JPH0464184B2 - - Google Patents

Info

Publication number
JPH0464184B2
JPH0464184B2 JP59084875A JP8487584A JPH0464184B2 JP H0464184 B2 JPH0464184 B2 JP H0464184B2 JP 59084875 A JP59084875 A JP 59084875A JP 8487584 A JP8487584 A JP 8487584A JP H0464184 B2 JPH0464184 B2 JP H0464184B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
semiconductor
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59084875A
Other languages
Japanese (ja)
Other versions
JPS60226164A (en
Inventor
Toshuki Ookoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59084875A priority Critical patent/JPS60226164A/en
Publication of JPS60226164A publication Critical patent/JPS60226164A/en
Publication of JPH0464184B2 publication Critical patent/JPH0464184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/024Integrated injection logic structures [I2L] using field effect injector structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は半導体注入集積論理回路装置(以下、
IILという。)に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to a semiconductor injection integrated logic circuit device (hereinafter referred to as
It is called IIL. ) regarding.

(ロ) 従来の技術 一つの半導体基板上に2つのトランジスタQI
QRを第1図に示すように構成されたIILは、一般
に第2図に示すように注入側をラテラルPNPト
ランジスタQIとし出力側を逆方向縦形NPNトラ
ンジスタQRとして、ラテラルPNPトランジスタ
のコレクタを縦形NPNトランジスタのベースと
共用する構造を有する。すなわち、P型シリコン
基板1上にN+型の埋め込み層2を設け、エピタ
キシヤル成長でN型のエピタキシヤル層3を形成
し、このエピタキシヤル層3をP+型の分離領域
4で島状に分離して島領域5を形成する。この島
領域5にP型拡散領域6,7およびN型拡散領域
8,9を順次不純物拡散によつて形成し、酸化膜
3aの電極孔を介して電極10〜14が設けられ
ている。そして、ラテラルPNPトランジスタは
P型拡散領域6がエミツタ(インジエクタ)、エ
ピタキシヤル層(島領域)5がベース、P型拡散
領域7がコレクタでベース接地で働く。一方逆方
向縦形NPNトランジスタは、エピタキシヤル層
(島領域)5がエミツタ、P型拡散領域7がベー
ス、N型拡散領域8,9がコレクタとなつてい
る。
(b) Conventional technology Two transistors Q I on one semiconductor substrate,
Generally, an IIL configured with Q R as shown in Figure 1 has a lateral PNP transistor Q I on the injection side and a reverse vertical NPN transistor Q R on the output side, as shown in Figure 2. It has a structure in which it is shared with the base of a vertical NPN transistor. That is, an N + type buried layer 2 is provided on a P type silicon substrate 1, an N type epitaxial layer 3 is formed by epitaxial growth, and this epitaxial layer 3 is formed into an island shape with a P + type isolation region 4. The island region 5 is formed by separating into two parts. P-type diffusion regions 6, 7 and N-type diffusion regions 8, 9 are sequentially formed in island region 5 by impurity diffusion, and electrodes 10 to 14 are provided through electrode holes in oxide film 3a. The lateral PNP transistor functions with the P-type diffusion region 6 as an emitter (injector), the epitaxial layer (island region) 5 as a base, and the P-type diffusion region 7 as a collector, with the base grounded. On the other hand, in the reverse vertical NPN transistor, the epitaxial layer (island region) 5 serves as an emitter, the P type diffusion region 7 serves as a base, and the N type diffusion regions 8 and 9 serve as a collector.

このようなIILにおいては、インジエクタとし
て用いるPNPトランジスタとしてラテラルPNP
トランジスタを用いているため、インジエクタ
(エミツタ6)からNPNトランジスタへ注入され
る電流は一部にすぎず、大半は無効電流となり、
電流増幅率(hFE)が小さいなどの問題があつた。
In such an IIL, a lateral PNP transistor is used as an injector.
Since a transistor is used, only a portion of the current is injected from the injector (emitter 6) to the NPN transistor, and the majority is reactive current.
There were problems such as a small current amplification factor (h FE ).

