JPH0464174B2 - - Google Patents

Info

Publication number
JPH0464174B2
JPH0464174B2 JP59000603A JP60384A JPH0464174B2 JP H0464174 B2 JPH0464174 B2 JP H0464174B2 JP 59000603 A JP59000603 A JP 59000603A JP 60384 A JP60384 A JP 60384A JP H0464174 B2 JPH0464174 B2 JP H0464174B2
Authority
JP
Japan
Prior art keywords
solution
growth
supersaturation
degree
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59000603A
Other languages
Japanese (ja)
Other versions
JPS60144933A (en
Inventor
Yasuo Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60384A priority Critical patent/JPS60144933A/en
Publication of JPS60144933A publication Critical patent/JPS60144933A/en
Publication of JPH0464174B2 publication Critical patent/JPH0464174B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光半導体素子等に用いられる液相エピ
タキシヤル層の成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an apparatus for growing a liquid phase epitaxial layer used for optical semiconductor devices and the like.

〔発明の背景〕[Background of the invention]

光半導体素子も実用化の段階となり、液相成長
の安定性すなわち均一性、再現性が強く要求され
てきた。
Optical semiconductor devices have also entered the stage of practical application, and stability, ie, uniformity and reproducibility of liquid phase growth has been strongly required.

従来、液相成長の均一性、再現性を向上させる
方法として、基板と類似のシードウエハースをカ
ーボンボート内に仕込み、基板とシードウエハー
スとの間に厚さの均一な溶液を形成する方法、す
なわちオーバーシード法が用いられていた。これ
により、溶液の過飽和度は適当な値になり、溶液
の厚さも均一になるので均一な成長層を再現よく
得ることが出来る。しかし、この方法ではカーボ
ンボートが複雑になり破損しやすく寿命が短いと
いう欠点、基板とシードウエハースの間の狭い隙
間に溶液を入れることの不安定性を有するという
欠点、及び基板とシードウエハースとの間隔を任
意に変更出来ない欠点を持つている。又、過剰の
ソースウエハースを投入し溶液の上にシードウエ
ハースが乗つた状態を作り出し、過飽和度を制御
しようという方法もあるが、シードウエハースが
溶液の上で片寄つたり、傾いたために溶液厚が不
均一になったりし、均一な成長層が得られない。
Conventionally, as a method to improve the uniformity and reproducibility of liquid phase growth, a seed wafer similar to the substrate is placed in a carbon boat, and a solution with a uniform thickness is formed between the substrate and the seed wafer. An overseeding method was used. As a result, the degree of supersaturation of the solution becomes an appropriate value and the thickness of the solution becomes uniform, so that a uniform growth layer can be obtained with good reproducibility. However, this method has the drawbacks that the carbon boat is complicated, easily damaged, and has a short lifespan, instability due to introducing the solution into the narrow gap between the substrate and the seed wafer, and the distance between the substrate and the seed wafer. It has the disadvantage that it cannot be changed arbitrarily. Another method is to control the degree of supersaturation by adding an excess of source wafers to create a state where the seed wafers are on top of the solution, but this may cause the seed wafers to be lopsided or tilted on top of the solution, resulting in a decrease in the thickness of the solution. The growth layer may become non-uniform and a uniform growth layer cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、単純な構造で、均一性、再現
性のよい液相エピタキシヤル成長の出来る装置を
提供することにある。
An object of the present invention is to provide an apparatus that has a simple structure and can perform liquid phase epitaxial growth with good uniformity and reproducibility.

