JPS60144933A - Liquid phase growth apparatus - Google Patents
Liquid phase growth apparatusInfo
- Publication number
- JPS60144933A JPS60144933A JP60384A JP60384A JPS60144933A JP S60144933 A JPS60144933 A JP S60144933A JP 60384 A JP60384 A JP 60384A JP 60384 A JP60384 A JP 60384A JP S60144933 A JPS60144933 A JP S60144933A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- slider
- source
- wafer
- solute
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02625—Liquid deposition using melted materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02623—Liquid deposition
- H01L21/02628—Liquid deposition using solutions
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Lasers (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は光半導体素子等に用いられる液相エピタキシャ
ル層の成長装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an apparatus for growing a liquid phase epitaxial layer used in optical semiconductor devices and the like.
光半導体素子も実用化の段階となp1液相成長の安定性
すなわち均一性、再現性が強く要求されて@た。Optical semiconductor devices are also at the stage of practical application, and there is a strong demand for stability, that is, uniformity and reproducibility of p1 liquid phase growth.
従来、液相成長の均一性、再現性を回トさせる方法とし
て、基板と類似のシードウェハースをカーボンポート内
に仕込み、基板とシードウェハースとの間に厚さの均一
な溶液を形成する方法、すなわちオーバーシード法が用
いられていた。これにより、溶液の過飽和度は適当な値
になシ、溶液の厚さも均一になるので均一な成長層を再
現よく得ることが出来る。しかし、この方法ではカーボ
ンボートが被雑になり破損しやすく寿命が短いという欠
点、基板とシードウェハースとの間の狭い隙間に溶#を
入れることの不安定性を有するという欠点、及び基板と
シードウェハースとの間隔を任意に変更出来ない欠点を
持っている。又、過剰のソースウェハースを投入し溶液
の上にシードウェハースが乗った状態を作フ出し、過飽
和度を制御しようという方法もあるが、シードウェハー
スが溶液の上で片寄ったフ、傾いたために浴液厚が不均
一になったフし、均一な成長層が得られない。Conventionally, as a method to improve the uniformity and reproducibility of liquid phase growth, a seed wafer similar to the substrate is placed in a carbon port, and a solution with a uniform thickness is formed between the substrate and the seed wafer. In other words, an overseeding method was used. As a result, the degree of supersaturation of the solution is kept at an appropriate value and the thickness of the solution is also made uniform, so that a uniform growth layer can be obtained with good reproducibility. However, this method has the disadvantages that the carbon boat becomes messy and easily damaged, and has a short lifespan. It also has the disadvantages of instability due to the introduction of melt into the narrow gap between the substrate and the seed wafer. It has the disadvantage that the interval cannot be changed arbitrarily. Another method is to control the degree of supersaturation by adding an excess of source wafers to create a state where the seed wafer is on top of the solution. If the liquid thickness becomes uneven, a uniform growth layer cannot be obtained.
不発明の目的は、単純な構造で、均一性、再現性のよい
液相エピタキシャル成長の出来る装置t提供することに
ある。An object of the invention is to provide an apparatus which has a simple structure and is capable of liquid phase epitaxial growth with good uniformity and reproducibility.
本発明は、溶媒を入れる溶液溜にはめ合の蓋をつけ、そ
の蓋の下部に溶液溜と同等に近い面積を有するソースウ
ェハースを取少付け、かつソースウェハースが溶液に全
面的に接触する構造を有することを特徴とする。The present invention has a structure in which a fitting lid is attached to a solution reservoir containing a solvent, a source wafer having an area close to that of the solution reservoir is attached to the bottom of the lid, and the source wafer is in full contact with the solution. It is characterized by having the following.
液相成長において、溶媒中の溶質の飽和状態は最も重要
な要素の一つである。一般に関温に保持している場合、
はぼ飽和に近い状態が保たれており、降温を始めること
により過飽和状態になフ。In liquid phase growth, the saturation state of the solute in the solvent is one of the most important factors. Generally, when kept at Seki temperature,
The water remains close to saturation, and as the temperature begins to drop, it becomes supersaturated.
過飽和状態で基板を接触させることによ構成長が開始す
る。この時、過飽和度が低い状態の場合は成長速度が小
さく薄一層の成長がやりやすく、過飽和度が高い状態の
場合は成長速度が大きく厚い層の成長かやりやずいとい
う特徴がある。又、基板に設した加工形状の変形は過飽
和度が高い程起りにくい。Constituent length is initiated by contacting the substrates in a supersaturated state. At this time, when the degree of supersaturation is low, the growth rate is low and it is easy to grow a thin layer, whereas when the degree of supersaturation is high, the growth rate is high and it is difficult to grow a thick layer. Further, the higher the degree of supersaturation, the less likely deformation of the processed shape provided on the substrate occurs.
次に図面を用いて不発明の実施例を詳細に説明する。実
施例としては溝を堀ったInP基板上に溝を埋め込んだ
形のダブルへテロ構造のエピタキシャル層を液相で連続
成長する場合について述べる。Next, embodiments of the invention will be described in detail with reference to the drawings. As an example, a case will be described in which an epitaxial layer of a double heterostructure with grooves buried therein is continuously grown in a liquid phase on an InP substrate with grooves dug therein.
