JPH0462022B2 - - Google Patents

Info

Publication number
JPH0462022B2
JPH0462022B2 JP59148385A JP14838584A JPH0462022B2 JP H0462022 B2 JPH0462022 B2 JP H0462022B2 JP 59148385 A JP59148385 A JP 59148385A JP 14838584 A JP14838584 A JP 14838584A JP H0462022 B2 JPH0462022 B2 JP H0462022B2
Authority
JP
Japan
Prior art keywords
glucose
amount
enzyme
measured
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59148385A
Other languages
Japanese (ja)
Other versions
JPS6126851A (en
Inventor
Kazuichi Aoki
Tatsuya Taimatsu
Yoshihiko Pponda
Yozo Ishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP59148385A priority Critical patent/JPS6126851A/en
Publication of JPS6126851A publication Critical patent/JPS6126851A/en
Publication of JPH0462022B2 publication Critical patent/JPH0462022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood

Description

【発明の詳細な説明】 産業上の利用分野 本発明は酵素反応を検知する酵素電極を用いて
電流値を測定し、グルコース濃度を動的に測定す
る方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method and apparatus for dynamically measuring glucose concentration by measuring current value using an enzyme electrode that detects an enzyme reaction.

従来技術 酵素反応を利用してグルコース等の濃度を測定
する方法は種々知られている。例えばグルコース
オキシダーゼによつて酸素と反応させ、その際の
溶存酸素の減少量を酸素電極で測定する方法(講
談社発行、清水哲郎外3名編化学センサーその基
礎と応用で紹介されている)か、もしくは生成さ
れる過酸化水素を過酸化水素電極で測定する方法
がある。すなわち、グルコースはグルコースオキ
シダーゼにより酸化されグルコノラクトンと過酸
化水素に分解される。この反応によつて消費され
る酸素もしくは生成される過酸化水素を酸素電極
もしくは過酸化水素電極で測定することによりグ
ルコース量の測定ができる。
Prior Art Various methods are known for measuring the concentration of glucose and the like using enzymatic reactions. For example, there is a method of reacting with oxygen using glucose oxidase and measuring the amount of decrease in dissolved oxygen at that time using an oxygen electrode (published by Kodansha, introduced in ``Basics and Applications of Chemical Sensors'', edited by Tetsuro Shimizu and others), Alternatively, there is a method of measuring the generated hydrogen peroxide using a hydrogen peroxide electrode. That is, glucose is oxidized by glucose oxidase and decomposed into gluconolactone and hydrogen peroxide. The amount of glucose can be measured by measuring the oxygen consumed or the hydrogen peroxide produced by this reaction using an oxygen electrode or a hydrogen peroxide electrode.

原理を第2図に示す。 The principle is shown in Figure 2.

第2図中35は酵素膜、36はテフロン膜、3
7は陰極を示す。
In Figure 2, 35 is an enzyme membrane, 36 is a Teflon membrane, 3
7 indicates a cathode.

グルコース溶液から電極へ拡散する酸素は、固
定化グルコースオキシダーゼ膜によりその一部が
消費され、電極に到達する酸素濃度が減少する。
A portion of the oxygen that diffuses from the glucose solution to the electrode is consumed by the immobilized glucose oxidase membrane, reducing the oxygen concentration reaching the electrode.

その結果電極での電流値も低下する。しかし時
間と共に酵素膜で消費される酸素量と溶液から拡
散してくる酸素量との間に平衡が成立し、ある電
流値の所で定常状態となる。この電流値が溶液中
のグルコース濃度に依存する。
As a result, the current value at the electrode also decreases. However, over time, an equilibrium is established between the amount of oxygen consumed by the enzyme membrane and the amount of oxygen diffused from the solution, and a steady state is reached at a certain current value. This current value depends on the glucose concentration in the solution.

したがつてあらかじめ濃度値を測定してあるグ
ルコース溶液についてそれぞれの電流値を測定し
検量線を作成することにより未知濃度のグルコー
ス溶液を測定することができる。
Therefore, a glucose solution of unknown concentration can be measured by measuring the current value of each glucose solution whose concentration value has been measured in advance and creating a calibration curve.

以上が溶存酸素電極で測定する方法であるがこ
の他にグルコースにグルコースオキシダーゼを作
用させることにより生成された過酸化水素をパー
オキシターゼとO−トルイジン等の発色試薬を用
いて比色定量する方法がある。
The above is a method of measuring dissolved oxygen using an electrode, but there is also a method of colorimetrically quantifying hydrogen peroxide produced by the action of glucose oxidase on glucose using peroxidase and a coloring reagent such as O-toluidine. be.

