JP2773339B2 - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JP2773339B2
JP2773339B2 JP160190A JP160190A JP2773339B2 JP 2773339 B2 JP2773339 B2 JP 2773339B2 JP 160190 A JP160190 A JP 160190A JP 160190 A JP160190 A JP 160190A JP 2773339 B2 JP2773339 B2 JP 2773339B2
Authority
JP
Japan
Prior art keywords
material solution
raw material
cassette
wafer
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP160190A
Other languages
Japanese (ja)
Other versions
JPH03208884A (en
Inventor
達也 田辺
良明 羽木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP160190A priority Critical patent/JP2773339B2/en
Publication of JPH03208884A publication Critical patent/JPH03208884A/en
Application granted granted Critical
Publication of JP2773339B2 publication Critical patent/JP2773339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、縦型ディッピング法による液相エピタキシ
ャル成長方法に関する。
The present invention relates to a liquid phase epitaxial growth method using a vertical dipping method.

(従来の技術) 液相エピタキシャル成長方法の一つである縦型ディッ
ピング法は量産性に優れた方法として良く知られてい
る。第3図は、この方法に用いる液相エピタキシャル成
長装置の説明図である。同(a)に示すように、ルツボ
5内には溶媒、溶質及びドーパントなどの成長用原料を
溶融して調整された原料溶液4が収容されており、一
方、カセット3にはウエハ1を置いた皿2が複数積層さ
れている。同(b)は、このカセット3をルツボ5内に
降下浸漬させて原料溶液4をウエハ1の上に導入し、ル
ツボ5の温度を徐冷することにより、ウエハ1の上にエ
ピタキシャル成長を行う。所定のエピタキシャル成長を
終了した後、同(c)に示すように、カセット3をルツ
ボ5から引き上げて、ウエハ1の表面上から原料溶液4
を除去する。その後、室温まで冷却して成長操作を終了
する。
(Prior Art) A vertical dipping method, which is one of the liquid phase epitaxial growth methods, is well known as a method excellent in mass productivity. FIG. 3 is an explanatory view of a liquid phase epitaxial growth apparatus used in this method. As shown in FIG. 1A, a material solution 4 prepared by melting a growth material such as a solvent, a solute and a dopant is accommodated in a crucible 5, while the wafer 1 is placed in a cassette 3. A plurality of dishes 2 are stacked. In FIG. 2B, the cassette 3 is immersed in the crucible 5 and the raw material solution 4 is introduced onto the wafer 1, and the temperature of the crucible 5 is gradually cooled, whereby epitaxial growth is performed on the wafer 1. After the predetermined epitaxial growth is completed, the cassette 3 is pulled up from the crucible 5 and the raw material solution 4 is removed from the surface of the wafer 1 as shown in FIG.
Is removed. Thereafter, the growth operation is completed by cooling to room temperature.

(発明が解決しようとする課題) しかし、縦型ディッピング法は、エピタキシャル成長
終了後、ウエハ表面上からの原料溶液の除去(液切れ)
が不完全で、ウエハ表面に一部原料溶液が残存(液残
り)しやすいという欠点があった。原料溶液が残存した
部分としない部分では、層厚など、エピタキシャル層の
特性が異なるため、ウエハ表面上に一部分でも液残りが
あると、そのウエハは不良品とされる。そこで、ウエハ
を傾斜させてカセットに収容して液切れ率の改善を図っ
てきた。
(Problems to be Solved by the Invention) However, in the vertical dipping method, after the epitaxial growth is completed, the raw material solution is removed from the wafer surface (liquid exhaustion)
However, there is a disadvantage that the raw material solution is apt to remain (liquid remaining) partially on the wafer surface. Since the characteristics of the epitaxial layer, such as the layer thickness, are different between the portion where the raw material solution remains and the portion where the raw material solution does not remain, the wafer is regarded as defective if any liquid remains on the wafer surface. Therefore, the wafer has been tilted and accommodated in a cassette to improve the liquid drainage rate.

