
JPH05315587A (en) * 1992-04-02 1993-11-26 Nec Corp Semiconductor device
JP2832136B2 (en) * 1992-12-28 1998-12-02 シャープ株式会社 Solid-state imaging device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427311A (en) * 1977-08-01 1979-03-01 Hitachi Ltd Solid state pickup element
JPS54107278A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Semiconductor device
JPS5623779A (en) * 1979-07-31 1981-03-06 Mitel Corp Semiconductor device and method of manufacturing same
JPS56167361A (en) * 1980-05-26 1981-12-23 Mitsubishi Electric Corp Semiconductor integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427311A (en) * 1977-08-01 1979-03-01 Hitachi Ltd Solid state pickup element
JPS54107278A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Semiconductor device
JPS5623779A (en) * 1979-07-31 1981-03-06 Mitel Corp Semiconductor device and method of manufacturing same
JPS56167361A (en) * 1980-05-26 1981-12-23 Mitsubishi Electric Corp Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS58125872A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
JP4295740B2 (en) Charge coupled device image sensor
JPH0666446B2 (en) Solid-state image sensor
JPH079981B2 (en) Charge transfer device
JPH055179B2 (en)
JPH0468789B2 (en)
JPH07106553A (en) Solid state image pickup element
JPH05291550A (en) Solid-state image sensing device and its manufacture
JP3118889B2 (en) CCD image sensor
US6023195A (en) On-chip source follower amplifier
JPS60132367A (en) Charge transfer device
JP2870467B2 (en) Charge coupled device
JP3680488B2 (en) Semiconductor device
JPH0319349A (en) Charge-coupled device
JP2757583B2 (en) Semiconductor integrated circuit
JPH0263299B2 (en)
JP3055635B2 (en) Charge-coupled device
JPH07118535B2 (en) Charge transfer device and driving method thereof
JPH05268526A (en) Charge coupling device
JPH0760895B2 (en) Charge coupled device and driving method thereof
JPH07202171A (en) Charge transfer device
JPH07118537B2 (en) Charge transfer device and driving method thereof
JP3173806B2 (en) Driving method of charge detection circuit
JPH01103872A (en) Solid-state image sensing device
JPH01251756A (en) Charge-coupled device
JP3021533B2 (en) CCD image sensor