〔発明の構成〕[Structure of the invention]

本発明は、溶媒を入れる溶液溜にはめ合の蓋を
つけ、その蓋の下部に溶液溜と同等に近い面積を
有するソースウエハースを取り付け、かつソース
ウエハースが溶液に全面的に接触する構造を有す
ることを特徴とする。
The present invention has a structure in which a fitting lid is attached to a solution reservoir containing a solvent, a source wafer having an area close to that of the solution reservoir is attached to the bottom of the lid, and the source wafer is in full contact with the solution. It is characterized by

液相成長において、溶媒中の溶質の飽和状態は
最も重要な要素の一つである。一般に高温に保持
している場合、ぼほ飽和に近い状態が保たれてお
り、降温を始めることにより過飽和状態になり、
過飽和状態で基板を接触させることにより成長が
開始する。この時、過飽和度が低い状態の場合は
成長速度が小さく薄い層の成長がやりやすく、過
飽和度が高い状態の場合は成長速度が大きく厚い
層の成長がやりやすいという特徴がある。又、基
板に設した加工形状の変形は過飽和度が高い程起
りにくい。
In liquid phase growth, the saturation state of the solute in the solvent is one of the most important factors. Generally, when kept at a high temperature, a state close to saturation is maintained, and when the temperature starts to decrease, it becomes supersaturated,
Growth is initiated by contacting the substrate in a supersaturated state. At this time, when the degree of supersaturation is low, the growth rate is low and it is easy to grow a thin layer, and when the degree of supersaturation is high, the growth rate is high and it is easy to grow a thick layer. Further, the higher the degree of supersaturation, the less likely deformation of the processed shape provided on the substrate occurs.

〔実施例〕〔Example〕

次に図面を用いて本発明の実施例を詳細に説明
する。実施例としては溝を堀つたIoP基板上に溝
を埋め込んだ形のダブルヘテロ構造のエピタキシ
ヤル層を液相で連続成長する場合について述べ
る。
Next, embodiments of the present invention will be described in detail using the drawings. As an example, a case will be described in which an epitaxial layer of a double heterostructure with grooves buried therein is continuously grown in a liquid phase on an I o P substrate with grooves dug therein.

すなわち、第1図に示すように、カーボンのス
ライダー板1の所定位置にあらかじめ処理された
IoP基板2を置きカーボンの浴槽板3を載せる。
あらかじめ秤量したIo4等のソースを所定の浴槽
5に投入する。次に浴槽5とはめ合いになつてい
るカーボンの蓋6の下部にIoPのシードウエハー
ス7を挿入し、これらを各槽のIoソース4上に落
し込む。この状態で炉の内に入れ、温度を上げて
ゆくと、第2図のように、Ioソース4は溶解して
それぞれに仕込んだソースの量で決まる液厚とな
る。その状態で一定温度に保持しておくことによ
りIoPのシードウエハース7が一部Ioソース4に
溶け込む。これにより溶媒Ioに対し溶質Pはほぼ
飽和の状態になる。
That is, as shown in FIG.
Place the I o P board 2 and place the carbon bathtub board 3 on it.
A pre-weighed sauce such as I o 4 is poured into a predetermined bathtub 5 . Next, I o P seed wafers 7 are inserted into the lower part of the carbon lid 6 that fits into the bathtub 5, and these are dropped onto the I o source 4 of each bath. In this state, when placed in a furnace and the temperature is raised, the I o sauce 4 melts and becomes a liquid with a thickness determined by the amount of sauce charged in each, as shown in Figure 2. By keeping the temperature constant in this state, a portion of the I o P seed wafer 7 melts into the I o source 4 . As a result, the solute P becomes almost saturated with respect to the solvent Io .