しかし、エピタキシャル層の特性の仕様によっては、
ウエハの傾斜角度を大きくすると、特性の面内分布が大
きくなって仕様からはずれる可能性があり、また、ウエ
ハ上の原料溶液の高さ(液厚)によっても液切れ率が異
なってくるところから、目的とするエピタキシャル層に
対してそれぞれの最適の液切れ条件を多数の実験を繰り
返して求める必要があった。
However, depending on the specifications of the characteristics of the epitaxial layer,
Increasing the tilt angle of the wafer may increase the in-plane distribution of the characteristics and deviate from the specifications. In addition, the liquid drainage rate varies depending on the height (liquid thickness) of the raw material solution on the wafer. In addition, it has been necessary to repeatedly determine a plurality of experiments to determine the optimum liquid drainage conditions for the target epitaxial layer.

本発明は、上記の問題を解消し、ウエハ表面上に液残
りのないエピタキシャル層を安定して成長させることが
できる液相エピタキシャル成長方法を提供しようとする
ものである。
An object of the present invention is to solve the above problems and to provide a liquid phase epitaxial growth method capable of stably growing an epitaxial layer having no liquid residue on a wafer surface.

(課題を解決するための手段) 本発明は、複数のウエハを上下に一定の間隔をあけて
収容したカセットを原料溶液中に降下浸漬させ、カセッ
ト内に原料溶液を導入して所定のエピタキシャル層を成
長させた後、該カセットを原料溶液から引き上げる液相
エピタキシャル成長方法において、カセット引き上げに
際してウエハ表面上の原料溶液通過速度を10mm/min以下
とするようにカセット引き上げ速度を設定することを特
徴とする液相エピタキシャル成長方法である。
(Means for Solving the Problems) According to the present invention, a cassette, in which a plurality of wafers are housed at regular intervals in a vertical direction, is immersed in a raw material solution, and the raw material solution is introduced into the cassette to form a predetermined epitaxial layer. In the liquid phase epitaxial growth method in which the cassette is pulled up from the raw material solution after growing the cassette, the cassette pulling speed is set so that the raw material solution passing speed on the wafer surface at the time of pulling up the cassette is 10 mm / min or less. This is a liquid phase epitaxial growth method.

(作用) 本発明者等は、縦型ディッピング法において、ウエハ
の液切れに影響を与える主な要因としてウエハの傾斜角
度、カセットの引き上げ速度、及び液厚等が上げられる
が、特に、カセットを原料溶液から引き上げる際の、ウ
エハ表面上の原料溶液の移動速度に着目してウエハの液
切れとの関係を調べた。
(Operation) In the vertical dipping method, the present inventors can increase the wafer tilt angle, the cassette pulling speed, the liquid thickness, and the like as the main factors affecting the liquid shortage of the wafer. Attention was paid to the moving speed of the raw material solution on the wafer surface when pulling up from the raw material solution, and the relationship with the liquid shortage of the wafer was examined.

即ち、この移動速度は、次のように求めることができ
る。まず、ウエハの傾斜角度が0である場合は想定し
た。第1図(a)(b)に示すように、皿2に収容され
る原料溶液4の体積をVm、皿の高さをtmし、また、カセ
ット3のスリット部の断面積をSsとし、カセット3の底
面積をScとし、さらに、カセットの引き上げ速度をCcと
すると、カセット内部での原料溶液の降下速度Cmは、次
のように表すことができる。
That is, the moving speed can be obtained as follows. First, it was assumed that the inclination angle of the wafer was 0. As shown in FIGS. 1 (a) and 1 (b), the volume of the raw material solution 4 contained in the dish 2 is Vm, the height of the dish is tm, and the sectional area of the slit portion of the cassette 3 is Ss, Assuming that the bottom area of the cassette 3 is Sc and the pulling speed of the cassette is Cc, the descending speed Cm of the raw material solution inside the cassette can be expressed as follows.

