JPS6258717B2 - - Google Patents

Info

Publication number
JPS6258717B2
JPS6258717B2 JP57065509A JP6550982A JPS6258717B2 JP S6258717 B2 JPS6258717 B2 JP S6258717B2 JP 57065509 A JP57065509 A JP 57065509A JP 6550982 A JP6550982 A JP 6550982A JP S6258717 B2 JPS6258717 B2 JP S6258717B2
Authority
JP
Japan
Prior art keywords
enzyme
electrode
reaction
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57065509A
Other languages
Japanese (ja)
Other versions
JPS58183089A (en
Inventor
Masako Notsuke
Masao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57065509A priority Critical patent/JPS58183089A/en
Publication of JPS58183089A publication Critical patent/JPS58183089A/en
Publication of JPS6258717B2 publication Critical patent/JPS6258717B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は電気化学的測定手法を用いた酵素活性
測定方法に関する。 〔発明の技術的背景とその問題点〕 従来、酵素活性の測定は、ある酵素を含む試料
液とその酵素の基質を含む液と更に他の酵素、補
酵素、発色試薬等を添加して成る反応系におい
て、酵素作用により酵素基質に化学反応を行なわ
せ、そのときの反応系の吸光度を測定するという
方法で行なわれている。 例えば、グルタミン酸ピルビン酸トランスアミ
ナーゼ(GPT)の酵素活性の場合、GPTをその
基質と接触させて該GPTの酵素作用によりピル
ビン酸を生成し、そのピルビン酸をラクテートデ
ヒドロナーゼ(LDH)の酵素作用で還元する。
このとき、この反応系に所定濃度のニコチン酸ア
ミドアデニンヌクレオチド(NADH)を共存させ
ておくと時間の経過とともに該NADHが減少して
その濃度が低下する。その濃度変化は波長340nm
におけるNADHの吸光度測定から知ることができ
る。したがつて、間接的にGPTの酵素活性が測
定できることになる。 しかしながら、この吸光度測定法にあつては、
NADH,LDH又は各種の発色試薬などの高価な
試薬を用いかつそれらは測定後廃棄せざるを得な
いため測定は極めてコスト高となる。また、懸濁
物を含む反応系に対しては吸光度測定が不可能と
なるため、それら試料にあつては測定に先立つて
懸濁物の除去など前処理を必要とする。 このような吸光度測定の欠点を解決するため
に、電気化学的測定法を適用した装置が提案され
ている(特開昭56−97864号参照)。 これは、試料中の酵素が関与して生成する物質
(検知物質)に作用する、ある酵素を固定した膜
を添着して成る酵素電極を2本相互に離して配設
したフローシステムであつて、試料中に当初から
含まれていた検知物質の与える電気信号をベース
値とし、更に試料中の酵素の作用により該酵素の
活性に対応して生成した物質(検知物質)の与え
る電気信号を測定し、両者の差から試料中の酵素
の活性を測定するものである。 しかしながらこの装置にあつては、2本の酵素
電極を用いるため両者の出力調整をすることが容
易ではなくその操作が極めて煩雑かつ多大な労力
を要するものとなる。 すなわち、感度、応答速度、ゲイン等の電極特
性が全く同じでかつその特性の経時変化も同一で
ある酵素電極を製造することは極めて困難であ
る。そのため、測定時にあつては各電極の出力の
調整が必要となるが、その場合でも、得られた検
量線の直線性、直線領域にそれぞれの電極では相
違があり、そのため測定に誤差が生じる結果を招
く。 また、フローシステムの液流路にあつて2本の
電極を相互に離して配設した場合、液流路内で試
料の拡散に基づく希釈現象が発生し下流の電極位
置では検知物質の濃度が低下して、2本の電極間
の出力差調整、差動増幅時にあつてはその調整が
極めて困難となる。とくに、低活性の酵素を含む
微量の試料の測定にあつては著るしく困難であ
る。 また、液流路内に酵素基質含有緩衝液を一定の
流速で流し、ここに試料液を注入し、流路内を流
れる間に酵素と基質とを接触させて、酵素作用に
より減少若しくは増加した検知物質の与える電気
信号を下流に配設した電極で検出して酵素活性を
測定するという方法も提案されている(特公昭56
−92445,92446号参照)。 しかしながら、この方法にあつては、試料注入
口と電極間の液流路は酵素と基質の反応の場であ
るため、長い反応時間の低活性酵素の場合は液流
路が長くなる。また、流路が長くなればなるほど
それは注入した試料の流路内での希釈が進み、そ
の結果、試料注入量を増すか、より流路を長くし
て反応時間を長くしなければならないという不都
合が生ずる。 〔発明の目的〕 本発明は、電気化学的手法を用いた従来装置に
おける上記した問題点を解決した新規な酵素活性
測定方法の提供を目的とする。 〔発明の概要〕 すなわち、本発明の方法は、反応部とフローセ
ルを接続する液流路に付設された緩衝液供給部か
ら緩衝液を、電気化学的信号変化を検知する1本
の電極を具備する該フローセルに導入して電気信
号を得た後、試料液供給部及び酵素基質含有液供
給部から試料液及び酵素基質含有液を反応部に供
給して該試料液と該酵素基質含有液とを反応さ
せ、更に、得られた反応液を該フローセルに導入
して電気信号を得ることを特徴とする。 本発明にかかる装置を第1図に示した模式図に
基づいて詳しく説明する。図において、1は反応
部、2はフローセルで両者は液流路3で接続され
ている。反応部1には、酵素を含む試料液の供給
部4及び酵素基質を含む酵素基質含有液の供給部
5がそれぞれ独立して配管6,6′を介して接続
されていて、それぞれからは注入用定量ポンプ
7,7′によつて試料液及び酵素基質含有液が反
応部1に所定量供給され、ここで両者は例えばマ
グネチツクスターラーによつて混合・接触され
る。このとき、反応系は、酵素と基質の反応に適
正なPHに調整される。具体的には、酵素基質含有
液に適宜な緩衝物質を含有させることによつて行
なわれる。 フローセル2には、酵素と基質の反応系におけ
る酵素作用により消費又は生成して経時的な濃度
変化をする検知物質に感応しその濃度変化を電気
化学的信号(例えば電流値)の変化に変換する1
本の電極8が内蔵されている。電極8としては、
検知物質の濃度変化を検知し得る電極であれば何
であつてもよい。例えば、PH用ガラス電極、アン
モニウムイオン電極、アンモニアガス電極、グル
コース、ピルビン酸など有機物検知用各種の酵素
電極をあげることができる。電極8からの信号は
計測部9に導かれ、ここで処理され演算されて酵
素活性値が表示される。 10は緩衝液の供給部であつて、配管6″を介
して好ましくは電磁弁である流路切換バルブ11
により液流路3に接続されている。該供給部に
は、例えば酵素基質含有液から基質を除外した緩
衝液等の緩衝液が貯留されている。 7″は反応部1の反応液及び緩衝液供給部10
の緩衝液並びに両者の混合液を一定流速で所定量
フローセル2に導入するためのポンプである。ポ
ンプ7,7′,7″としてはプランジヤータイプ、
ペリスタタイプなどのものをあげることができ
る。 測定終了後の液は排液部12に流入する。 本発明の方法を以下に説明する。 まず、流路切換バルブ11を操作して緩衝液供
給液10―フローセル2の流路を形成し、ポンプ
7″を作動してフローセル2に所定の緩衝液を導
入し電極8によつてベース信号を得る。ついで、
バルブ11を切換えて反応部1―フローセル2の
流路を形成し、ポンプ7,7′を作動して試料液
供給部4から標準酵素溶液を、基質含有液供給部
5からは上記緩衝液に基質を含有させた基質含有
液をそれぞれ所定量反応部1に注入し所定の時間
両者を接触、反応させ、得られた反応液をポンプ
7″によつてフローセル2に導入して電気信号を
得る。このときの電気信号とベース信号との差は
標準酵素に対応する検知物質の濃度信号となる。
したがつて、検知物質の濃度と電気信号との関係
を検量線として作成しておけば、この電気信号か
ら検知物質の濃度、ひいては酵素活性が測定でき
ることになる。例えば、酵素がGPT、したがつ
て酵素基質がL―アラニンとα―ケトグルタル酸
の場合、GPTの酵素作用によりピルビン酸が生
成し、しかもその生成量はGPTの活性に比例す
る。この場合ピルビン酸が検知物質となる。ピル
ビン酸はピルビン酸オキシダーゼによつて酸素を
消費し過酸化水素を生成して濃度変化する。した
がつて、酸素電極又は過酸化水素電極によりピル
ビン酸濃度は測定される。ゆえに、ピルビン酸濃
度と電極の電気信号とから予め検量線を作成して
おけば、電極からの信号でピルビン酸の濃度が、
更にGPTの酵素活性が測定できることになる。
また、例えばLDHの酵素活性については、ピル
ビン酸濃度が
[Technical Field of the Invention] The present invention relates to a method for measuring enzyme activity using an electrochemical measurement technique. [Technical background of the invention and its problems] Conventionally, enzyme activity is measured by adding a sample solution containing a certain enzyme, a solution containing the substrate of the enzyme, and other enzymes, coenzymes, coloring reagents, etc. It is carried out by causing an enzyme substrate to undergo a chemical reaction in a reaction system, and measuring the absorbance of the reaction system at that time. For example, in the case of the enzymatic activity of glutamic pyruvate transaminase (GPT), when GPT is brought into contact with its substrate, pyruvate is produced by the enzymatic action of GPT, and the pyruvate is reduced by the enzymatic action of lactate dehydronase (LDH). do.
At this time, if a predetermined concentration of nicotinamide adenine nucleotide (NADH) is allowed to coexist in this reaction system, the NADH decreases over time and its concentration decreases. The concentration change is at a wavelength of 340nm
This can be determined by measuring the absorbance of NADH in . Therefore, the enzyme activity of GPT can be measured indirectly. However, in this absorbance measurement method,
Measurement costs are extremely high because expensive reagents such as NADH, LDH, or various coloring reagents are used, and these must be discarded after measurement. Furthermore, since absorbance measurement is not possible for reaction systems containing suspended matter, such samples require pretreatment such as removal of suspended matter prior to measurement. In order to solve these drawbacks of absorbance measurement, an apparatus using an electrochemical measurement method has been proposed (see JP-A-56-97864). This is a flow system in which two enzyme electrodes are placed apart from each other and each has a membrane attached with a certain enzyme that acts on a substance (sensing substance) produced by the enzyme in the sample. The electrical signal given by the detection substance originally contained in the sample is used as the base value, and the electrical signal given by the substance (detection substance) produced in response to the activity of the enzyme by the action of the enzyme in the sample is measured. The enzyme activity in the sample is then measured from the difference between the two. However, since this device uses two enzyme electrodes, it is not easy to adjust the output of both, and the operation thereof is extremely complicated and requires a great deal of effort. That is, it is extremely difficult to manufacture enzyme electrodes that have exactly the same electrode characteristics such as sensitivity, response speed, and gain, and also have the same change in characteristics over time. Therefore, it is necessary to adjust the output of each electrode during measurement, but even in that case, the linearity and linear region of the obtained calibration curve differ between each electrode, resulting in errors in measurement. invite. In addition, if two electrodes are placed apart from each other in the liquid flow path of a flow system, a dilution phenomenon due to sample diffusion will occur in the liquid flow path, and the concentration of the detected substance will decrease at the downstream electrode position. As a result, it becomes extremely difficult to adjust the output difference between the two electrodes, or to adjust it during differential amplification. In particular, it is extremely difficult to measure small amounts of samples containing enzymes with low activity. In addition, an enzyme substrate-containing buffer solution is flowed at a constant flow rate in a liquid flow channel, a sample solution is injected into the flow channel, and the enzyme and substrate are brought into contact while flowing in the flow channel. A method has also been proposed in which enzyme activity is measured by detecting the electrical signal given by the detection substance with an electrode placed downstream (Special Publication No. 56
-92445, 92446). However, in this method, the liquid flow path between the sample injection port and the electrode is the site of the reaction between the enzyme and the substrate, so the liquid flow path becomes longer in the case of a low-activity enzyme that requires a long reaction time. Additionally, the longer the flow path becomes, the more the injected sample is diluted within the flow path, resulting in the inconvenience of having to increase the sample injection volume or lengthen the flow path to lengthen the reaction time. occurs. [Object of the Invention] An object of the present invention is to provide a novel enzyme activity measurement method that solves the above-mentioned problems in conventional devices using electrochemical techniques. [Summary of the Invention] That is, the method of the present invention supplies a buffer solution from a buffer supply section attached to a liquid channel connecting a reaction section and a flow cell, and is equipped with one electrode for detecting electrochemical signal changes. After the sample liquid and the enzyme substrate-containing liquid are introduced into the flow cell and an electric signal is obtained, the sample liquid and the enzyme substrate-containing liquid are supplied to the reaction part from the sample liquid supply part and the enzyme substrate-containing liquid supply part to combine the sample liquid and the enzyme substrate-containing liquid. is reacted, and the resulting reaction solution is further introduced into the flow cell to obtain an electrical signal. The apparatus according to the present invention will be explained in detail based on the schematic diagram shown in FIG. In the figure, 1 is a reaction section, 2 is a flow cell, and both are connected by a liquid flow path 3. A supply section 4 for a sample solution containing an enzyme and a supply section 5 for an enzyme substrate-containing solution containing an enzyme substrate are each independently connected to the reaction section 1 via piping 6, 6', and each is connected to A predetermined amount of the sample liquid and the enzyme substrate-containing liquid are supplied to the reaction section 1 by the metering pumps 7, 7', where they are mixed and brought into contact by, for example, a magnetic stirrer. At this time, the reaction system is adjusted to an appropriate pH for the reaction between the enzyme and the substrate. Specifically, this is carried out by incorporating an appropriate buffer substance into the enzyme substrate-containing solution. The flow cell 2 is sensitive to a detection substance that is consumed or produced by the enzyme action in the enzyme-substrate reaction system and whose concentration changes over time, and converts the concentration change into a change in electrochemical signal (for example, current value). 1
A book electrode 8 is built-in. As the electrode 8,
Any electrode may be used as long as it can detect a change in the concentration of the detection substance. Examples include glass electrodes for pH, ammonium ion electrodes, ammonia gas electrodes, and various enzyme electrodes for detecting organic substances such as glucose and pyruvic acid. The signal from the electrode 8 is guided to the measuring section 9, where it is processed and calculated, and the enzyme activity value is displayed. Reference numeral 10 denotes a buffer solution supply section, and a flow path switching valve 11, preferably a solenoid valve, is connected via piping 6''.
It is connected to the liquid flow path 3 by. A buffer solution, such as a buffer solution obtained by removing the substrate from an enzyme substrate-containing solution, is stored in the supply section. 7″ is the reaction solution and buffer supply section 10 of the reaction section 1
This is a pump for introducing a predetermined amount of the buffer solution and a mixture thereof into the flow cell 2 at a constant flow rate. The pumps 7, 7', 7'' are plunger type,
Examples include peristaltic type. After the measurement is completed, the liquid flows into the drain section 12. The method of the present invention will be explained below. First, operate the flow path switching valve 11 to form a flow path between the buffer solution supply solution 10 and the flow cell 2, operate the pump 7'' to introduce a predetermined buffer solution into the flow cell 2, and use the electrode 8 to generate a base signal. Then,
Switch the valve 11 to form a flow path between the reaction section 1 and the flow cell 2, and operate the pumps 7 and 7' to supply the standard enzyme solution from the sample solution supply section 4 and the buffer solution from the substrate-containing solution supply section 5. A predetermined amount of each substrate-containing solution containing a substrate is injected into the reaction section 1, the two are brought into contact and reacted for a predetermined time, and the obtained reaction solution is introduced into the flow cell 2 by a pump 7'' to obtain an electrical signal. The difference between the electrical signal and the base signal at this time becomes a concentration signal of the detection substance corresponding to the standard enzyme.
Therefore, by creating a calibration curve based on the relationship between the concentration of the detection substance and the electrical signal, the concentration of the detection substance and, ultimately, the enzyme activity can be measured from this electrical signal. For example, when the enzyme is GPT, and therefore the enzyme substrates are L-alanine and α-ketoglutarate, pyruvate is produced by the enzymatic action of GPT, and the amount produced is proportional to the activity of GPT. In this case, pyruvic acid is the detection substance. Pyruvate consumes oxygen and generates hydrogen peroxide by pyruvate oxidase, changing its concentration. Therefore, the pyruvate concentration is measured using an oxygen electrode or a hydrogen peroxide electrode. Therefore, if a calibration curve is created in advance from the pyruvate concentration and the electrical signal from the electrode, the concentration of pyruvate can be determined by the signal from the electrode.
Furthermore, the enzyme activity of GPT can be measured.
In addition, for example, regarding LDH enzyme activity, pyruvate concentration is

〔発明の実施例〕[Embodiments of the invention]

実施例1 GPT酵素活性の測定 コラーゲン繊維を用いてピルビン酸オキシダー
ゼの包括固定化膜(膜厚60μm、酵素活性
40IU/cm2)を作成し、これを過酸化水素電極の
電極感応部に、汚染防止用のセルロース膜(膜厚
40μm)とともにO―リングで装着して本発明に
かかる電極とした。 緩衝液は、フラビンアデンジヌクレオチド
(FAD)0.01mM、塩化マンガン0.2mM、チアミ
ンピロリン酸(コカルボキシラーゼ)0.01mMを
含む0.05Mリン酸緩衝液(PH7.4)であつた。こ
れを緩衝液供給部10に貯留した。酵素基質含有
液は、上記緩衝液にα―ケトグルタル酸2mM、
L―アラニン50mMを更に加え1N水酸化ナトリ
ウムでPH7.4に調整したものであつた。これを供
給部5に貯留した。ポンプ7,7′,7″はいずれ
もペリスタポンプ、配管系統は全て内径0.5mmの
タイゴンチユーブで形成し流路全体は37℃とし
た。 まず、バルブ11を操作して供給部10―フロ
ーセル2の流路を形成し、ポンプ7″により流速
0.8ml/minで緩衝液を送液してここに各濃度の
ピルビン酸を注入して電極のピルビン酸の検量線
を作成した。結果は第2図のとおりであつた。 つぎに、バルブ11を切換え、反応部―フロー
セルの流路を形成した。反応部1にはGPT含有
の試料液100μ、基質含有液900μを注入しマ
グネチツクスターラーで混合した。反応液は上記
流速でフローセルに導入させ、電極からの信号を
測定した。その結果を信号値(電流)とGPT活
性の関係として第3図に示した。 第3図は、従来法の吸光度測定の結果とよく一
致した。 実施例2 LDH酵素活性の測定 酵素基質含有液として実施例1の緩衝液に50m
Mの乳酸、1mMのニコチン酸アミドアデニンジ
ヌクレオチド(NAD)を加え、1N水酸化ナトリ
ウムでPH8.4に調整した溶液を用いたこと、試料
液がLDHを含有する試料液であることを除いて
は実施例1と同様にしてLDHの酵素活性を測定
した。その結果を第4図に示した。図の結果は吸
光度測定の結果とよく一致した。 〔発明の効果〕 以上の説明で明らかなように、本発明方法によ
ると用いる電極が1本であり従来のような煩雑か
つ労力のいる電極の出力調整の作業が不要とな
り、その取扱いが極めて簡便となるので極めて有
用である。
Example 1 Measurement of GPT enzyme activity A pyruvate oxidase entrapping immobilization membrane (film thickness 60 μm, enzyme activity
40IU/cm 2 ), and applied this to the electrode sensitive part of the hydrogen peroxide electrode using a cellulose membrane (film thickness) for contamination prevention.
40 μm) with an O-ring to form an electrode according to the present invention. The buffer was a 0.05M phosphate buffer (PH7.4) containing 0.01mM flavin adenedinucleotide (FAD), 0.2mM manganese chloride, and 0.01mM thiamine pyrophosphate (cocarboxylase). This was stored in the buffer supply section 10. The enzyme substrate-containing solution contains 2mM α-ketoglutarate and the above buffer.
50mM of L-alanine was further added and the pH was adjusted to 7.4 with 1N sodium hydroxide. This was stored in the supply section 5. Pumps 7, 7', and 7'' are all peristaltic pumps, and the piping system is all made of Tygon tubes with an inner diameter of 0.5 mm, and the entire flow path is kept at 37°C. First, operate the valve 11 to connect the supply section 10 to the flow cell 2. A flow path is formed and the flow rate is increased by pump 7″.
A buffer solution was pumped at a rate of 0.8 ml/min, and pyruvic acid at various concentrations was injected into the buffer solution to create a calibration curve of pyruvic acid for the electrode. The results were as shown in Figure 2. Next, the valve 11 was switched to form a flow path between the reaction section and the flow cell. 100μ of the GPT-containing sample solution and 900μ of the substrate-containing solution were injected into reaction section 1 and mixed using a magnetic stirrer. The reaction solution was introduced into the flow cell at the above flow rate, and the signal from the electrode was measured. The results are shown in Figure 3 as a relationship between signal value (current) and GPT activity. FIG. 3 shows good agreement with the results of absorbance measurement using the conventional method. Example 2 Measurement of LDH enzyme activity Add 50ml of the buffer of Example 1 as an enzyme substrate-containing solution.
Except that a solution containing M lactic acid and 1 mM nicotinamide adenine dinucleotide (NAD) and adjusted to pH 8.4 with 1N sodium hydroxide was used, and that the sample solution contained LDH. The enzymatic activity of LDH was measured in the same manner as in Example 1. The results are shown in Figure 4. The results shown in the figure were in good agreement with the results of absorbance measurements. [Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, only one electrode is used, eliminating the need for the complicated and labor-intensive work of adjusting the output of the electrode, which is extremely easy to handle. This is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる装置を説明するための
模式図、第2図は実施例1で用いた電極のピルビ
ン酸の検量線、第3図、第4図はそれぞれ
GPT,LDHの酵素活性に関する検量線である。 1……反応部、2……フローセル、3……液流
路、4……試料液供給部、5……酵素基質含有液
供給部、6,6′,6″……配管、7,7′,7″…
…ポンプ、8……電極、9……計測部、10……
緩衝液供給部、11……流路切換えバルブ、12
……排液タンク。
Figure 1 is a schematic diagram for explaining the device according to the present invention, Figure 2 is a calibration curve for pyruvic acid of the electrode used in Example 1, Figures 3 and 4 are respectively
This is a calibration curve for the enzyme activities of GPT and LDH. 1... Reaction section, 2... Flow cell, 3... Liquid channel, 4... Sample liquid supply section, 5... Enzyme substrate containing liquid supply section, 6, 6', 6''... Piping, 7, 7 ′,7″…
...pump, 8...electrode, 9...measuring section, 10...
Buffer supply unit, 11...flow path switching valve, 12
...Drainage tank.

Claims (1)

【特許請求の範囲】 1 反応部とフローセルを接続する液流路に付設
された緩衝液供給部から緩衝液を、電気化学的信
号変化を検知する1本の電極を具備する該フロー
セルに導入して電気信号を得た後、試料液供給部
及び酵素基質含有液供給部から試料液及び酵素基
質含有液を該反応部へ供給して該試料液と該酵素
基質含有液とを反応させ、更に、得られた反応液
を該フローセルに導入して電気信号を得ることを
特徴とする酵素活性測定方法。 2 該電極がピルビン酸センサである特許請求の
範囲第1項記載の酵素活性測定方法。 3 該酵素がグルタミン酸ピルビン酸トランスア
ミナーゼ若しくはラクテートデヒドロナーゼであ
る特許請求の範囲第1項記載の酵素活性測定方
法。
[Scope of Claims] 1. A buffer solution is introduced from a buffer solution supply section attached to a liquid flow path connecting the reaction section and the flow cell into the flow cell equipped with one electrode for detecting electrochemical signal changes. to obtain an electrical signal, supply the sample liquid and the enzyme substrate-containing liquid from the sample liquid supply part and the enzyme substrate-containing liquid supply part to the reaction part to cause the sample liquid and the enzyme substrate-containing liquid to react, and further . A method for measuring enzyme activity, which comprises introducing the obtained reaction solution into the flow cell to obtain an electrical signal. 2. The enzyme activity measuring method according to claim 1, wherein the electrode is a pyruvate sensor. 3. The method for measuring enzyme activity according to claim 1, wherein the enzyme is glutamate pyruvate transaminase or lactate dehydronase.
JP57065509A 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity Granted JPS58183089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065509A JPS58183089A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065509A JPS58183089A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Publications (2)

Publication Number Publication Date
JPS58183089A JPS58183089A (en) 1983-10-26
JPS6258717B2 true JPS6258717B2 (en) 1987-12-07

Family

ID=13289096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065509A Granted JPS58183089A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Country Status (1)

Country Link
JP (1) JPS58183089A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device

Also Published As

Publication number Publication date
JPS58183089A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
US4374013A (en) Oxygen stabilized enzyme electrode
Mizutani et al. Determination of glutamate pyruvate transaminase and pyruvate with an amperometric pyruvate oxidase sensor
Mor et al. Assay of glucose using an electrochemical enzymatic sensor
Schubert et al. Enzyme electrodes for L-glutamate using chemical redox mediators and enzymatic substrate amplification
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
US5306413A (en) Assay apparatus and assay method
Rosario et al. Use of ionomer membranes to enhance the selectivity of electrode-based biosensors in flow-injection analysis
Mascini et al. Comparison of microbial sensors based on amperometric and potentiometric electrodes
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
US4006061A (en) Lactate dehydrogenase determination method
Tang et al. Enzyme electrode for amplification of NAD+/NADH using glycerol dehydrogenase and diaphorase with amperometric detection
JPS6258717B2 (en)
Meyerhoff et al. Simultaneous enzymatic/electrochemical determination of glucose and l‐glutamine in hybridoma media by flow‐injection analysis.
Tabata et al. Use of a biosensor consisting of an immobilized NADH oxidase column and a hydrogen peroxide electrode for the determination of serum lactate dehydrogenase activity
JPS6260080B2 (en)
JPH0555816B2 (en)
Hikima et al. New amperometric biosensor for citrate with mercury film electrode
Buch-Rasmussen Determination of D-glucose in undiluted whole blood using chemically modified electrodes and segmented sample injection in a flow system
JP2004024254A (en) Method for simply measuring myoinositol
JPH1038844A (en) Online biosensor
EP0405583A1 (en) Method and apparatus for flow analysis with enzyme electrode
JPS629312B2 (en)
Sim Bioelectrochemical detection of three alcohols based on a conducting organic salt electrode
Geppert et al. Automatic on-line measurement of substrates in fermentation liquids with enzyme electrodes
Power et al. Electrochemical assay for catecholase activity of mushroom tyrosinase