上述した問題点を解消するために、インジエク
タとして縦形PNPトランジスタを用いて、イン
ジエクタからの無効電流を少なくしたIILが特開
昭58−213463号公報に開示されている。このIIL
は第3図に示すように、P型シリコン基板1とそ
の上にエピタキシヤル成長させたN型エピタキシ
ヤル層3との間にN+型埋め込み層2とP+型埋め
込み層15とを部分的に形成し、エピタキシヤル
層3の表面の一部にP+型埋め込み層15に接す
るN+型拡散領域16を介してP+型拡散領域17
を形成してこれをインジエクタとする縦形PNP
トランジスタを構成し、一方エピタキシヤル層3
の表面の他部にP+型埋め込み層15に一部で接
するP型ベース領域18を形成し、このP型ベー
ス領域18の表面にコレクタとなるN+型拡散領
域19を部分的に形成してこれを逆方向縦形
NPNトランジスタを構成するものである。
In order to solve the above-mentioned problems, Japanese Patent Laid-Open No. 58-213463 discloses an IIL in which a vertical PNP transistor is used as an injector to reduce the reactive current from the injector. This IIL
As shown in FIG. 3, an N + type buried layer 2 and a P + type buried layer 15 are partially formed between a P type silicon substrate 1 and an N type epitaxial layer 3 epitaxially grown thereon. A P + type diffusion region 17 is formed on a part of the surface of the epitaxial layer 3 via an N + type diffusion region 16 in contact with the P + type buried layer 15.
Vertical PNP that forms and uses this as an injector
constitutes a transistor, while epitaxial layer 3
A P type base region 18 partially in contact with the P + type buried layer 15 is formed on the other surface of the P type base region 18, and an N + type diffusion region 19 serving as a collector is partially formed on the surface of this P type base region 18. This is reversed vertically.
This constitutes an NPN transistor.

しかしながら、斯上のIILにおいても、インジ
エクタから供給される電流の一部がベース電流と
して流れ、論理回路動作に寄与していない。
However, even in the above IIL, a part of the current supplied from the injector flows as a base current and does not contribute to the logic circuit operation.

(ハ) 発明の目的 本発明はインジエクタよりの無効電流をなく
し、消費電力を少なくしたIILを提供することに
ある。
(c) Object of the Invention The present invention aims to provide an IIL that eliminates reactive current from an injector and reduces power consumption.

(ニ) 発明の構成 本発明は、N(又はP型)型の半導体領域をエ
ミツタ領域とし、このエミツタ領域に設けたP
(又はN)型のベース領域内に少なくとも1つの
N(又はP)型のコレクタ領域を設けた逆方向縦
形トランジスタと、前記半導体領域の他部にN
(又はP)型のソースおよびドレイン領域とチヤ
ンネル領域を形成した接合形電界効果トランジス
タとを備え、前記ベース領域とソース領域を接続
し、前記エミツタ領域を接地すると共に、前記ド
レイン領域をインジエクタ端子と接続し、且つ前
記コレクタ領域を出力端子と接続して前記接合形
電界効果トランジスタをインジエクタとして用い
たことを特徴とする半導体注入集積論理回路装置
である。
(d) Structure of the Invention The present invention has an N (or P type) type semiconductor region as an emitter region, and a P type provided in this emitter region.
a reverse vertical transistor having at least one N (or P) type collector region in an N (or N) type base region;
(or P) type source and drain regions, and a junction field effect transistor in which a channel region is formed, the base region and the source region are connected, the emitter region is grounded, and the drain region is connected to an injector terminal. and the collector region is connected to an output terminal to use the junction field effect transistor as an injector.

(ホ) 実施例 本発明の実施例を第4図ないし第5図に従い説
明する。第4図は本発明によるIILの等価回路図、
第5図は本発明によるIILの原理的構造を断面図
にて示すものである。
(e) Embodiment An embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. 4 is an equivalent circuit diagram of IIL according to the present invention,
FIG. 5 is a sectional view showing the basic structure of the IIL according to the present invention.

一つの半導体基板上に接合形電界効果トランジ
スタ(以下、J−FETという。)TIと逆方向縦形
NPNトランジスタTRを第4図に示すように構成
する。すなわちJ−FET(TI)のドレインをイン
ジエクタ端子に接続し、ソースを逆方向縦形
NPNトランジスタTRのベースに接続してJ−
FET(TI)をインジエクタとして用い、逆方向縦
形NPNトランジスタTRのコレクタC1,C2を出力
端子に接続することにより構成される。
Junction field effect transistor (hereinafter referred to as J-FET) T I and reverse vertical type on one semiconductor substrate
The NPN transistor TR is constructed as shown in FIG. In other words, connect the drain of J-FET (T I ) to the injector terminal, and connect the source to the reverse vertical type.
Connect to the base of NPN transistor T R and
It is constructed by using a FET (T I ) as an injector and connecting the collectors C 1 and C 2 of a reverse vertical NPN transistor TR to the output terminal.

本発明によるIILの原理的構造を第5図に従い
説明する。P型シリコン半導体基板21上の所望
の所にN+型埋め込み層22とP+型埋め込み層2
3を不純物拡散等によつて形成し、さらにエピタ
キシヤル成長によりN型エピタキシヤル層24を
形成する。このエピタキシヤル層24が半導体領
域として働く。つぎにエピタキシヤル層24表面
よりP+型埋め込み層23に達するP+型分離領域
25およびエピタキシヤル層24を島状に分離す
るP+型アイソレーシヨン分離領域26を拡散し
て形成する。この熱処理によつてN+型埋め込み
層22およびP+型埋め込み層23は上下方向に
拡散され、所定の巾を有する埋め込み層が形成さ
れる。そして、P+型埋め込み層23と分離領域
25で囲まれたエピタキシヤル層24がJ−
FET(TI)のチヤンネル領域24aとなる。続い
て、逆方向縦形トランジスタTRのベースとなる
P型のベース領域27をエピタキシヤル層24の
表面にベース拡散により形成すると共にJ−
FET(TI)のP型フロントゲート28をエピタキ
シヤル層24表面に形成する。然る後このベース
領域27の表面にエミツタ拡散によりN+型のコ
レクタ領域29を形成すると共にエミツタ領域と
なるエピタキシヤル層24表面にN+型コンタク
ト領域30とN+型ガードリング(カラー)31
を形成する。この時同時に、J−FETのN+型の
ドレイン領域32およびソース領域33を前記
P+型分離領域25,25で囲まれたエピタキシ
ヤル層24表面にエミツタ拡散により形成する。
The basic structure of IIL according to the present invention will be explained with reference to FIG. An N + type buried layer 22 and a P + type buried layer 2 are formed at desired locations on a P type silicon semiconductor substrate 21.
3 is formed by impurity diffusion or the like, and an N-type epitaxial layer 24 is further formed by epitaxial growth. This epitaxial layer 24 acts as a semiconductor region. Next, a P + type isolation region 25 reaching the P + type buried layer 23 from the surface of the epitaxial layer 24 and a P + type isolation region 26 separating the epitaxial layer 24 into islands are formed by diffusion. By this heat treatment, the N + type buried layer 22 and the P + type buried layer 23 are diffused in the vertical direction, and a buried layer having a predetermined width is formed. Then, the epitaxial layer 24 surrounded by the P + type buried layer 23 and the isolation region 25 is J-
This becomes the channel region 24a of the FET (T I ). Subsequently, a P-type base region 27, which will become the base of the reverse vertical transistor TR , is formed on the surface of the epitaxial layer 24 by base diffusion, and a J-
A P-type front gate 28 of the FET (T I ) is formed on the surface of the epitaxial layer 24 . Thereafter, an N + type collector region 29 is formed on the surface of this base region 27 by emitter diffusion, and an N + type contact region 30 and an N + type guard ring (collar) 31 are formed on the surface of the epitaxial layer 24 which will become the emitter region.
form. At the same time, the N + type drain region 32 and source region 33 of the J-FET are
It is formed on the surface of the epitaxial layer 24 surrounded by the P + type isolation regions 25, 25 by emitter diffusion.

このあと、エピタキシヤル層24表面の酸化膜
34に電極孔を設け、周知のアルミニウム蒸着な
どにより、各領域にオーミツクコンタクトする電
極およびこれらの間の配線を形成する。
Thereafter, electrode holes are formed in the oxide film 34 on the surface of the epitaxial layer 24, and electrodes in ohmic contact with each region and wiring between these are formed by well-known aluminum vapor deposition or the like.

このように一つの半導体基板上にNチヤンネル
のJ−FET(TI)と逆方向縦形NPNトランジス
タTRが形成される。そして、J−FET(TI)のド
レイン電極35はインジエクタ端子Iに、ソース
電極36は逆方向縦形NPNトランジスタのベー
ス電極37に夫々接続されると共に、ゲートは基
板21を介して接地されJ−FET(TI)はゲート
接地型の定電流回路として使用される。また、逆
方向縦形NPNトランジスタのベース電極37は
ベース端子Bに、コレクタ電極38,39は出力
端子C1,C2に、エミツタ電極40はグランドラ
インGNDに夫々接続されている。
In this way, an N-channel J-FET ( TI ) and a reverse vertical NPN transistor TR are formed on one semiconductor substrate. The drain electrode 35 of the J-FET (T I ) is connected to the injector terminal I, the source electrode 36 is connected to the base electrode 37 of the reverse vertical NPN transistor, and the gate is grounded via the substrate 21. FET (T I ) is used as a gate-grounded constant current circuit. Further, the base electrode 37 of the reverse vertical NPN transistor is connected to the base terminal B, the collector electrodes 38 and 39 are connected to the output terminals C 1 and C 2 , and the emitter electrode 40 is connected to the ground line GND.

而して、インジエクタとして用いるJ−FET
(TI)はゲートが基板21を介して接地したゲー
ト接地型の定電流回路として動作するので、イン
ジエクタ端子Iからドレイン領域32へ供給され
た電流ソース領域33を介してベース領域27に
全て供給される。
Therefore, J-FET used as an injector
(T I ) operates as a gate-grounded constant current circuit whose gate is grounded via the substrate 21, so the current supplied from the injector terminal I to the drain region 32 is entirely supplied to the base region 27 via the source region 33. be done.

従つて、インジエクタに供給された電流が全て
論理回路動作に利用でき低消費電力化が図れる。
更にゲート接地型のJ−FET(TI)をインジエク
タとして逆方向縦形トランジスタTRに接続して
いるため、逆方向縦形トランジスタTRのVBE電圧
がJ−FET(TI)のゲートにバイアスを加えるこ
とになり、J−FET(TI)の定電流作用が良好に
なる。
Therefore, all of the current supplied to the injector can be used for logic circuit operation, resulting in lower power consumption.
Furthermore, since the gate-grounded J-FET ( TI ) is connected to the reverse vertical transistor TR as an injector, the V BE voltage of the reverse vertical transistor TR is biased to the gate of the J-FET ( TI ). , the constant current effect of the J-FET (T I ) becomes better.

また、逆方向縦形トランジスタTRの全周をN+
型ガードリング(カラー)31で囲むことによ
り、逆方向エミツタ効率が向上し、逆βを従来装
置よりも高くできるので、高速動作が可能とな
る。
Also, the entire circumference of the reverse vertical transistor T R is N +
By surrounding it with a mold guard ring (collar) 31, the reverse direction emitter efficiency is improved and the reverse β can be made higher than that of the conventional device, so high-speed operation is possible.

(ヘ) 発明の効果 以上説明したように、本発明はインジエクタと
して接合形電界効果トランジスタを用いたので、
外部から供給される電流を損失なく論理回路動作
に利用することができ、IILの低消費電力化と高
速化を図ることができる。また、IILの低消費電
力化により素子数を多くしてもチツプ温度が上が
らないので、特性上信頼性が向上する。
(f) Effects of the invention As explained above, since the present invention uses a junction field effect transistor as an injector,
Externally supplied current can be used for logic circuit operation without loss, making it possible to reduce power consumption and increase speed of IIL. Furthermore, due to the low power consumption of the IIL, the chip temperature does not rise even if the number of elements is increased, which improves reliability in terms of characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基本的なIILを示す回路図、第2図お
よび第3図は従来のIILの構造を示す断面図であ
る。第4図および第5図は本発明によるIILを示
すもので、第4図は等価回路図、第5図は原理的
構造を示す断面図である。 21……半導体基板、22……N+型埋め込み
層、23……P+型埋め込み層、24……エピタ
キシヤル層、24a……チヤンネル領域、25…
…分離領域、27……ベース領域、29……コレ
クタ領域、32……ドレイン領域、33……ソー
ス領域。
FIG. 1 is a circuit diagram showing a basic IIL, and FIGS. 2 and 3 are cross-sectional views showing the structure of a conventional IIL. FIGS. 4 and 5 show an IIL according to the present invention, with FIG. 4 being an equivalent circuit diagram and FIG. 5 being a sectional view showing the principle structure. 21... Semiconductor substrate, 22... N + type buried layer, 23... P + type buried layer, 24... Epitaxial layer, 24a... Channel region, 25...
... isolation region, 27 ... base region, 29 ... collector region, 32 ... drain region, 33 ... source region.

Claims (1)

【特許請求の範囲】 1 一導電型の半導体基板21と、前記基板の上
に形成した逆導電型の半導体領域24と、 前記半導体領域24の表面に形成した一導電型
のベース領域27と、前記ベース領域27の表面
に形成した逆導電型のコレクタ領域29と、 前記ベース領域27と前記コレクタ領域29は
前記半導体領域24をエミツタとして逆方向縦型
トランジスタTRを形成し、 前記半導体基板21の表面に形成した一導電型
の埋込層23と前記半導体領域24の表面から前
記埋め込み層23に達する一導電型の分離領域2
5とで前記エミツタとなる領域とは電気的に独立
した前記半導体領域の他部24aと、 前記半導体領域の他部24aの表面に形成した
一導電型のフロントゲート領域28および逆導電
型のソース・ドレイン領域32,33と、 前記フロントゲート領域28と前記ソース・ド
レイン領域は、前記埋め込み層23をバツクゲー
ト、前記半導体領域の他部24aをチヤンネル領
域とするゲート接地型の定電流動作を成す接合型
電解効果トランジスタTIを形成し、 前記ベース領域27と前記ソース・ドレイン領
域32,33の一方を接続し、 前記エミツタとなる半導体領域24を接地し、 前記ソース・ドレイン領域32,33の他方を
インジエクタ端子としたことを特徴とする半導体
注入集積論理回路装置。
[Claims] 1. A semiconductor substrate 21 of one conductivity type, a semiconductor region 24 of an opposite conductivity type formed on the substrate, a base region 27 of one conductivity type formed on the surface of the semiconductor region 24, a collector region 29 of opposite conductivity type formed on the surface of the base region 27; the base region 27 and the collector region 29 form a reverse vertical transistor TR using the semiconductor region 24 as an emitter; a buried layer 23 of one conductivity type formed on the surface and an isolation region 2 of one conductivity type reaching the buried layer 23 from the surface of the semiconductor region 24;
5 and the other part 24a of the semiconductor region that is electrically independent from the region that becomes the emitter, a front gate region 28 of one conductivity type formed on the surface of the other part 24a of the semiconductor region, and a source of the opposite conductivity type. - The drain regions 32, 33, the front gate region 28, and the source/drain regions form a gate-grounded type constant current operation junction, with the buried layer 23 as a back gate and the other semiconductor region 24a as a channel region. A type field effect transistor TI is formed, the base region 27 and one of the source/drain regions 32, 33 are connected, the semiconductor region 24 serving as the emitter is grounded, and the other of the source/drain regions 32, 33 is connected to the ground. A semiconductor injection integrated logic circuit device characterized by having an injector terminal.
JP59084875A 1984-04-25 1984-04-25 Semiconductor injection integrated logic circuit device Granted JPS60226164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59084875A JPS60226164A (en) 1984-04-25 1984-04-25 Semiconductor injection integrated logic circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59084875A JPS60226164A (en) 1984-04-25 1984-04-25 Semiconductor injection integrated logic circuit device

Publications (2)

Publication Number Publication Date
JPS60226164A JPS60226164A (en) 1985-11-11
JPH0464184B2 true JPH0464184B2 (en) 1992-10-14

Family

ID=13842961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59084875A Granted JPS60226164A (en) 1984-04-25 1984-04-25 Semiconductor injection integrated logic circuit device

Country Status (1)

Country Link
JP (1) JPS60226164A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463683A (en) * 1977-10-31 1979-05-22 Hitachi Ltd Production of pn junction field effect transistor
JPS56118664A (en) * 1980-02-22 1981-09-17 Nishihara Environ Sanit Res Corp Density measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5463683A (en) * 1977-10-31 1979-05-22 Hitachi Ltd Production of pn junction field effect transistor
JPS56118664A (en) * 1980-02-22 1981-09-17 Nishihara Environ Sanit Res Corp Density measuring device

Also Published As

Publication number Publication date
JPS60226164A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
JP2590295B2 (en) Semiconductor device and manufacturing method thereof
JP2635044B2 (en) Semiconductor device
US4599635A (en) Semiconductor integrated circuit device and method of producing same
JP2661318B2 (en) Semiconductor device
JPH0464184B2 (en)
JP3008952B2 (en) Feedforward Darlington circuit with reduced NPN reverse beta sensitivity
JPH1074958A (en) Semiconductor integrated circuit and its manufacture
JPS626659B2 (en)
JPH0447463B2 (en)
JP2557984B2 (en) Input protection circuit for semiconductor device
JPS60226165A (en) Semiconductor injection integrated logic circuit device
JPS6022504B2 (en) Manufacturing method of semiconductor device
JPH0412031B2 (en)
JPS6116569A (en) Semiconductor integrated circuit device
JPH0342680Y2 (en)
JPS61101072A (en) Complementary mos semiconductor device
JPS60229362A (en) Semiconductor injection integrated logic circuit device
JPH0337314B2 (en)
JPH0337739B2 (en)
JPS61150383A (en) Semiconductor device
JPS6083361A (en) Semiconductor device
JPH0474478A (en) Diode
JPS60229361A (en) Semiconductor injection integrated logic circuit device
JPH0547780A (en) Semiconductor device
JPH04207068A (en) Composite type semiconductor device