(Vm/tm+Cs)・Cm=Sc・Cc 従って、 Cm=Sc・Cc/(Vm/Tm+Ss) となる。ウエハの傾斜角度θを考慮に入れると、ウエハ
表面上の原料溶液通過速度Cwは Cw=Cm/sinθ となる。例えば、ウエハ径51mm、厚み0.3mm、皿内径52m
m、高さ3mm、底厚1mm、カセットの壁厚5mm、スリット幅
5mm、外径64mmの場合には、Vm=3.6×103mm3、tm=3m
m、Ss=50mm2、Sc=3.2×103mm2となる。ここで、引き
上げ速度をCc=0.5mm/min、傾斜角度θ=15°とすれ
ば、Cm=1.3mm/minとなり、Cw=4.9mm/minとなる。この
定義に基づき、各種のエピタキシャル成長条件の場合に
ついて、引き上げ時の原料溶液の表面通過速度とその場
合の液切れ率を調べたところ第2図が得られた。この図
より、ウエハ表面の原料溶液の通過速度と液切れ率とは
明白な関係があることが分かる。即ち、引き上げ時のウ
エハ表面上の原料溶液通過速度を10mm/min以下とするこ
とにより、液切れを完全に行うことができる。
(Vm / tm + Cs) · Cm = Sc · Cc Therefore, Cm = Sc · Cc / (Vm / Tm + Ss). Taking into account the tilt angle θ of the wafer, the raw material solution passing speed Cw on the wafer surface becomes Cw = Cm / sinθ. For example, wafer diameter 51mm, thickness 0.3mm, dish inner diameter 52m
m, height 3mm, bottom thickness 1mm, cassette wall thickness 5mm, slit width
Vm = 3.6 × 10 3 mm 3 , tm = 3 m for 5 mm and 64 mm outer diameter
m, Ss = 50 mm 2 , Sc = 3.2 × 10 3 mm 2 . Here, if the lifting speed is Cc = 0.5 mm / min and the inclination angle θ is 15 °, Cm = 1.3 mm / min and Cw = 4.9 mm / min. Based on this definition, under various epitaxial growth conditions, the surface passing speed of the raw material solution at the time of pulling and the liquid drainage rate in that case were examined, and FIG. 2 was obtained. From this figure, it can be seen that there is a clear relationship between the passing speed of the raw material solution on the wafer surface and the liquid drainage rate. That is, by setting the raw material solution passage speed on the wafer surface at the time of lifting to 10 mm / min or less, the liquid can be completely drained.

(実施例) 上記の装置を用い、直径51mmで厚さ300μmのSiドー
プn型(100)GaAsウエハ上にAl0.3Ga0.7Asエピタキシ
ャル層の成長を試みた。
(Example) Using the above-described apparatus, an attempt was made to grow an Al 0.3 Ga 0.7 As epitaxial layer on a Si-doped n-type (100) GaAs wafer having a diameter of 51 mm and a thickness of 300 μm.

ルツボには、ガリウム300g、GaAs多結晶14g、Alを480
mg入れた。カセット内には、高さ2mmの皿に上記のウエ
ハを載せ、この皿を傾斜角度10°で10枚セットした。そ
して、原料溶液を845℃から0.5℃/minで790℃まで降温
してエピタキシャル成長を行った。その後、引き上げ速
度0.33mm/minでカセットを引き上げた。この引き上げ速
度に対する原料溶液のウエハ表面通過速度は、7.6mm/mi
nであり、本発明の条件を満たしている。得られたAl0.3
Ga0.7Asエピタキシャル層は、厚さが平均8.5μmで、表
面には、原料溶液の残存は全く観察されず、面内分布
も、ばらつき10%以内と均一なものであった。
The crucible contains 300 g of gallium, 14 g of GaAs polycrystal, and 480 g of Al.
mg. In the cassette, the above-mentioned wafer was placed on a plate having a height of 2 mm, and ten such plates were set at an inclination angle of 10 °. Then, the temperature of the raw material solution was lowered from 845 ° C. to 790 ° C. at a rate of 0.5 ° C./min to perform epitaxial growth. Thereafter, the cassette was lifted at a lifting speed of 0.33 mm / min. The speed at which the raw material solution passes through the wafer surface for this pulling speed is 7.6 mm / mi
n, which satisfies the conditions of the present invention. Obtained Al 0.3
The Ga 0.7 As epitaxial layer had an average thickness of 8.5 μm, no residual raw material solution was observed on the surface, and the in-plane distribution was uniform with a variation within 10%.

また、より厚いエピタキシャル層を得るために、皿の
高さを4mmとし、傾斜角度を5°として上記と同様の条
件でエピタキシャル成長を実施した。この場合も原料溶
液の表面通過速度は、8.2mm/minで本発明の条件を満た
しており、液残りの全くない、平均厚さが23.5μm、ば
らつきが7%以内の均一性の優れたエピタキシャル層が
得られた。
In order to obtain a thicker epitaxial layer, the height of the dish was set to 4 mm and the inclination angle was set to 5 °, and the epitaxial growth was performed under the same conditions as described above. In this case as well, the material solution passed through the surface at a speed of 8.2 mm / min, which satisfies the conditions of the present invention, has no liquid residue, has an average thickness of 23.5 μm, and has excellent uniformity within 7%. A layer was obtained.