又、以上のような酵素電極を有する測定部に緩
衝液とともに血液を流し、流動状態で血液を電極
に接触させ糖分を測定するものが実開昭59−
54847号公報で知られている。
In addition, a device was developed in 1987 that allowed blood to flow together with a buffer solution through a measuring section having an enzyme electrode as described above, and then brought the blood into contact with the electrode in a flowing state to measure the sugar content.
It is known from Publication No. 54847.

発明が解決しようとする問題点 しかし、前者の酵素を用いた之等の方法はバツ
チ式でかつオフラインでしか使用することができ
ないため、又試料が高濃度のものの場合、あらか
じめ分析機器の測定範囲に入るように適宜希釈す
る必要があることや、人手による試料供給等実用
としての自動化には問題があつた。後者の公報の
ものはオンラインのものであるが一定グルコース
濃度の試料を測定する場合には酵素反応により発
生する酸素量及び電流量は常に一定値しか得られ
ない。したがつて広い濃度範囲の試料を精度良く
測定できない。
Problems to be Solved by the Invention However, the former method using enzymes can only be used in batches and off-line. There were problems with automation in practical use, such as the need to dilute the sample appropriately and the need for manual sample feeding. The latter publication is online, but when measuring a sample with a constant glucose concentration, only constant values are always obtained for the amount of oxygen and current generated by the enzyme reaction. Therefore, it is not possible to accurately measure samples over a wide concentration range.

問題点を解決するための手段 したがつて本発明の技術的課題はグルコース濃
度をオンラインで自動的に直接測定できると共に
広い濃度範囲の試料を精度良く測定できる、グル
コースの測定方法とその装置を提供しようとする
ことを目的とするもので、この技術的課題を解決
する本発明の技術的手段は、酵素反応によつて消
費される酸素量もしくは生成される過酸化水素量
を酸素電極もしくは過酸化水素電極で電気量に変
換し、その電気量によつてグルコース濃度を測定
するものであつて、酵素電極を装着した反応セル
に緩衝液を常時流した状態の中に一定量の試料を
間欠に送入し、試料が反応セルを通過する際の酵
素反応による電流変化量からグルコース濃度を測
定するもので試料と酵素との接触時間を緩衝液の
流速調整によつて変えることによりグルコースを
測定するようにしたもので以上のような方法を実
施する装置としては、酵素電極を装着した反応セ
ルと常時一定温度に加温した緩衝液タンクとを導
管で結合し、かつ自動試料定量送入装置を切替弁
を介して前記導管に結合したものである。
Means for Solving the Problems Therefore, the technical problem of the present invention is to provide a method and device for measuring glucose, which can automatically and directly measure glucose concentration on-line and can accurately measure samples over a wide concentration range. The technical means of the present invention to solve this technical problem is to reduce the amount of oxygen consumed or the amount of hydrogen peroxide produced by the enzyme reaction using an oxygen electrode or The hydrogen electrode converts the electricity into electricity, and the glucose concentration is measured using the electricity. A fixed amount of sample is intermittently poured into a reaction cell equipped with an enzyme electrode, with a buffer solution constantly flowing. The glucose concentration is measured from the amount of current change due to the enzyme reaction when the sample passes through the reaction cell.Glucose is measured by changing the contact time between the sample and the enzyme by adjusting the flow rate of the buffer solution. An apparatus for carrying out the above method is one that connects a reaction cell equipped with an enzyme electrode with a buffer tank that is constantly heated to a constant temperature through a conduit, and is equipped with an automatic sample quantitative feeding device. It is connected to the conduit via a switching valve.

発明の効果 この技術的手段によれば、緩衝液を常時流した
状態の中に一定量の試料を間欠的に送入すること
によりグルコース濃度を測定することができる特
徴があり、試料と酵素との接触時間を緩衝液の流
速調整によつて変えることにより試料の測定範囲
を調節でき、したがつて高濃度のグルコース溶液
でも希釈作業を除くことができ、オンライン方式
で自動的に連続測定ができるという特徴がある。
換言すれば酵素と試料の接触時間をコントロール
することにより消費する酸素量が制御でき、さら
に電流量が制御できるものでグルコース高濃度の
試料を測定する場合は流速を高め酵素に接触する
時間を短縮し消費酸素量を抑制して常に検量の直
線領域で測定でき、又、低濃度試料の場合は逆に
酵素との反応時間が長くなるように流速を制御
し、検量線の直線領域で測定できるもので、かか
る酵素反応の制御を行うことにより広い濃度範囲
の試料も精度良く測定できる。注入量を変位させ
希釈させる場合は希釈率の大きくなるような高濃
度サンプルは誤差の原因となるが、本発明のもの
は緩衝液の流速を制御し、流速に応じた検量線を
設定し流速に応じて検量線を切り替え電流値から
グルコース濃度を測定しているので希釈誤差はな
く広い範囲で精度良く測定できるという利点があ
る。
Effects of the Invention According to this technical means, glucose concentration can be measured by intermittently feeding a fixed amount of sample into a state where a buffer solution is constantly flowing, and the glucose concentration can be measured by By changing the contact time of the sample by adjusting the flow rate of the buffer solution, the measurement range of the sample can be adjusted. Therefore, even with highly concentrated glucose solutions, the dilution work can be eliminated, and continuous measurement can be performed automatically in an online method. There is a characteristic that
In other words, the amount of oxygen consumed can be controlled by controlling the contact time between the enzyme and the sample, and the amount of current can also be controlled, so when measuring a sample with a high glucose concentration, the flow rate can be increased to shorten the contact time with the enzyme. By suppressing the amount of oxygen consumed, measurements can always be made in the linear range of the calibration curve.For low-concentration samples, on the other hand, the flow rate can be controlled to prolong the reaction time with the enzyme, allowing measurements to be made in the linear range of the calibration curve. By controlling such enzymatic reactions, samples with a wide concentration range can be measured with high precision. When diluting by varying the injection volume, a highly concentrated sample with a large dilution rate may cause an error, but in the present invention, the flow rate of the buffer solution is controlled, a calibration curve is set according to the flow rate, and the flow rate is adjusted. Since the calibration curve is switched according to the current value and the glucose concentration is measured from the current value, there is no dilution error and there is an advantage that accurate measurement can be performed over a wide range.

実施例 以下図面に示す実施例について説明する。Example The embodiments shown in the drawings will be described below.

第1図において1は例えば乳糖分解用固定化酵
素(固定化ラクターゼ)を充填したカラムであつ
て、分解乳が出口2から製品として排出される。
In FIG. 1, 1 is a column filled with, for example, an immobilized enzyme for decomposing lactose (immobilized lactase), and decomposed milk is discharged as a product from an outlet 2.

3はその分枝管でポンプ4からT字形接手3
2、切替弁5を介してオートピペツト6に連通し
ている。余分な製品は導管33より排出される。
3 is the branch pipe from the pump 4 to the T-shaped joint 3
2. Communicates with an autopipette 6 via a switching valve 5. Excess product is discharged via conduit 33.

又、標準液タンク7も導管8で切替弁5を介し
てオートピペツト6に連通している。
The standard solution tank 7 also communicates with the autopipette 6 via a switching valve 5 through a conduit 8.

緩衝液タンク14の緩衝液には導管10から空
気が送り込まれて溶存酸素量が飽和状態となつて
おり又、ヒーター11で加熱され、その温度がセ
ンサー12を介してコントローラー13で制御さ
れている。
Air is sent into the buffer solution in the buffer solution tank 14 through a conduit 10 to bring the amount of dissolved oxygen into a saturated state, and the buffer solution is heated by a heater 11, and its temperature is controlled by a controller 13 via a sensor 12. .

タンク14の緩衝液はペリスタポンプすなわち
定量ポンプ15で導管16を介して恒温槽17中
のグルコースセンサー18に供給されるようにな
つている。
The buffer solution in the tank 14 is supplied by a peristaltic or metering pump 15 via a conduit 16 to a glucose sensor 18 in a constant temperature bath 17.

又、前記したオートピペツト6に吸引された試
料又は標準液は供給弁19を介して前記導管16
に接続されている。
Further, the sample or standard solution aspirated into the autopipette 6 is passed through the supply valve 19 to the conduit 16.
It is connected to the.

したがつて供給弁19の切替によつて試料又は
標準液の一定量を導管16中に常時流れている緩
衝液に供給することができる。又、測定時以外の
試料又は標準液は、導管34より排出される。
By switching the supply valve 19, therefore, a fixed amount of sample or standard solution can be supplied to the buffer solution constantly flowing in the conduit 16. Further, the sample or standard solution other than when being measured is discharged from the conduit 34.

グルコースセンサー18は第3図に示す通りの
ものであつて、その38は酸素電極、39はテフ
ロン膜、40は酵素膜、41はセルローズ透析
膜、42はセル、43はOリングである。そして
緩衝液は反応セルの通路44,45,46を常時
流れる。
The glucose sensor 18 is as shown in FIG. 3, with reference numeral 38 an oxygen electrode, 39 a Teflon membrane, 40 an enzyme membrane, 41 a cellulose dialysis membrane, 42 a cell, and 43 an O-ring. The buffer solution constantly flows through the passages 44, 45, and 46 of the reaction cell.

第1図においてグルコースセンサー18で検知
された電流値は増幅器26で増幅され、機器27
でノイズが除去され、コンピユーター28で演算
されてグルコース濃度が測定される。なお、29
は出力プリンターを示す。
In FIG. 1, the current value detected by the glucose sensor 18 is amplified by the amplifier 26, and the device 27
Noise is removed, and the glucose concentration is calculated by the computer 28 and measured. In addition, 29
indicates the output printer.

さて切替弁5によつて試料と標準液を適時切替
え、オートピペツト6で一定量吸引し、供給弁1
9へ送入する。
Now, switch the sample and standard solution at the appropriate time using the switching valve 5, aspirate a certain amount using the autopipette 6, and then
Send to 9.

緩衝液は定量ポンプ15でT字形接手31を通
りグルコースセンサー18の反応セル内に送入さ
れ管30から排出される。試料は、緩衝液が常時
流れている状態で供給弁19が切り換わり、オー
トピペツト6で試料あるいは標準液が一定量注入
される。
Buffer is pumped by metering pump 15 through T-shaped fitting 31 into the reaction cell of glucose sensor 18 and discharged through tube 30. The supply valve 19 is switched while the buffer solution is constantly flowing, and a fixed amount of the sample or standard solution is injected using the autopipette 6.

電極の指示値から濃度を測定する方法は、導管
8より既知濃度のグルコース溶液をオートピペツ
ト6にて吸引し、T型接手31より注入する。
The method of measuring the concentration from the indicated value of the electrode is to aspirate a glucose solution of a known concentration from the conduit 8 with the autopipette 6 and inject it through the T-shaped fitting 31.

そしてセンサー18の反応セルを通過する際の
電流変化とグルコース濃度との関係を求めてお
き、この関係を用いて導管3から試料を同様に注
入した時に得られる指示値からコンピユーター2
8でグルコース濃度を測定する。
Then, the relationship between the current change when passing through the reaction cell of the sensor 18 and the glucose concentration is determined, and using this relationship, the computer 2 calculates the indicated value obtained when the sample is similarly injected from the conduit 3.
Measure the glucose concentration at step 8.

ここでセンサー18の反応セルを通過する際の
電流変化量とグルコース濃度との関係を求めるに
当り次のような結果をえた。
Here, when determining the relationship between the amount of change in current when passing through the reaction cell of the sensor 18 and the glucose concentration, the following results were obtained.

すなわち、グルコース溶液から酵素膜を通して
電極へ拡散する酸素の消費量、もしくは減少する
酸素濃度とその結果生じる電極での電流値の低下
現象から電流値がグルコース濃度に依存すること
はさきに述べたとおりであるが、実験に当たり酵
素電極として後述するようなグルコースオキシダ
ーゼをDEAEセルローズ膜にイオン結合法によつ
て固定化した固定化酵素膜を溶存酸素電極の検知
面に装着したグルコースセンサーを用い、これを
緩衝液が常時流れるようにした緩衝液流路中に設
置し、この流路にあらかじめ測定してある濃度の
グルコース溶液を流して実験を試みたところ緩衝
液の流速によつてもその電流値が変化することが
わかつた。
In other words, as mentioned earlier, the current value depends on the glucose concentration due to the amount of oxygen consumed that diffuses from the glucose solution to the electrode through the enzyme membrane, or from the decreasing oxygen concentration and the resulting decrease in the current value at the electrode. However, in the experiment, we used a glucose sensor as an enzyme electrode, which was equipped with an immobilized enzyme membrane in which glucose oxidase was immobilized on a DEAE cellulose membrane using an ion bonding method, as described later, and attached to the sensing surface of a dissolved oxygen electrode. The buffer solution was installed in a buffer flow path that was constantly flowing, and an experiment was conducted by flowing a glucose solution with a pre-measured concentration into this flow path, and it was found that the current value varied depending on the flow rate of the buffer solution. I found out that things change.

すなわち、流速を一定にしてあらかじめ測定し
てある濃度のグルコース溶液の電流変化量を測定
し、同様に流速を変化させて同一試料の電流変化
量を測定したところ濃度と電流変化量との間に第
4図に示すような結果を示した。
In other words, when we measured the amount of current change in a glucose solution with a pre-measured concentration while keeping the flow rate constant, and measured the amount of current change in the same sample while changing the flow rate in the same way, we found that there was a difference between the concentration and the amount of current change. The results were shown in Figure 4.

第4図の縦軸は電流値変化量で横軸が濃度であ
る。表中流速V1,V2,V3,V4,V5はそれぞれ
0.38cm/sec、1.47cm/sec、2.92cm/sec、6.95
cm/sec、8.88cm/secである。
The vertical axis in FIG. 4 is the amount of change in current value, and the horizontal axis is the concentration. The flow speeds V1, V2, V3, V4, and V5 in the table are respectively
0.38cm/sec, 1.47cm/sec, 2.92cm/sec, 6.95
cm/sec, 8.88cm/sec.

ところで電流変化量が緩衝液のみの通液時の電
流値を100%とすると50〜80%の範囲内の各流速
の検量線は直線を示しその傾きも同じであつた。
By the way, assuming that the current value when only the buffer solution was passed was 100%, the calibration curves for each flow rate within the range of 50 to 80% showed a straight line, and the slopes were the same.

したがつて、測定においては、第5図に示すよ
うに、流速Vaにてあらかじめ濃度値を測定して
ある2種類以上のグルコース溶液について、それ
ぞれの電流変化量を測定し、検量線y=alogx+
bを求める。ここでxは濃度、yは電流変化量で
ある。次にこの流速Vaにおいて測定範囲80%の
電流変化量Iaを示すグルコース溶液を流速を変え
ながら測定し、測定範囲50%の電流変化量Ibを示
す流速Vbを求める。この事により流速Vbにおけ
る検量線は流速Vaにおける検量線の傾きと同じ
であるから、 Ia−Ib)の分だけ、切片移動したY=alogx+
b‐(Ia−Ib)となる。それ以降の流速を変えた
場合の検量線の式は、y=a logx+b‐n(Ia
−Ib)にて求めることが出来る。尚ここでのnは
検量の移動数でn=2、3、4……である。
Therefore, in the measurement, as shown in Figure 5, for two or more types of glucose solutions whose concentration values have been measured in advance at a flow rate Va, the amount of current change is measured for each, and the calibration curve y = alogx +
Find b. Here, x is the concentration and y is the amount of current change. Next, at this flow rate Va, the glucose solution exhibiting the amount of current change Ia in the measurement range of 80% is measured while changing the flow rate, and the flow rate Vb showing the amount of current change Ib in the measurement range of 50% is determined. Because of this, the slope of the calibration curve at the flow rate Vb is the same as the slope of the calibration curve at the flow rate Va, so Y = alogx +
b-(Ia-Ib). The equation of the calibration curve when the flow rate is changed after that is y=a logx+bn(Ia
−Ib). Note that n here is the number of calibration movements, and n=2, 3, 4, . . . .

又、それぞれの検量線の流速は、(Vb−Va)
nの分だけ移動すればよく、式Vx=Va+(Vb−
Va)nで求める事が出来る。ここでのnは先程
のnと同じ値をとる。この2つの式を用いること
により、図5に示すような検量線を作成し、それ
ぞれの流速と検量線の式をコンピユーターに記憶
させておく。そして、未知濃度グルコース溶液を
流した時の電流変化量yが緩衝液通液時の電流値
を100%とした時の50%〜80%の範囲の電流値を
とるように、先程設定した流速の中から、段階的
に選び出し、その流速での検量線からグルコース
濃度を求めることができる。
Also, the flow rate of each calibration curve is (Vb−Va)
It is only necessary to move by n, and the formula Vx=Va+(Vb−
Va) can be found by n. n here takes the same value as n above. By using these two equations, a calibration curve as shown in FIG. 5 is created, and the respective flow rates and equations of the calibration curve are stored in the computer. Then, set the flow rate earlier so that the amount of current change y when flowing the glucose solution of unknown concentration takes a current value in the range of 50% to 80% when the current value when the buffer solution is flowing is 100%. The glucose concentration can be determined from a calibration curve by selecting one of these in stages and using the calibration curve at that flow rate.

さて以上のような測定に基づき、カラム1の牛
乳量を自動的に制御して乳糖分解率を一定に保つ
ことができるものであり、第1図仮想線で示すよ
うにポンプ4、オートピペツト6、ポンプ15、
供給弁19を自動的に制御することができる。
Now, based on the above measurements, it is possible to automatically control the amount of milk in column 1 to keep the lactose decomposition rate constant, and as shown by the imaginary line in Figure 1, pump 4, autopipette 6, pump 15,
The supply valve 19 can be automatically controlled.

カラムに乳糖分解乳用固定化酵素を充填し、牛
乳を一定流量でカラム1に流し、分解乳を作ると
きの以上のような装置を用いての制御方法につい
て述べると、一般に長期間運転すると固定化ラク
ターゼの活性が低下し、分解率が変動してくる。
To describe a control method using the above-mentioned device when producing digested milk by filling a column with an immobilized enzyme for lactose-digesting milk and allowing milk to flow through column 1 at a constant flow rate, it generally becomes fixed after long-term operation. lactase activity decreases, and the decomposition rate fluctuates.

そこで分解乳をペリスタポンプで一定量グルコ
ースセンサーに送り、グルコース量を測定電気信
号に変え、その信号をコンピユーター28へ送
る。コンピユーター28内で測定電気信号を分解
率に換算し、設定分解率と比較する。もし測定値
と設定値の間に差がある場合にはその大きさにし
たがつてカラムに牛乳を供給する図示しないポン
プの流量を調節し、仰乳の分解率が設定分解率に
なるように制御するものである。
There, a fixed amount of decomposed milk is sent to a glucose sensor using a peristaltic pump, and the amount of glucose is converted into a measured electrical signal, which is sent to a computer 28. The measured electrical signal is converted into a decomposition rate in the computer 28 and compared with a set decomposition rate. If there is a difference between the measured value and the set value, adjust the flow rate of the pump (not shown) that supplies milk to the column according to the difference so that the decomposition rate of breast milk becomes the set decomposition rate. It is something to control.

具体的に実施した例を述べると次のようであ
る。グルコースセンサーに用いられる固定化グル
コースオキシダーゼ膜の固定化はグルコースオキ
シダーゼ(天野製薬製)10mgをPH6.0,0.1M酢酸
緩衝液10mlに溶解し、直径6mmのDEAEセルロー
ズ膜をその溶液中に3時間浸漬し、吸引炉過にて
固定した。
A concrete implementation example is as follows. To immobilize the immobilized glucose oxidase membrane used in the glucose sensor, 10 mg of glucose oxidase (manufactured by Amano Pharmaceutical) was dissolved in 10 ml of PH6.0, 0.1M acetate buffer, and a DEAE cellulose membrane with a diameter of 6 mm was placed in the solution for 3 hours. It was immersed and fixed in a suction oven.

この固定化膜を溶存酸素電極(石川製作所製)
の検知面上にのせ透析膜で覆つてOリングで止め
た。
This immobilized membrane is used as a dissolved oxygen electrode (manufactured by Ishikawa Seisakusho).
It was placed on the detection surface of the device, covered with a dialysis membrane, and secured with an O-ring.

この酵素電極をフローセルに装着した。 This enzyme electrode was attached to a flow cell.

緩衝液は0.1M酢酸と0.1M酢酸ナトリウムから
PH6.0に調整して用いた。
The buffer solution is 0.1M acetic acid and 0.1M sodium acetate.
It was used after adjusting the pH to 6.0.

測定装置は恒温槽及び緩衝液を40℃にし、緩衝
液流速は2.08cm/sec、6.95cm/secとした。
The measuring device used a constant temperature bath and buffer solution at 40°C, and the buffer solution flow rates were 2.08 cm/sec and 6.95 cm/sec.

オートピペツトによる注入量は0.5mlとした。 The injection volume by autopipette was 0.5 ml.

標準液は医療用グルコース溶液5%を希釈して
0.6g/dl、0.7g/dl、0.8g/dl、0.9g/dl、
1.0g/dlを作り、試料としては乳糖分解乳を用
い、この装置と従来法すなわち、YSI社製シユガ
ーアナライザーでの値と比較したところほとんど
遜色はなかつた。
The standard solution is a 5% diluted medical glucose solution.
0.6g/dl, 0.7g/dl, 0.8g/dl, 0.9g/dl,
When 1.0 g/dl was prepared and lactose-decomposed milk was used as a sample, this device was compared with the conventional method, that is, the value obtained using the YSI Sugar Analyzer, and there was almost no difference.

何れにしても本発明は緩衝液を常時一定流量で
グルコースセンサーの反応セルに流した状態で試
料を一定量注入することにより試料がグルコース
センサーの反応セルを通過する際の酵素との反応
による電流変化量から濃度を算出するもので測定
範囲は緩衝液の流速を変えることにより調整する
ことができるものであつて高濃度のグルコースを
正確かつ容易に測定でき、特に希釈作業なしに直
接自動的に測定できるという効果がある。
In any case, the present invention involves injecting a fixed amount of a sample into the reaction cell of a glucose sensor while a buffer solution is constantly flowing at a constant flow rate into the reaction cell of the glucose sensor. This method calculates the concentration from the amount of change, and the measurement range can be adjusted by changing the flow rate of the buffer solution.It is possible to accurately and easily measure high concentrations of glucose, and in particular, it can be used directly and automatically without dilution. It has the effect of being measurable.

なお、実施例のものでは反応による検知物質は
溶存酸素を対象としたが過酸化水素でもよい。
又、酵素は膜状に固定化したものが望ましい。更
に又、緩衝液及びグルコースを含む試料を反応セ
ルに接続された導管より送入排出させるが、エア
ーが混入した際ただちに抜けるようなものがよ
い、そして緩衝液は実施例では酢酸を用いたが酵
素反応を阻害しないものであれば特に限定しない
し、オートピペツトは電動式のものが望ましい、
又、高精度の微量定量ポンプでもよい。
In the examples, the substance to be detected by reaction is dissolved oxygen, but hydrogen peroxide may also be used.
Furthermore, it is preferable that the enzyme be immobilized in the form of a membrane. Furthermore, a sample containing a buffer solution and glucose is introduced and discharged through a conduit connected to the reaction cell, but it is preferable that the sample should be able to escape immediately if air is mixed in, and the buffer solution used in the example was acetic acid. There is no particular limitation as long as it does not inhibit the enzymatic reaction, and an electric autopipette is preferable.
Alternatively, a highly accurate micro-metering pump may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の説明図、第2図は測定原
理を示す説明図、第3図はグルコースセンサーの
説明図、第4図は電流変化量と濃度との関係図、
第5図は検量線の説明図である。 1……カラム、5……切替弁、6……オートピ
ペツト、7……標準液タンク、14……緩衝液タ
ンク、17……恒温槽、18……グルコースセン
サー、28…コンピユーター。
Fig. 1 is an explanatory diagram of the device of the present invention, Fig. 2 is an explanatory diagram showing the measurement principle, Fig. 3 is an explanatory diagram of the glucose sensor, and Fig. 4 is a diagram of the relationship between current variation and concentration.
FIG. 5 is an explanatory diagram of a calibration curve. 1... Column, 5... Switching valve, 6... Autopipette, 7... Standard solution tank, 14... Buffer solution tank, 17... Constant temperature bath, 18... Glucose sensor, 28... Computer.

Claims (1)

【特許請求の範囲】 1 酵素反応によつて消費される酸素量もしく
は、生成される過酸化水素量を酸素電極もしくは
過酸化水素電極で電気量に変換し、その電気量に
よつてグルコース濃度を測定するものであつて、
これら酵素電極を装着した反応セルに緩衝液を常
時流した状態の中に一定量の試料を間欠的に送入
し、試料が反応セルを通過する際の酵素反応によ
る電流変化量からグルコース濃度を測定するもの
で試料と酵素との接触時間を緩衝液の流速調整に
よつて変えることによりグルコースを測定するこ
とを特徴とするグルコースの自動測定方法。 2 特許請求の範囲第1項記載のグルコースの自
動測定方法において、被測定グルコース濃度の変
動に伴い、電流変化量が緩衝液のみの通液時にお
ける電流値を100%とすると、グルコースを流し
た時常に50%から80%の範囲をとるように予め設
定された流速毎の検量線を求めておき、測定され
た電流値が前記検量線の何れかに入るように流速
を切替えてその流速に応じた検量線の電流値から
グルコース濃度を自動的に測定することを特徴と
するグルコースの自動測定方法。 3 酵素電極を装着した反応セルと常時一定温度
に加温した緩衝液タンクとを導管で結合し、かつ
自動試料定量送入装置を切替弁を介して前記導管
に結合してなるグルコースの自動測定装置。
[Claims] 1. The amount of oxygen consumed or the amount of hydrogen peroxide produced by an enzyme reaction is converted into an amount of electricity using an oxygen electrode or a hydrogen peroxide electrode, and the glucose concentration is determined by the amount of electricity. It is something to be measured,
A fixed amount of sample is intermittently fed into a reaction cell equipped with these enzyme electrodes while a buffer solution is constantly flowing, and the glucose concentration is determined from the amount of current change due to the enzyme reaction when the sample passes through the reaction cell. 1. An automatic method for measuring glucose, characterized in that glucose is measured by varying the contact time between a sample and an enzyme by adjusting the flow rate of a buffer solution. 2. In the method for automatically measuring glucose according to claim 1, when the amount of current change due to fluctuations in the glucose concentration to be measured is 100% when only the buffer solution is passed, Obtain a calibration curve for each flow rate set in advance so that it always falls within the range of 50% to 80%, and change the flow rate so that the measured current value falls within one of the calibration curves. 1. A method for automatically measuring glucose, comprising automatically measuring a glucose concentration from a current value of a corresponding calibration curve. 3. Automatic measurement of glucose by connecting a reaction cell equipped with an enzyme electrode with a buffer tank always heated to a constant temperature through a conduit, and connecting an automatic sample quantitative feeder to the conduit via a switching valve. Device.
JP59148385A 1984-07-17 1984-07-17 Method and instrument for automatic measurement of glucose Granted JPS6126851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59148385A JPS6126851A (en) 1984-07-17 1984-07-17 Method and instrument for automatic measurement of glucose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59148385A JPS6126851A (en) 1984-07-17 1984-07-17 Method and instrument for automatic measurement of glucose

Publications (2)

Publication Number Publication Date
JPS6126851A JPS6126851A (en) 1986-02-06
JPH0462022B2 true JPH0462022B2 (en) 1992-10-02

Family

ID=15451581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148385A Granted JPS6126851A (en) 1984-07-17 1984-07-17 Method and instrument for automatic measurement of glucose

Country Status (1)

Country Link
JP (1) JPS6126851A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497491A (en) * 1978-01-19 1979-08-01 Omron Tateisi Electronics Co Measuring method of enzyme activity
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device
JPS55131383A (en) * 1979-03-29 1980-10-13 Oriental Yeast Co Ltd Quantitative analyzer with immobilized oxidase
JPS5770458A (en) * 1980-10-22 1982-04-30 Hitachi Ltd Apparatus for chromatography
JPS5797436A (en) * 1980-12-09 1982-06-17 Fuji Electric Co Ltd Analyzer for blood sugar
JPS58171658A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Glucose analysis method
JPS60205346A (en) * 1984-03-30 1985-10-16 Shimadzu Corp Flow-through type analysis device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954847U (en) * 1982-10-01 1984-04-10 東洋紡績株式会社 Body fluid component measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497491A (en) * 1978-01-19 1979-08-01 Omron Tateisi Electronics Co Measuring method of enzyme activity
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device
JPS55131383A (en) * 1979-03-29 1980-10-13 Oriental Yeast Co Ltd Quantitative analyzer with immobilized oxidase
JPS5770458A (en) * 1980-10-22 1982-04-30 Hitachi Ltd Apparatus for chromatography
JPS5797436A (en) * 1980-12-09 1982-06-17 Fuji Electric Co Ltd Analyzer for blood sugar
JPS58171658A (en) * 1982-04-02 1983-10-08 Hitachi Ltd Glucose analysis method
JPS60205346A (en) * 1984-03-30 1985-10-16 Shimadzu Corp Flow-through type analysis device

Also Published As

Publication number Publication date
JPS6126851A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
Fogh-Andersen et al. Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood
US4153513A (en) Method and apparatus for the continuous determination of the concentration of an enzyme substrate
US4229542A (en) Apparatus for the measuring of the concentration of low-molecular compounds in complex media
JP4901956B2 (en) Substrate concentration measuring method and substrate concentration measuring apparatus
EP0805350A1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
JPH0462022B2 (en)
CN101802600B (en) Method and apparatus for determining substrate concentration and reagent for determining substrate concentration
JP2001013102A (en) Fractionately measuring method for peracetic acid and hydrogen peroxide
Gulberg et al. Amperometric systems for the determination of oxidase enzyme dependent reactions by continuous flow and flow injection analysis
EP0342820B1 (en) A method of and an apparatus for measuring the concentration of a substance in a sample solution
Qu et al. Simultaneous determination of maltose and glucose using a dual-electrode flow injection system
Jaenchen et al. An Electrochemical Determination of Uric Acid in Sera by a Flow-Through Equipment with and Without Uricase
JPH0582903B2 (en)
JPH0820395B2 (en) Method for measuring amylose content
JP2928588B2 (en) Alcohol measurement method and measurement device
JP2011149878A (en) Potential difference measuring device and potential difference measuring method
Tang et al. Process monitoring of acetic acid in Escherichia coli cultivation using electrochemical detection in a flow injection system
JPS6147199A (en) Method of analysis using enzymatic reaction
Kolev et al. Mathematical modelling of single-line flow-injection analysis systems with single-layer enzyme electrode detection Part 3. Experimental verification of the model
JPH0672858B2 (en) Biosensor
JPS6260080B2 (en)
JPH04232849A (en) Sample measuring method by organism-related material
JPS6258717B2 (en)
JPS58201977A (en) Device for measuring enzyme activity
Chauveau et al. Use of pH-ISFET sensors during extracorporeal circulation