第2図に示した第1浴の溶液8の液厚は3mm、
第2浴の溶液9の液厚は2mmとなり、それぞれ溶
け残つたシードウエハース7を載せた状態で均一
な厚さを保つている。この状態で、炉の温度を
0.5℃/分の一定速度で降下させる。Io溶液8,
9中のPは飽和点を通り越し過飽和状態となる。
Io溶液8,9中で過飽和状態となつたPはシード
ウエハース7に析出を始める。このため、シード
ウエハース7の近くでの過飽和度は非常に小さな
値となり、シードウエハース7から離れる程Io
液8,9中の過飽和度は大きくなり、スライダー
1表面で最大となる。この過飽和度はIo溶液8,
9中における濃度勾配によるPの輸送で決まり、
温度の降下速度及びIo溶液8,9の液厚で決ま
る。温度の降下速度を一定とすると各浴槽のIo
液8,9におけるスライダー1の表面での過飽和
度はIo溶液8,9の液厚で決まる。シードウエハ
ース7と反対側の液面での過飽和度は液厚の2乗
比例する。従つて第1浴槽のIo溶液8の過飽和度
は第2浴槽のIo溶液9の過飽和度の2.25位とな
る。
The thickness of the solution 8 in the first bath shown in Fig. 2 is 3 mm.
The liquid thickness of the solution 9 in the second bath is 2 mm, and the thickness is maintained uniform with the undissolved seed wafers 7 placed thereon. In this state, the temperature of the furnace is
Decrease at a constant rate of 0.5°C/min. I o solution 8,
P in 9 passes the saturation point and becomes supersaturated.
P, which has become supersaturated in the I o solutions 8 and 9, begins to precipitate on the seed wafer 7. Therefore, the degree of supersaturation near the seed wafer 7 becomes a very small value, and the further away from the seed wafer 7 the more the degree of supersaturation in the I o solutions 8 and 9 increases, reaching a maximum on the surface of the slider 1. This supersaturation is I o solution 8,
Determined by the transport of P due to the concentration gradient in 9,
It is determined by the rate of temperature drop and the thickness of the Io solutions 8 and 9. Assuming that the rate of temperature drop is constant, the degree of supersaturation on the surface of the slider 1 in the I o solutions 8 and 9 of each bathtub is determined by the thickness of the I o solutions 8 and 9. The degree of supersaturation at the liquid surface on the side opposite to the seed wafer 7 is proportional to the square of the liquid thickness. Therefore, the degree of supersaturation of the I o solution 8 in the first bath is 2.25th of the degree of supersaturation of the I o solution 9 in the second bath.

すなわち、第1層の成長では基板に設けた溝形
状を保存する成長が出来、第2層の成長では薄い
活性層の層厚の制御をする成長が出来る。第3層
以後の説明は略すが、それぞれの目的に合わせた
In溶液の厚みを秤量におけるIoの量で調整出来
る。
That is, the growth of the first layer allows growth that preserves the groove shape provided in the substrate, and the growth of the second layer allows growth that controls the thickness of the thin active layer. I will omit the explanation of the third layer onwards, but it is necessary to
The thickness of the In solution can be adjusted by adjusting the amount of Io in the weighing.

このようにして、各Io溶液8,9のスライダー
1の表面における過飽和度を調整し定常状態にし
た所で、スライダー1を所定のプログラムに沿つ
て動かして基板2をそれぞれの浴槽の下に所定の
時間保持する。この結果、基板2上に多層エピタ
キシヤル層が成長される。
In this way, the degree of supersaturation of each I O solution 8, 9 on the surface of the slider 1 is adjusted and brought to a steady state, and then the slider 1 is moved according to a predetermined program to place the substrate 2 under each bath. Hold for a predetermined time. As a result, a multilayer epitaxial layer is grown on the substrate 2.

以上のように、Io溶液の過飽和度を任意の値に
調整することにより、それぞれの層を成長する場
合の最良の条件が得られ、液相成長の再現性を向
上させることが出来る。
As described above, by adjusting the degree of supersaturation of the I 2 O solution to an arbitrary value, the best conditions for growing each layer can be obtained, and the reproducibility of liquid phase growth can be improved.