(発明の効果) 本発明は、上記の構成を採用することにより、ウエハ
表面上に液残りの存在しないエピタキシャルウエハを安
定して成長させることができるようになった。
(Effects of the Invention) According to the present invention, by adopting the above configuration, an epitaxial wafer having no liquid residue on the wafer surface can be grown stably.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)は原料溶液のウエハ表面通過速度を
説明するための図、第2図はウエハ表面通過速度と液切
れ率との関係を示したグラフ、第3図(a)〜(c)は
縦型ディッピング方法の手順を説明するため図である。
FIGS. 1 (a) and 1 (b) are diagrams for explaining the speed of a raw material solution passing through a wafer surface, FIG. 2 is a graph showing the relationship between the wafer surface passing speed and a liquid drainage rate, and FIG. 3 (a). (C) is a figure for explaining the procedure of the vertical dipping method.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 19/00 - 19/12 C30B 28/00 - 35/00 H01L 21/208──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 19/00-19/12 C30B 28/00-35/00 H01L 21/208

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のウエハを上下に一定の間隔を開けて
収容したカセットを原料溶液中に降下浸漬させ、カセッ
ト内に原料溶液を導入して所定のエピタキシャル層を成
長させた後、該カセットを原料溶液から引き上げる液相
エピタキシャル成長方法において、カセット引き上げに
際してウエハ表面上の原料溶液通過速度を10mm/min以下
とするようにカセット引き上げ速度を設定することを特
徴とする液相エピタキシャル成長方法。
A cassette accommodating a plurality of wafers at predetermined intervals above and below is immersed in a raw material solution, and the raw material solution is introduced into the cassette to grow a predetermined epitaxial layer. Liquid phase epitaxial growth method, wherein the cassette pulling speed is set so that the raw material solution passing speed on the wafer surface is 10 mm / min or less when the cassette is pulled up.
JP160190A 1990-01-10 1990-01-10 Liquid phase epitaxial growth method Expired - Fee Related JP2773339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP160190A JP2773339B2 (en) 1990-01-10 1990-01-10 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP160190A JP2773339B2 (en) 1990-01-10 1990-01-10 Liquid phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPH03208884A JPH03208884A (en) 1991-09-12
JP2773339B2 true JP2773339B2 (en) 1998-07-09

Family

ID=11506022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP160190A Expired - Fee Related JP2773339B2 (en) 1990-01-10 1990-01-10 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JP2773339B2 (en)

Also Published As

Publication number Publication date
JPH03208884A (en) 1991-09-12

Similar Documents

Publication Publication Date Title
JP5768785B2 (en) Indium phosphide substrate and indium phosphide crystal
US5895526A (en) Process for growing single crystal
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
US11319646B2 (en) Gallium arsenide single crystal substrate
CN111534856A (en) β-Ga2O3Is a single crystal substrate
US11371164B2 (en) Compound semiconductor and method for producing single crystal of compound semiconductor
US3129061A (en) Process for producing an elongated unitary body of semiconductor material crystallizing in the diamond cubic lattice structure and the product so produced
Nygren Liquid encapsulated Czochralski growth of 35 mm diameter single crystals of GaP
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP2773339B2 (en) Liquid phase epitaxial growth method
US3755013A (en) Liquid solution method of epitaxially depositing a semiconductor compound
EP0036891B1 (en) Minimization of strain in single crystals
US3642443A (en) Group iii{14 v semiconductor twinned crystals and their preparation by solution growth
US20140109824A1 (en) Method of growing silicon single crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6047236B2 (en) Band-shaped silicon crystal manufacturing equipment
JP2546746Y2 (en) Vertical Bridgman crucible
JPS62119197A (en) Production of single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JP2637210B2 (en) Single crystal growth method and apparatus
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH02217390A (en) Method for liquid-phase epitaxial growth and apparatus therefor
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP2811902B2 (en) Liquid phase epitaxial growth equipment
CN116324047A (en) Indium phosphide substrate, semiconductor epitaxial wafer, method for producing indium phosphide single-crystal ingot, and method for producing indium phosphide substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees