JPS63207120A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS63207120A
JPS63207120A JP3917087A JP3917087A JPS63207120A JP S63207120 A JPS63207120 A JP S63207120A JP 3917087 A JP3917087 A JP 3917087A JP 3917087 A JP3917087 A JP 3917087A JP S63207120 A JPS63207120 A JP S63207120A
Authority
JP
Japan
Prior art keywords
substrate
growth
grown
gaas
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3917087A
Other languages
Japanese (ja)
Inventor
Toru Nishibe
徹 西部
Michiko Takena
竹名 美智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3917087A priority Critical patent/JPS63207120A/en
Publication of JPS63207120A publication Critical patent/JPS63207120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain preferable crystallinity in an epitaxial layer grown on a GaAs substrate of plane (100) by heat treating the substrate in arsine (AsH3) at higher temperature than a growth temperature before the layer is epitaxially grown on the substrate. CONSTITUTION:In a vapor growth method of by a chloride transporting process at 750 deg.C or lower on a GaAs substrate of plane (100) + or -0.5 deg., the substrate is heat treated, before the vapor growth, at 850 deg.C or higher in arsine (AsH3), and grown at the growth temperature. That is, in order to obtain a preferable crystal on the GaAs substrate of (100) + or -0.5 deg., it must be heat treated at least at 780 deg.C, but according to this method, an epitaxial layer having an excellent quality can be grown on a region having preferable film thickness and impurity control at 750 deg.C or lower.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、(100)面±0.5°のGaAs基板上
基板上品性の優れたエピタキシャル層を成長させる方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for growing an epitaxial layer with excellent substrate quality on a GaAs substrate of (100) plane ±0.5°.

(従来の技術) 塩化物輸送法気相成長においては、従来基板として(1
00)面から2°〜5°斜めに研磨した面を使用するの
が一般的であった。その理由としては(100)面±0
.5°の基板面上に成長した場合、ゆるやかな丘状突起
が数多く出現し、デバイ支作製時の工程、例えばマスク
を用いるフォトレジストの露光あるいはウェハー内のエ
ピタキシ雫ル膜厚の高均一性を要求するデバイス作製上
の加工工程に2いて大きな障害となり、最終的にはウェ
ハー一枚当りの有効面積利用率を悪化させる原因となっ
ている。この問題を解決するために上述したように、(
Zoo)面から<110>方向あるいは(011>方向
に2°〜5°傾けた結晶基板面を用いている。
(Prior art) In the chloride transport method vapor phase growth, the conventional substrate (1
It was common to use a surface polished at an angle of 2° to 5° from the 00) surface. The reason is (100) plane ±0
.. When grown on a substrate surface with an angle of 5°, many gentle hill-like protrusions appear, making it difficult to achieve high uniformity in the thickness of epitaxial droplets during the process of device fabrication, such as exposure of photoresist using a mask, or within a wafer. This becomes a major hindrance in the required processing steps for manufacturing devices, and ultimately causes a deterioration in the effective area utilization rate per wafer. As mentioned above to solve this problem (
A crystal substrate surface tilted by 2° to 5° in the <110> direction or (011> direction) from the (Zoo) plane is used.

そのため最適条件下では、2インチ直径の基板面上でキ
ャリア濃度φ膜厚ともに2チ以内に抑えられる高均一性
を実現して、プレーナ型の電界効果トランジスタ、半導
体レーザ、受光素子等で実用化されている。しかし、複
雑なデバイス構造、例えば半導体レーザなどに於いて活
性層の電流狭搾のためメサ型Iこエツチングして活性層
の幅を制御する工程、゛あるいは複数の素子を1つの基
板に集積するための加工工程などを含むものについては
、ウェットエツチング、反応性気相エツチングの工程に
おいて%(Zoo)  面が現われやすく、このために
、基板面のオフ方向に非対称になるという問題がある。
Therefore, under optimal conditions, it is possible to achieve high uniformity in which both carrier concentration and film thickness can be suppressed to within 2 inches on a 2-inch diameter substrate surface, making it practical for planar field effect transistors, semiconductor lasers, photodetectors, etc. has been done. However, in complex device structures such as semiconductor lasers, there is a process in which the width of the active layer is controlled by mesa type I etching to narrow the current in the active layer, or in which multiple elements are integrated on one substrate. For those that include processing steps for etching, %(Zoo) planes tend to appear in the wet etching and reactive gas phase etching steps, which causes a problem that the substrate surface becomes asymmetric in the off direction.

(発明が解決しようとする問題点) 上述した如く、従来の気相成長方法はエツチング工程に
おいて(100)面が現われやすく、基板面のオフ方向
に非対称になるという問題があった。
(Problems to be Solved by the Invention) As described above, the conventional vapor phase growth method has the problem that the (100) plane tends to appear in the etching process, resulting in asymmetrical properties in the off-direction of the substrate surface.

本発明は、上述した従来方法の欠点を改良したもので、
(ioo)面GaAs基板上lこ結晶性の優れたエピタ
キシャル層を堆積する方法を提供することを目的とする
The present invention improves the drawbacks of the conventional method described above, and
An object of the present invention is to provide a method for depositing an epitaxial layer with excellent crystallinity on an (ioo) plane GaAs substrate.

〔発明の構成〕[Structure of the invention]

(問題点を鱗形するための手段) 本発明は、(100)面G a A s基板上にエピタ
キシャル成長させる前に成長温度より高温で基板をA 
s H1中で熱処理し、その上に成長させるエピタキシ
・ル層の結晶性を良好に保つようにした気相成長方法で
ある。
(Means for solving the problem) In the present invention, before performing epitaxial growth on a (100) plane Ga As substrate, the substrate is grown at a temperature higher than the growth temperature.
This is a vapor phase growth method in which heat treatment is performed in s H1 to maintain good crystallinity of the epitaxial layer grown thereon.

(作用) (Zoo)±0.5°GaAs基板ノ表面Ic ハ、数
i子層以下の凹凸がテラス状に数ミクロンサイズで存在
しており、この(100)面上に成長させると、特に基
板面に非常に敏感な塩化物輸送性気相成長の場合、散在
するステップから成長をはじめるために、島状成長の重
ね合わせのような様相を呈することになり、島と島の境
目から転位が発生し、良好なエピタキシャル層を成長す
ることが困難であることを発見した。更に鏡面成長を行
なうためには、横方向の成長(吸着及び移動、結晶とし
て結合)と、縦方向の成長がバランスを保つような原子
オーダーの微細なステップの供給が必要であり、このス
テップ密度は、GaAs基板A s H,中で(850
℃)以上で熱処理することにより得られることを見出し
た。(ioo)±0,5°GaAs基板上に良好な結晶
を得るためには少なくとも780℃以上でなければなら
ないが、本発明を用いれば750℃以下の膜厚・不純物
制御の良好な領域で品質の優れたエピタキシャル層を成
長することができる。
(Function) (Zoo) ±0.5° The surface Ic of the GaAs substrate C. There are terrace-like irregularities of several microns in size, less than a few i layers, and when grown on this (100) plane, especially In the case of chloride-transporting vapor phase growth, which is very sensitive to the substrate surface, growth starts from scattered steps, resulting in an appearance similar to superimposed island-like growth, and dislocations occur from the boundaries between islands. It was discovered that this occurs and it is difficult to grow a good epitaxial layer. Furthermore, in order to perform mirror growth, it is necessary to supply fine steps on the atomic order so that horizontal growth (adsorption and movement, bonding as crystals) and vertical growth are balanced, and this step density is a GaAs substrate A s H, (850
It has been found that this can be obtained by heat treatment at a temperature of 0.3 °C or higher. (ioo)±0.5°In order to obtain a good crystal on a GaAs substrate, the temperature must be at least 780°C or higher, but if the present invention is used, the quality can be maintained at 750°C or lower with good film thickness and impurity control. can grow an excellent epitaxial layer.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

