JPH07106553A - Solid state image pickup element - Google Patents

Solid state image pickup element

Info

Publication number
JPH07106553A
JPH07106553A JP5249640A JP24964093A JPH07106553A JP H07106553 A JPH07106553 A JP H07106553A JP 5249640 A JP5249640 A JP 5249640A JP 24964093 A JP24964093 A JP 24964093A JP H07106553 A JPH07106553 A JP H07106553A
Authority
JP
Japan
Prior art keywords
floating diffusion
diffusion layer
conductivity type
region
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5249640A
Other languages
Japanese (ja)
Inventor
Keiko Kawabata
啓子 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5249640A priority Critical patent/JPH07106553A/en
Publication of JPH07106553A publication Critical patent/JPH07106553A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high speed and high sensitive charge detecting device to realize high density of a solid state image pickup element by improving sensitivity through small capacitance of a floating diffusion layer. CONSTITUTION:A P type semiconductor region 14A in the width of 1 to 2mum is provided between a floating diffusion layer 10A and a reset drain region 13A. A reset operation of signal charges of the floating diffusion layer 10A discharges the charges by giving directly a pulse voltage to the reset drain region 13A to generate punch-through on the P type semiconductor region 14A. Therefore, the reset gate electrode can be ruled out, the floating diffusion capacity can be reduced because parasitic capacitance against the floating diffusion layer can be eliminated and thereby sensitivity can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体撮像素子に関し、特
に電荷転送型の固体撮像素子(以下CCDと記す)に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device, and more particularly to a charge transfer type solid-state image pickup device (hereinafter referred to as CCD).

【0002】[0002]

【従来の技術】従来のCCDの、電荷転送レジスタの最
終段から電荷検出部にかけての構造を図3,図4を参照
して説明する。図3は平面図、図4は図3のX−X線断
面図である。N型シリコン基板1の表面部にPウエル2
(P型領域)を設け、このPウエル2内に埋込型CCD
の転送チャネルとなるNウエル3を形成し、絶縁膜(ゲ
ート酸化膜5)を介して転送電極(障壁ゲート電極6b
および蓄積ゲート電極6sの組)、出力ゲート電極8、
9、リセットゲート電極12が形成されている。Nウエ
ル3内を転送電極に転送パルスφ1,φ2を印加するこ
とによって転送されてきた信号電荷は、出力ゲート電極
8、9下を通り浮遊拡散層10で電圧に変換された後、
リセットゲート電極12にハイレベルのパルスが印加さ
れる(Vrgがハイレベルになる)ことにより、リセッ
トドレイン領域13へ排出される。また浮遊拡散層10
の電位変化Vは、V=Q/CFJ(Q:信号電荷、CFJ
浮遊拡散容量)で表され、MOSトランジスタM1,M
2,M3およびM4からなる二段のソースホロワ増幅回
路AMPを経てCCDの出力電圧Voutとして出力さ
れる。したがってこのCFJが小さいほど、電荷から電圧
への変換効率が良くなり、のぞましい。CFJは、浮遊拡
散層10とリセットゲート電極12との間の寄生容量C
a、浮遊拡散層10と出力ゲート電極9との間の寄生容
量Cb、浮遊拡散層10とPウエル2との接合容量C
c、浮遊拡散層10と初段ドライブ用のMOSトランジ
スタM1とを結ぶ配線11がシリコン基板と持つ配線容
量Cd、初段ドライブ用のMOSトランジスタM1のゲ
ート電極とドレイン領域およびソース領域それぞれとの
間の寄生容量CeおよびCfなどの和で表される。従
来、このCFJをなるべく小さくするために、Ccについ
ては浮遊拡散層の面積の縮小化、低濃度化、Cdについ
ては、配線11の長さの短縮、またCe、Cfについて
はドライブ用のMOSトランジスタのゲート電極の寸法
の縮小などの対策をとってきた。
2. Description of the Related Art The structure of a conventional CCD from the final stage of a charge transfer register to a charge detecting portion will be described with reference to FIGS. 3 is a plan view and FIG. 4 is a sectional view taken along line XX of FIG. P well 2 is formed on the surface of N type silicon substrate 1.
(P-type region) is provided, and an embedded CCD is provided in this P-well 2.
Forming an N well 3 to be a transfer channel of the transfer electrode (barrier gate electrode 6b) through the insulating film (gate oxide film 5).
And a set of storage gate electrodes 6s), an output gate electrode 8,
9 and the reset gate electrode 12 are formed. The signal charges transferred by applying transfer pulses φ1 and φ2 to the transfer electrodes in the N well 3 pass under the output gate electrodes 8 and 9 and are converted into a voltage in the floating diffusion layer 10,
When a high level pulse is applied to the reset gate electrode 12 (Vrg becomes a high level), it is discharged to the reset drain region 13. In addition, the floating diffusion layer 10
Potential change V is V = Q / C FJ (Q: signal charge, C FJ :
Floating diffusion capacitance), and MOS transistors M1, M
It is output as the output voltage Vout of the CCD through a two-stage source follower amplifier circuit AMP composed of 2, M3 and M4. Therefore, the smaller this C FJ , the better the conversion efficiency from charge to voltage, which is desirable. C FJ is a parasitic capacitance C between the floating diffusion layer 10 and the reset gate electrode 12.
a, parasitic capacitance Cb between floating diffusion layer 10 and output gate electrode 9, junction capacitance C between floating diffusion layer 10 and P well 2
c, the wiring capacitance Cd that the wiring 11 connecting the floating diffusion layer 10 and the MOS transistor M1 for the first stage drive has with the silicon substrate, and the parasitic between the gate electrode and the drain region and the source region of the MOS transistor M1 for the first stage drive It is represented by the sum of the capacitances Ce and Cf. Conventionally, in order to make this C FJ as small as possible, the area of the floating diffusion layer is reduced and the concentration thereof is reduced for Cc, the length of the wiring 11 is shortened for Cd, and the drive MOS for Ce and Cf. Measures such as reducing the size of the gate electrode of the transistor have been taken.

【0003】[0003]

【発明が解決しようとする課題】以上説明した従来のC
CDにおける浮遊拡散容量を小さくすることによる高感
度化も限界にきており、さらなる感度の向上が困難にな
ってきているという問題点がある。また感度向上のため
に浮遊拡散層の低濃度化などにより、リセットゲート電
極にハイレベルパルスを印加して信号電荷をリセットド
レインに排出する際に、この部分の抵抗が高くなり、電
荷の排出に時間がかかり高速度化に対応できないなどの
問題も派生している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Higher sensitivity by reducing the floating diffusion capacitance in the CD has reached its limit, and there is a problem that it is becoming difficult to further improve the sensitivity. In addition, when the high-level pulse is applied to the reset gate electrode and the signal charge is discharged to the reset drain by decreasing the concentration of the floating diffusion layer to improve the sensitivity, the resistance of this part becomes high, and the charge is discharged. Problems such as time consuming and inability to cope with high speed are also derived.

【0004】[0004]

【課題を解決するための手段】本発明の固体撮像素子
は、表面部に第1導電型領域を有する半導体基板の前記
第1導電型領域の表面部に設けられた第2導電型領域を
埋込型転送チャネルとして有する電荷転送レジスタと、
前記電荷転送レジスタに近接し前記第2導電型領域と連
結して設けられ前記電荷転送レジスタから信号電荷を受
け取る第2導電型の浮遊拡散層と、前記浮遊拡散層と所
定寸法離れて前記第1導電型領域に形成された第2導電
型のリセットドレイン領域とを有し、前記リセットドレ
イン領域にパルス電圧を印加して前記浮遊拡散層との間
をパルチスルー状態にして前記浮遊拡散層の信号電荷を
掃き出すようにしたというものである。
A solid-state imaging device according to the present invention fills a second conductivity type region provided on a surface portion of the first conductivity type region of a semiconductor substrate having a first conductivity type region on the surface portion. A charge transfer register having an embedded transfer channel,
A second conductive type floating diffusion layer provided adjacent to the charge transfer register and connected to the second conductive type region to receive a signal charge from the charge transfer register; and the first diffusion layer separated from the floating diffusion layer by a predetermined dimension. A reset drain region of the second conductivity type formed in the conductivity type region, and a pulse voltage is applied to the reset drain region to establish a pulse-through state between the reset drain region and the signal charge of the floating diffusion layer. I tried to sweep out.

【0005】[0005]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)は本発明の一実施例の信号出力部を示す
平面図、図1(b)は図1(a)のX−X線断面図であ
る。
The present invention will be described below with reference to the drawings. FIG. 1A is a plan view showing a signal output portion of an embodiment of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG.