この実施例ではIo溶液を用いたIoP/InGaAsP
系の成長について述べたが、Ga溶液を用いた
GaAs/AGaAs系の成長に関しても同様の効
果が得られることは明らかである。
In this example, I o P/InGaAsP using I o solution
We have described the growth of the system, but using G a solution
It is clear that similar effects can be obtained with respect to the growth of GaAs/AGaAs systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示す
図で、特に第1図は室温においてソースを投入し
た所の図、第2図は温度を上げてIoが溶解した所
の図である。 1……カーボンスライダー板、2……IoP基
板、3……浴槽板、4……Ioソース、5……浴
槽、6……蓋、7……シードウエハース、8……
第1層Io溶液、9……第2層Io溶液。
Figures 1 and 2 are diagrams showing an embodiment of the present invention. In particular, Figure 1 is a diagram where sauce is added at room temperature, and Figure 2 is a diagram where Io is dissolved by increasing the temperature. It is. DESCRIPTION OF SYMBOLS 1... Carbon slider plate, 2... IoP substrate, 3... Bathtub board, 4... Io source, 5... Bathtub, 6... Lid, 7... Seed wafer, 8...
First layer Io solution, 9...Second layer Io solution.

Claims (1)

【特許請求の範囲】[Claims] 1 最下面より最上面まで直線状の側面により形
成された溶媒の溶液溜に、該側面にはめ合いにな
つている蓋を設け、該蓋の下部に該溶液溜と同等
に近い面積のシードウエハースを取付け、該シー
ドウエハースを下部に取付けた該蓋を該シードウ
エハースを下にして該溶液溜にはめ合せて落し込
むようにしたことを特徴とする液相成長装置。
1. A solvent solution reservoir formed by a linear side surface from the bottom surface to the top surface is provided with a lid that fits on the side surface, and a seed wafer with an area close to the same as that of the solution reservoir is placed below the lid. A liquid phase growth apparatus characterized in that the lid, with the seed wafer attached at the bottom thereof, is fitted into the solution reservoir with the seed wafer facing down and dropped into the solution reservoir.
JP60384A 1984-01-06 1984-01-06 Liquid phase growth apparatus Granted JPS60144933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60384A JPS60144933A (en) 1984-01-06 1984-01-06 Liquid phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60384A JPS60144933A (en) 1984-01-06 1984-01-06 Liquid phase growth apparatus

Publications (2)

Publication Number Publication Date
JPS60144933A JPS60144933A (en) 1985-07-31
JPH0464174B2 true JPH0464174B2 (en) 1992-10-14

Family

ID=11478305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60384A Granted JPS60144933A (en) 1984-01-06 1984-01-06 Liquid phase growth apparatus

Country Status (1)

Country Link
JP (1) JPS60144933A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840806A (en) * 1971-09-21 1973-06-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840806A (en) * 1971-09-21 1973-06-15

Also Published As

Publication number Publication date
JPS60144933A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
JPS6255688B2 (en)
JPH0464174B2 (en)
JPS6033291A (en) Preparation of single crystal silicon
JPH0217519B2 (en)
US4692194A (en) Method of performing solution growth of a GaAs compound semiconductor crystal layer under control of conductivity type thereof
US4728625A (en) Method of fabricating buried crescent semiconductor laser device by removing a surface portion of substrate around a groove therein
KR950006313B1 (en) Liquid epitaxy apparatus and method of epitaxial layer
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPS61181124A (en) Method for liquid-phase growth
van Oirschot et al. LPE growth of DH laser structures with the double source method
JPS63164309A (en) Liquid growth method
EP0742582A2 (en) Doping procedure for semiconductor growth processes
JPH065428Y2 (en) Solvent metal for liquid phase epitaxial growth
JPS598698A (en) Apparatus for vertical liquid-phase epitaxial growth
JP2810175B2 (en) Vapor growth method
JPH035054B2 (en)
Chang et al. Distribution coefficient of P for growth of Ga1− x Al x As1− y P y by LPE, determined using Auger spectroscopy
JPS6028799B2 (en) Liquid phase epitaxial growth method
JPS6066423A (en) Liquid phase epitaxial growth method
JPS57155727A (en) Manufacture of semiconductor device
JP2773339B2 (en) Liquid phase epitaxial growth method
JPS61291488A (en) Method growing liquid-phase epitaxial growth and device therefor
JPH0361636B2 (en)
JPS63207120A (en) Vapor growth method
JPH01246193A (en) Liquid-phase epitaxial growth device