一実施例として、塩化物輸送性気相成長の1つであるハ
イドライド法によりGaAsを、GaAs(ioo)±
0.5°基板上に成長した場合について第1図を使って
述べる。よく知られているハイドライド気相成長装置(
こGaAs基板(Zoo)±0.5°、1を挿入し、1
0優に水素希釈したAsH,を100CC/分流し、8
50℃で20分熱処理し、3のように基板に成長を行な
わせるためのステップを均一に供給する。キ・リアガス
はH2で全流量を1.517分にする。その後、成長@
度700℃でGaAs 4を成長する。GaAsの成長
条件はGaメタルに流す、10チに希釈したH(490
CC/分、ASH,90CC/分であり、Gaメタルの
温度は850℃にする。GaAs/InGaAsP系の
半導体レーザ用ウェハーを作製するときは、ハフファ層
n−GaAs、n−InGaPクラyド層、 GaIn
AsP活性層、p−InGaPクラット層、p−GaA
sコンタクト層を基板熱処理の後に成長すればよく、基
板の熱処理を行なえば自由なデバイス構造を形成するこ
とができる。
As an example, GaAs(ioo)±
The case of growth on a 0.5° substrate will be described using FIG. The well-known hydride vapor phase growth equipment (
Insert the GaAs substrate (Zoo) ±0.5°, 1
Flow 100 CC/min of AsH diluted with hydrogen, 8
Heat treatment is performed at 50° C. for 20 minutes, and a step for growth is uniformly applied to the substrate as in step 3. Kiriagas uses H2 to make the total flow rate 1.517 minutes. After that, growth @
GaAs 4 is grown at 700°C. The growth conditions for GaAs are H (490
CC/min, ASH, 90 CC/min, and the temperature of Ga metal is 850°C. When manufacturing a GaAs/InGaAsP-based semiconductor laser wafer, a Huff layer n-GaAs, an n-InGaP clad layer, a GaIn
AsP active layer, p-InGaP crat layer, p-GaA
It is only necessary to grow the s-contact layer after heat treatment of the substrate, and by performing heat treatment of the substrate, a free device structure can be formed.

基板の熱処理温度を変えたときのエピタキシ・ル層の結
晶品質を調べたものが第2図である。基板の熱処理をA
sH,が100CC/分流れている中で30分行ない、
その後700℃でG a A sを成長し、その結晶性
をKOHOHモルテンニッチトでエツチングし、エッチ
ピットの数を数えた。基板自体のエッチピット(転位密
度)はlXl0’ 52X10”♂の範囲にあるので、
850℃ 以上の熱処理では基板自体と同程度の転位密
度に抑えられている。
Figure 2 shows an investigation of the crystal quality of the epitaxial layer when the heat treatment temperature of the substrate was changed. Heat treatment of the substrate A
Conducted for 30 minutes while sH was flowing at 100 CC/min,
Thereafter, GaAs was grown at 700° C., and its crystallinity was etched with KOHOH molten nicht, and the number of etch pits was counted. Since the etch pit (dislocation density) of the substrate itself is in the range of lXl0'52X10''♂,
In heat treatment at 850°C or higher, the dislocation density is suppressed to the same level as that of the substrate itself.

一方、850℃より低温で熱処理したときのエピタキシ
ャル成長層の転位密度は急激に増加する。
On the other hand, the dislocation density of the epitaxially grown layer increases rapidly when heat treated at a temperature lower than 850°C.

又、850℃での熱処理時間をかえて、エピタキシ雫ル
成長を700℃で行なったときの転位密度を調べたもの
を第4図に示す。10分以上の熱処理で良好な結晶が得
られる。
Further, FIG. 4 shows the results of examining the dislocation density when epitaxial growth was performed at 700° C. by changing the heat treatment time at 850° C. Good crystals can be obtained by heat treatment for 10 minutes or more.

もし、750℃以下で結晶成長する場合、あらかじめ、
基板の熱処理を行なわないと第3図のように、1のステ
ップサイズの大きくしかもステップがまばらな状態でエ
ピタキシャル層2が成長すると、それぞれのステップ上
に成長した結晶の境目から転位が発生し、表面も凹凸が
強調されたモホロジーになってしまう。
If crystal growth is to occur at a temperature below 750°C,
If the substrate is not heat-treated and the epitaxial layer 2 grows with a large step size and sparse steps as shown in FIG. 3, dislocations will occur from the boundaries of the crystals grown on each step. The surface also becomes morphological with emphasized unevenness.