【0006】この実施例は、表面部にP型領域(Pウエ
ル2)を有するN型シリコン基板1の前述のPウエル2
(濃度1×1014〜1×1015cm-3)の表面部に設け
られたN型領域(深さ2〜4μm、濃度1×1015〜1
×1016cm-3のNウエル3)を埋込型の転送チャネル
として有する電荷転送レジスタと、前述電荷転送レジス
タに近接しNウエル2と連結して設けられ前述の電荷転
送レジスタから信号電荷を受け取るN型の浮遊拡散層1
0Aと、浮遊拡散層10Aと所定寸法(2μm)離れて
Pウエルに形成されたN型のリセットドレイン領域13
A(表面部にN+ 型拡散層13Aaを有している)とを
有し、リセットドレイン領域13Aにパルス電圧を印加
して浮遊拡散層10Aとの間をパンチスルー状態にして
浮遊拡散層10Aの信号電荷を掃き出すようにしたとい
うものである。
In this embodiment, the P well 2 of the N type silicon substrate 1 having a P type region (P well 2) on the surface is used.
N-type region (depth 2 to 4 μm, concentration 1 × 10 15 to 1) provided on the surface of (concentration 1 × 10 14 to 1 × 10 15 cm −3 ).
A charge transfer register having a × 10 16 cm −3 N well 3) as an embedded transfer channel, and a signal charge from the above charge transfer register provided in proximity to the charge transfer register and connected to the N well 2. N-type floating diffusion layer 1 to receive
0A, and the floating diffusion layer 10A is separated from the floating diffusion layer 10A by a predetermined dimension (2 μm) to form an N-type reset drain region 13 in the P well.
A (having an N + type diffusion layer 13Aa on the surface portion) and applying a pulse voltage to the reset drain region 13A to make a punch-through state with the floating diffusion layer 10A. It is said that the signal charge of was swept out.

【0007】4はNウエル3の表面部に形成されたN-
型障壁層、5はシリコン基板表面に設けられたゲート酸
化膜、6sは蓄積ゲート電極、6bは障壁ゲート電極、
8,9は出力ゲート電極である。コンタクト孔Cを介し
て浮遊拡散層10Aに接続する配線11は図5に示した
ソースホロワ増幅回路AMPと同様のものに接続され
る。
Reference numeral 4 denotes an N formed on the surface of the N well 3.
Type barrier layer, 5 is a gate oxide film provided on the surface of the silicon substrate, 6s is a storage gate electrode, 6b is a barrier gate electrode,
Reference numerals 8 and 9 are output gate electrodes. The wiring 11 connected to the floating diffusion layer 10A through the contact hole C is connected to the same one as the source follower amplifier circuit AMP shown in FIG.

【0008】次に図2を参照してこの実施例の動作につ
いて説明する。
Next, the operation of this embodiment will be described with reference to FIG.

【0009】時刻t0において転送レジスタの最終段の
蓄積電極6s下に信号電荷Qが転送されてきているとす
る。つまり転送パルスφ1が“H”レベル,φ2が
“L”レベルとする。次に、時刻t1にφ1が“L”レ
ベル,φ2が“H”レベルになると、信号電荷Qは出力
ゲート電極8,9下を通って浮遊拡散層10Aに注入す
る。次に、時刻t2にリセットドレイン領域13Aに印
加される電圧Vrdaがローレベル(例えば0ボルト)
からハイレベル(例えば15ボルト)になると、浮遊拡
散層10Aとリセットドレイン領域の間がパンチスルー
状態となりP型半導体領域14Aのポテンシャルバリア
がなくなり、信号電荷Qをリセットドレイン領域13A
へ掃き出される。なお、N型シリコン基板はVs(例え
ば5ボルト)にバイアスされ、転送チャネルの入力端は
例えば15ボルトにバイアスされているものとする。
At time t0, it is assumed that the signal charge Q is transferred below the storage electrode 6s at the final stage of the transfer register. That is, the transfer pulse φ1 is set to the “H” level and φ2 is set to the “L” level. Next, when φ1 becomes “L” level and φ2 becomes “H” level at the time t1, the signal charge Q is injected into the floating diffusion layer 10A through below the output gate electrodes 8 and 9. Next, at time t2, the voltage Vrda applied to the reset drain region 13A is at a low level (for example, 0 V).
From the high level (for example, 15 V), the space between the floating diffusion layer 10A and the reset drain region becomes a punch-through state, the potential barrier of the P-type semiconductor region 14A disappears, and the signal charge Q is transferred to the reset drain region 13A.
Swept to. It is assumed that the N-type silicon substrate is biased at Vs (for example, 5 V) and the input end of the transfer channel is biased at, for example, 15 V.

【0010】従来例でリセットゲート電極と浮遊拡散層
との間の寄生容量Ca(2〜3fF、これはCFJの約2
割に当る)がなくなる。浮遊拡散層10AとP型半導体
領域14Aとの接合容量(約0.8fF)が新たに追加
されるがこれはCaの約1/3である。従って、感度の
向上が可能となる。
In the conventional example, the parasitic capacitance Ca (2 to 3 fF between the reset gate electrode and the floating diffusion layer, which is about 2 of C FJ ).
To win) is gone. A junction capacitance (about 0.8 fF) between the floating diffusion layer 10A and the P-type semiconductor region 14A is newly added, which is about 1/3 of Ca. Therefore, the sensitivity can be improved.