すなわち、第1図に示すように、カーボンのスライダー
板1の所定位置にあらかじめ処理されたlnP 基板2
を置きカーボンの浴槽板3を載せる。That is, as shown in FIG. 1, a pre-treated lnP substrate 2 is placed at a predetermined position on a carbon slider plate 1.
and place the carbon bathtub plate 3.
あらかじめ秤量したln4等のソースを所定の浴槽5に
投入する0次に浴槽5とはめ合いになっているカーボン
の蓋6の下部にlnPのシードウェハース7を挿入し、
これらを各種の工。ソース4上に落し込む。この状態で
炉の内に入れ、温度を上げてゆくと、第2図のように、
■。ソース4は溶解してそれぞれに仕込んだソースの蓋
で決まる液厚となる。その状態で一足温度に保持してお
くことによ、9 Inl’ のシードウェハース7が一
部工。A pre-weighed source such as ln4 is poured into a predetermined bathtub 5. Next, an lnP seed wafer 7 is inserted into the lower part of the carbon lid 6 that fits into the bathtub 5.
These are processed into various types. Pour over sauce 4. If you put it in a furnace in this state and raise the temperature, as shown in Figure 2,
■. Sauce 4 is melted to a liquid thickness determined by the lid of each sauce. By keeping the temperature in this state for a while, the seed wafer 7 of 9 Inl' is partially processed.
ソース4に溶は込む。これによう溶媒Inに対し溶質P
はほぼ飽和の状態になる。Dissolve in sauce 4. This shows that for the solvent In, the solute P
is almost saturated.
第2図に示した第1浴の溶液8の液厚は3mm。The thickness of the solution 8 in the first bath shown in FIG. 2 is 3 mm.
第2浴の溶液9の液厚は2mmとなり、それぞれ溶は残
ったシードウェハース7を載せた状態で均一な厚さを保
っている。 この状態で、炉の温度を0.5°C/分の
一足速度で降下させる。In溶液8゜9中のPは飽和点
を通〕越し過飽和状態となる。The liquid thickness of the solution 9 in the second bath is 2 mm, and each solution maintains a uniform thickness with the remaining seed wafer 7 placed thereon. In this state, the temperature of the furnace is lowered at a rate of 0.5°C/min. P in the In solution (8°9) exceeds the saturation point and becomes supersaturated.
■。溶液8.9中で過飽和状態となったPはシードウェ
ハース7に析出を始める。このため、シードウェハース
7の近くでの過飽和度は非常に小さな値となり、シード
ウェハース7から離れる程In溶液8.9中の過飽和度
は大きくなり、スライダー1表面で最大となる。この過
飽和度は’11溶液8.9中におけヤ羨度勾配によるP
の輸送で決まシ、温度の師下速反及びIn溶液8.9の
液厚で決まる。温度の降下速度を一足とすると各浴槽の
In溶液8.9におけるスライダー1の表面での過飽和
度は工。溶液8゛、9の液厚で決まる。シードウェハー
ス7と反対側の液面での過飽和度は液厚の2乗比例する
。従って第1浴槽の■。溶液8の過飽和度は第2浴槽の
■。溶液9の過飽和度の2.25位となる。■. P, which has become supersaturated in the solution 8.9, begins to precipitate on the seed wafer 7. Therefore, the degree of supersaturation near the seed wafer 7 becomes a very small value, and the further away from the seed wafer 7 the more the degree of supersaturation in the In solution 8.9 increases, reaching a maximum on the surface of the slider 1. This degree of supersaturation is determined by P
It is determined by the transport of the In solution, the temperature, the temperature, and the thickness of the In solution. If the rate of temperature drop is one foot, the degree of supersaturation on the surface of the slider 1 in the In solution of each bathtub is 8.9 mm. It is determined by the thickness of solutions 8 and 9. The degree of supersaturation at the liquid surface on the side opposite to the seed wafer 7 is proportional to the square of the liquid thickness. Therefore, ■ of the first bathtub. The supersaturation degree of solution 8 is ■ in the second bath. This is the 2.25th degree of supersaturation of solution 9.
すなわち、第1層の成長では基板に設けた溝形状を保存
する成長が出来、第2層の成長では薄い活性層の層厚の
制御をする成長が出来る。第3層以後の説明は略すが、
それぞれの目的に合わせたIn溶液の厚みを秤量におけ
る■。の量で調整出来る。That is, the growth of the first layer allows growth that preserves the groove shape provided in the substrate, and the growth of the second layer allows growth that controls the thickness of the thin active layer. I will omit the explanation after the third layer, but
■ in weighing the thickness of the In solution tailored to each purpose. It can be adjusted by the amount.
このようにして1%In溶液8.9のスライダーlの表
面における過飽和度を調整し定常状態にした所で、スラ
イダー1を所定のプログラムに沿って動かして基板2を
それぞれの浴槽の下に所定の時間保持する。この結果、
基板2上に多層エピタキシャル層が成長される。In this way, the degree of supersaturation on the surface of the slider 1 of the 1% In solution 8.9 is adjusted and brought to a steady state, and then the slider 1 is moved according to a predetermined program to place the substrate 2 under each bath. hold for a period of time. As a result,
A multilayer epitaxial layer is grown on the substrate 2.