なお本発明は、上述した実施例に限定されるものではな
い。前記実施例では、GaAs/InGaAsPのエピ
タキシャル成長に適用したが、GaAs基板を用いる限
り、例えばGaAs上に組成の徐々にかわるG a A
 x P を堆積したりする場合にも有効であ−x る。又、ハイドライド気相成長法とは別の塩化物輸送法
であるクロライド気相成長法にも適用できる。その他、
本発明の要旨を逸脱しない範囲で種々変形して実施する
ことができる。
Note that the present invention is not limited to the embodiments described above. In the above embodiment, the epitaxial growth of GaAs/InGaAsP was applied, but as long as a GaAs substrate is used, for example, GaA with a gradually changing composition can be grown on GaAs.
It is also effective when depositing xP. Further, it can also be applied to chloride vapor phase epitaxy, which is a chloride transport method different from hydride vapor phase epitaxy. others,
Various modifications can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

本発明Eこよれば、基板を850℃以上で熱処理して、
第1図のように基板面に平担な成長を行なわせるための
ステップを供給すれば、その後任意の組み合わせをもつ
エピタキシ・ル成長を実現でき、良好な結晶品質を得る
ことができる。
According to the present invention E, the substrate is heat-treated at 850° C. or higher,
By providing a step for flat growth on the substrate surface as shown in FIG. 1, epitaxial growth with any combination can be realized and good crystal quality can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明を説明するための図である。 1 to 4 are diagrams for explaining the present invention.

Claims (1)

【特許請求の範囲】[Claims] (100)面±0.5°のGaAs基板上に、750℃
以下で塩化物輸送法による気相成長させる方法に於いて
、気相成長させる前に基板をアルシン(AsH_3)中
で850℃以上の温度で熱処理した後に、当該成長温度
で成長させることを特徴とする気相成長方法。
750°C on a GaAs substrate with (100) plane ±0.5°
In the method of vapor phase growth using the chloride transport method described below, the substrate is heat treated in arsine (AsH_3) at a temperature of 850°C or higher before the vapor phase growth, and then the growth is performed at the growth temperature. vapor phase growth method.
JP3917087A 1987-02-24 1987-02-24 Vapor growth method Pending JPS63207120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3917087A JPS63207120A (en) 1987-02-24 1987-02-24 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3917087A JPS63207120A (en) 1987-02-24 1987-02-24 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS63207120A true JPS63207120A (en) 1988-08-26

Family

ID=12545644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3917087A Pending JPS63207120A (en) 1987-02-24 1987-02-24 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS63207120A (en)

Similar Documents

Publication Publication Date Title
JP3093904B2 (en) Method for growing compound semiconductor crystal
JP3267606B2 (en) Substrate treatment and method for fabricating a semiconductor device using the substrate
US3661636A (en) Process for forming uniform and smooth surfaces
US5653802A (en) Method for forming crystal
JPS63207120A (en) Vapor growth method
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JPS63207119A (en) Vapor growth method
JP3270704B2 (en) Method for manufacturing semiconductor microstructure
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JP2649928B2 (en) Method for manufacturing semiconductor wafer
JP2810175B2 (en) Vapor growth method
KR100952650B1 (en) Epitaxial growing method and substrate for epitaxial growth
JPH07193007A (en) Epitaxial growth method
JP2714703B2 (en) Selective epitaxial growth method
JP2711475B2 (en) Selective epitaxial growth method
JP2000124142A (en) Manufacture of semiconductor layer
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
JPH04290423A (en) Manufacture of semiconductor substrate and semiconductor device
JPH04306821A (en) Compound semiconductor crystal growth method
JPH01161822A (en) Element and manufacture thereof
JPS6060716A (en) Manufacture of semiconductor substrate
JPH0779087B2 (en) Surface treatment method for GaAs (111) A-plane substrate
JP2830386B2 (en) Method for producing compound semiconductor crystal having insulating layer on surface
JPS6362315A (en) Formation of epitaxial layer film
JPH01135089A (en) Semiconductor laser device