【0011】ヒ素やボロンのイオン注入を利用してP型
半導体領域14Aの濃度をNウエル3が存在する部分よ
りも薄くすれば感度の一層の向上が可能となるが、電荷
の掃除き出しはパンチスルー電流によるので悪影響を浮
けず敏速におこなうことができる。
If the concentration of the P-type semiconductor region 14A is made thinner than that of the portion where the N well 3 is present by utilizing the ion implantation of arsenic or boron, the sensitivity can be further improved, but the charge is not swept out. Since it depends on the punch-through current, it can be carried out promptly without adverse effects.

【0012】[0012]

【発明の効果】以上説明したように本発明は浮遊拡散層
と所定寸法離れてリセットドレイン領域を設け、リセッ
トドレイン領域に直接パルス電圧を印加して浮遊拡散層
との間をパンチスルー状態にすることにより信号電荷の
排出をおこなうので、リセットゲート電極を設ける必要
が無く、浮遊拡散容量を低減し感度を高めることができ
る。
As described above, according to the present invention, a reset drain region is provided with a predetermined distance from the floating diffusion layer, and a pulse voltage is directly applied to the reset drain region to bring the floating diffusion layer into a punch-through state. As a result, the signal charges are discharged, so that it is not necessary to provide a reset gate electrode, and the floating diffusion capacitance can be reduced and the sensitivity can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す半導体チップの平面図
(図1(a))および断面図(図1(b))である。
FIG. 1 is a plan view (FIG. 1A) and a sectional view (FIG. 1B) of a semiconductor chip showing an embodiment of the present invention.

【図2】一実施例における信号電荷の掃き出しの説明の
ためのポテンシャル図である。
FIG. 2 is a potential diagram for explaining the sweeping out of signal charges in an example.

【図3】従来例を示す半導体チップの平面図である。FIG. 3 is a plan view of a semiconductor chip showing a conventional example.

【図4】図3のX−X線断面図である。4 is a sectional view taken along line XX of FIG.

【符号の説明】[Explanation of symbols]

1 N型シリコン基板 2 Pウエル 3 Nウエル 4 N- 型障壁層 5 ゲート酸化膜 6b 障壁ゲート電極 6s 蓄積ゲート電極 7 絶縁膜 8,9 出力ゲート電極 10,10A 浮遊拡散層 11 配線 12 リセットゲート電極 13,13A リセットドレイン領域 13Aa N+ 型拡散層 14A P型半導体領域1 N-type silicon substrate 2 P-well 3 N-well 4 N - type barrier layer 5 Gate oxide film 6b Barrier gate electrode 6s Storage gate electrode 7 Insulating film 8,9 Output gate electrode 10, 10A Floating diffusion layer 11 Wiring 12 Reset gate electrode 13, 13A Reset drain region 13Aa N + type diffusion layer 14A P type semiconductor region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面部に第1導電型領域を有する半導体
基板の前記第1導電型領域の表面部に設けられた第2導
電型領域を埋込型転送チャネルとして有する電荷転送レ
ジスタと、前記電荷転送レジスタに近接し前記第2導電
型領域と連結して設けられ前記電荷転送レジスタから信
号電荷を受け取る第2導電型の浮遊拡散層と、前記浮遊
拡散層と所定寸法離れて前記第1導電型領域に形成され
た第2導電型のリセットドレイン領域とを有し、前記リ
セットドレイン領域にパルス電圧を印加して前記浮遊拡
散層との間をパルチスルー状態にして前記浮遊拡散層の
信号電荷を掃き出すようにしたことを特徴とする固体撮
像素子。
1. A charge transfer register having, as a buried transfer channel, a second conductivity type region provided on the surface of the first conductivity type region of a semiconductor substrate having a first conductivity type region on the surface thereof, and A second conductivity type floating diffusion layer provided adjacent to the charge transfer register and connected to the second conductivity type region and receiving signal charges from the charge transfer register; and the first conductivity type separated from the floating diffusion layer by a predetermined dimension. A reset drain region of the second conductivity type formed in the drain region, and a pulse voltage is applied to the reset drain region to establish a pulse-through state between the reset drain region and the reset diffusion region, and a signal charge of the floating diffusion layer is generated. A solid-state imaging device characterized by being swept out.
【請求項2】 前記第1導電型はP型である請求項1記
載の固体撮像素子。
2. The solid-state image sensor according to claim 1, wherein the first conductivity type is P-type.
JP5249640A 1993-10-06 1993-10-06 Solid state image pickup element Pending JPH07106553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5249640A JPH07106553A (en) 1993-10-06 1993-10-06 Solid state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5249640A JPH07106553A (en) 1993-10-06 1993-10-06 Solid state image pickup element

Publications (1)

Publication Number Publication Date
JPH07106553A true JPH07106553A (en) 1995-04-21

Family

ID=17196032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5249640A Pending JPH07106553A (en) 1993-10-06 1993-10-06 Solid state image pickup element

Country Status (1)

Country Link
JP (1) JPH07106553A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070262A (en) * 1996-05-22 1998-03-10 Eastman Kodak Co Active pixel sensor having punch-through reset and crosstalk suppression mechanism
US6207983B1 (en) 1999-01-22 2001-03-27 Nec Corporation Charge transfer device, and driving method and manufacturing method for the same
KR100303773B1 (en) * 1998-12-22 2001-11-22 박종섭 A unit pixel of a CMOS image sensor having a p < th >
KR20030084341A (en) * 2002-04-26 2003-11-01 주식회사 하이닉스반도체 Unit Pixel with improved property in cmos image sensor
KR100444494B1 (en) * 2002-04-26 2004-08-16 주식회사 하이닉스반도체 Unit Pixel with improved property in cmos image sensor
KR100460760B1 (en) * 2002-04-27 2004-12-09 매그나칩 반도체 유한회사 Unit Pixel with improved fill factor and dark signal property in cmos image sensor
JP2008166361A (en) * 2006-12-27 2008-07-17 Sony Corp Semiconductor element, solid-state imaging apparatus, and imaging apparatus
US10453880B2 (en) 2015-09-18 2019-10-22 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04373136A (en) * 1991-06-21 1992-12-25 Nec Corp Charge coupled device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04373136A (en) * 1991-06-21 1992-12-25 Nec Corp Charge coupled device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070262A (en) * 1996-05-22 1998-03-10 Eastman Kodak Co Active pixel sensor having punch-through reset and crosstalk suppression mechanism
KR100303773B1 (en) * 1998-12-22 2001-11-22 박종섭 A unit pixel of a CMOS image sensor having a p < th >
US6207983B1 (en) 1999-01-22 2001-03-27 Nec Corporation Charge transfer device, and driving method and manufacturing method for the same
KR20030084341A (en) * 2002-04-26 2003-11-01 주식회사 하이닉스반도체 Unit Pixel with improved property in cmos image sensor
KR100444494B1 (en) * 2002-04-26 2004-08-16 주식회사 하이닉스반도체 Unit Pixel with improved property in cmos image sensor
KR100460760B1 (en) * 2002-04-27 2004-12-09 매그나칩 반도체 유한회사 Unit Pixel with improved fill factor and dark signal property in cmos image sensor
JP2008166361A (en) * 2006-12-27 2008-07-17 Sony Corp Semiconductor element, solid-state imaging apparatus, and imaging apparatus
US10453880B2 (en) 2015-09-18 2019-10-22 National University Corporation Shizuoka University Semiconductor element and solid-state imaging device

Similar Documents

Publication Publication Date Title
US4984045A (en) Output sensor of charge transfer device
JP4295740B2 (en) Charge coupled device image sensor
JP3272979B2 (en) Semiconductor device
JPH084136B2 (en) Charge transfer device
JPS6041463B2 (en) dynamic storage device
US6781169B2 (en) Photodetector with three transistors
US5191398A (en) Charge transfer device producing a noise-free output
US5847422A (en) MOS-based active pixel sensor cell that utilizes the parasitic bipolar action of the cell to output image data
JPH079981B2 (en) Charge transfer device
JPH07106553A (en) Solid state image pickup element
JPS6038028B2 (en) Substrate potential generator
US6489658B2 (en) MOS-transistor for a photo cell
JPH01502634A (en) Image sensor output circuit
JP2950387B2 (en) Charge coupled device
JP3060649B2 (en) Semiconductor device and driving method thereof
JP3378281B2 (en) Signal charge detection circuit
JPH05243281A (en) Semiconductor device and its manufacture
JP2877183B2 (en) Charge transfer device
JPH04133336A (en) Charge transfer device
US6191440B1 (en) Charge transfer device with improved charge detection sensitivity
JP3006022B2 (en) Solid-state imaging device
JPH05275671A (en) Phototransistor and image sensor provided therewith
JP3173806B2 (en) Driving method of charge detection circuit
JP2586307B2 (en) Charge transfer device
JPS6122490B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970311