以上のように、In溶液の過飽和度を任意の値に調整す
ることによフ、それぞれの層を成長する場合の最良の条
件が得られ、液相成長の再現性を同上させることが出来
る。As described above, by adjusting the degree of supersaturation of the In solution to an arbitrary value, the best conditions for growing each layer can be obtained, and the reproducibility of liquid phase growth can be improved.
この実施例ではIn溶液を用いたI nP/InGaA
sP系の成長について述べたが%Ga浴液を用いたGa
As1AIGaAs系の成長に関しても同様の効果が得
られることは明らかである。In this example, InP/InGaA using In solution
Although we have described the growth of the sP system, Ga using a %Ga bath solution
It is clear that similar effects can be obtained with respect to the growth of the As1AIGaAs system.
第1図および第2図は不発明の一実施例を示す図で、特
に第1図は室温においてソースを投入した所の図、第2
図は温度を上げて■。が溶解した所の図である。
1−1・・・・・・カーボンスライダー板、2・・・・
・・工nP基板。
3・・・・・・浴槽板、4・・・・・・工。ソース、訃
・・・・・浴槽、6・・・・・・蓋、7・・・・・・シ
ードウェハース、8・・・・・・第1層■。溶液、9・
・・・・・第2層■。溶液。
h / 図
名 ? 図1 and 2 are diagrams showing one embodiment of the invention, in particular, FIG. 1 is a diagram showing a state where sauce is added at room temperature, and FIG.
The figure shows increasing the temperature■. This is a diagram showing the melted area. 1-1...Carbon slider plate, 2...
...Engineering nP board. 3... Bathtub board, 4... Engineering. Sauce, body...tub, 6...lid, 7...seed wafer, 8...first layer ■. solution, 9.
...Second layer ■. solution. h / Figure name? figure
Claims (1)
に溶液溜と同等に近い面積を有するソースウェハーを取
フ付けたことを特徴とする液相成長装置。A liquid phase growth apparatus characterized in that a lid that can be fitted into a solvent solution reservoir is provided, and a source wafer having an area close to the same as that of the solution reservoir is attached to the bottom of the lid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60384A JPS60144933A (en) | 1984-01-06 | 1984-01-06 | Liquid phase growth apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60384A JPS60144933A (en) | 1984-01-06 | 1984-01-06 | Liquid phase growth apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60144933A true JPS60144933A (en) | 1985-07-31 |
JPH0464174B2 JPH0464174B2 (en) | 1992-10-14 |
Family
ID=11478305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60384A Granted JPS60144933A (en) | 1984-01-06 | 1984-01-06 | Liquid phase growth apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60144933A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840806A (en) * | 1971-09-21 | 1973-06-15 |
-
1984
- 1984-01-06 JP JP60384A patent/JPS60144933A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840806A (en) * | 1971-09-21 | 1973-06-15 |
Also Published As
Publication number | Publication date |
---|---|
JPH0464174B2 (en) | 1992-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4689109A (en) | String stabilized ribbon growth a method for seeding same | |
JPS60144933A (en) | Liquid phase growth apparatus | |
Nishinaga et al. | Studies of LPE ripple based on morphological stability theory | |
Imamura et al. | Surface morphology of GaAs layers grown by electroepitaxy and thermal LPE | |
EP0090521B1 (en) | A method of performing solution growth of a group iii-v compound semiconductor crystal layer under control of the conductivity type thereof | |
JPH0217519B2 (en) | ||
US4728625A (en) | Method of fabricating buried crescent semiconductor laser device by removing a surface portion of substrate around a groove therein | |
JP2932787B2 (en) | Method for manufacturing compound semiconductor wafer | |
van Oirschot et al. | LPE growth of DH laser structures with the double source method | |
JPS5776821A (en) | Liquid phase epitaxial growing method | |
JPS6311596A (en) | Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method | |
JPS61181124A (en) | Method for liquid-phase growth | |
JPS6066423A (en) | Liquid phase epitaxial growth method | |
JPH01246193A (en) | Liquid-phase epitaxial growth device | |
Lourenco | On the dissolution of InGaAsP (λ> 1.3 μm) and InGaAs layers by In-P melts | |
JPS59225518A (en) | Liquid phase epitaxial growing method | |
JPS57155727A (en) | Manufacture of semiconductor device | |
JPS5732620A (en) | Method for liquid-phase epitaxial growth and growing boat | |
JPS6452697A (en) | Production of group iii-v compound semiconductor single crystal | |
JPS60192339A (en) | Liquid phase epitaxial growing method | |
JPH0361636B2 (en) | ||
JPS5749227A (en) | Liquid phase epitaxially growing method | |
JPH0431385A (en) | Device of growing crystal | |
Weidan et al. | Low temperature open tube Zn diffusion in InP/InGaAs (P) | |
JPS57181186A (en) | Semiconductor light emission device |