JPS6260080B2 - - Google Patents

Info

Publication number
JPS6260080B2
JPS6260080B2 JP57065510A JP6551082A JPS6260080B2 JP S6260080 B2 JPS6260080 B2 JP S6260080B2 JP 57065510 A JP57065510 A JP 57065510A JP 6551082 A JP6551082 A JP 6551082A JP S6260080 B2 JPS6260080 B2 JP S6260080B2
Authority
JP
Japan
Prior art keywords
enzyme
reaction
electrode
solution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57065510A
Other languages
Japanese (ja)
Other versions
JPS58183090A (en
Inventor
Masako Notsuke
Masao Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57065510A priority Critical patent/JPS58183090A/en
Publication of JPS58183090A publication Critical patent/JPS58183090A/en
Publication of JPS6260080B2 publication Critical patent/JPS6260080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は電気化学的測定手法を用いた酵素活性
測定方法に関する。 〔発明の技術的背景とその問題点〕 従来、酵素活性の測定は、ある酵素を含む試料
液とその酵素の基質を含む液と更に他の酵素、補
酵素、発色試薬等を添加して成る反応系におい
て、酵素作用により酵素基質に化学反応を行なわ
せ、そのときの反応系の吸光度を測定するという
方法で行なわれている。 例えば、グルタミン酸ピルビン酸トランスアミ
ナーゼ(GPT)の酵素活性の場合、GPTをその
基質と接触させて該GPTの酵素作用によりピル
ビン酸を生成し、そのピルビン酸をラクテートデ
ヒドロナーゼ(LDH)の酵素作用で還元する。
このとき、この反応系に所定濃度のニコチン酸ア
ミドアデニンヌクレオチド(NADH)を共存させ
ておくと時間の経過とともに該NADHが減少して
その濃度が低下する。その濃度変化は波長340nm
におけるNADHの吸光度測定から知ることができ
る。したがつて、間接的にGPTの酵素活性が測
定できることになる。 しかしながら、この吸光度測定法にあつては、
NADH、LDH又は各種の発色試薬などの高価な
試薬を用いかつそれらは測定後廃棄せざるを得な
いため測定は極めてコスト高となる。また、懸濁
物を含む反応系に対しては吸光度測定が不可能と
なるため、それら試料にあつては測定に先立つて
懸濁物の除去など前処理を必要とする。 このような吸光度測定の欠点を解決するため
に、電気化学的測定法を適用した装置が提案され
ている(特開昭56−97864号参照)。 これは、試料中の酵素が関与して生成する物質
(検知物質)に作用するある酵素を固定した膜を
添着して成る酵素電極を2本相互に離して配設し
たフローシステムであつて、試料中に当初から含
まれていた検知物質の与える電気信号をベース値
とし、更に試料中の酵素の作用により該酵素の活
性に対応して生成した物質(検知物質)の与える
電気信号を測定し、両者の差から試料中の酵素の
活性を測定するものである。 しかしながらこの装置にあつては、2本の酵素
電極を用いるため両者の出力調整をすることが容
易ではなくその操作が極めて煩雑かつ多大な労力
を要するものとなる。 すなわち、感度、応答速度、ゲイン等の電極特
性が全く同じでかつその特性の経時変化も同一で
ある酵素電極を製造することは極めて困難であ
る。そのため、測定時にあつては各電極の出力の
調整が必要となるが、その場合でも得られた検量
線の直線性、直線領域にそれぞれの電極では相違
があり、そのため測定に誤差が生じる結果を招
く。 また、フローシステムの液流路にあつて2本の
電極を相互に離して配設した場合、液流路内で試
料の拡散に基づく希釈現象が発生し下流の電極位
置では検知物質の濃度が低下して、2本の電極間
の出力差調整、差動増幅時にあつてはその調整が
極めて困難となる。とくに、低活性の酵素を含む
微量の試料の測定にあつては著るしく困難であ
る。 また、液流路内に酵素基質合有緩衝液を一定の
流速で流し、ここに試料液を注入し、流路内を流
れる間に酵素と基質とを接触させて、酵素作用に
より減少若しくは増加した検知物質の与える電気
信号を下流に配設した電極で検出して酵素活性を
測定するという方法も提案されている(特公昭56
−92445、92446号参照)。 しかしながら、この方法にあつては、試料注入
口と電極間の液流路は酵素と基質の反応の場であ
るため、長い反応時間の低活性酵素の場合は液流
路が長くなる。また、流路が長くなればなるほど
それは注入した試料の流路内での希釈が進み、そ
の結果、試料注入量を増すが、より流路を長くし
て反応時間を長くしなければならないという不都
合が生ずる。 〔発明の目的〕 本発明は、電気化学的手法を用いた従来装置に
おける上記した問題点を解決した新規な構造の酵
素活性測定方法の提供を目的とする。 〔発明の概要〕 すなわち、本発明の方法は、試料液供給部及び
酵素基質含有液供給部から試料液及び酵素基質含
有液を反応部へ供給して該試料液と該酵素基質含
有液とを反応させ得られた反応液を、電気化学的
信号変化を検知する1本の電極を備え、かつ、該
反応部と液流路を介して接続するフローセルに導
入して電気信号を得た後、更に、該反応部で反応
を継続させて得られた反応液を該フローセルに導
入して電気信号を得ることを特徴とする。 本発明にかかる装置を第1図に示した模式図に
基づいて詳しく説明する。図において、1は反応
部、2はフローセルで両者は液流路3で接続され
ている。反応部1には、酵素を含む試料液の供給
部4及び酵素基質を含む酵素基質含有液の供給部
5がそれぞれ独立して配管6,6′を介して接続
されていて、それぞれからは注入用定量ポンプ
7,7′によつて試料液及び酵素基質含有液が反
応部1に所定量供給され、ここで両者は例えばマ
グネチツクスターラーによつて混合、接触され
る。このとき、反応系は、酵素と基質の反応に適
正なPHに調整される。具体的には、酵素基質含有
液に適宜な緩衝液を含有させることによつて行な
われる。 フローセル2には、酵素と基質の反応系におけ
る酵素作用により消費又は生成して経時的な濃度
変化をする検知物質に感応し、その濃度変化を電
気化学的信号(例えば電流値)の変化に変換する
1本の電極8が内蔵されている。電極8として
は、検知物質の濃度変化を検知し得る電極であれ
ば何であつてもよい。例えば、PH用ガラス電極、
アンモニウムイオン電極、アンモニアガス電極、
グルコース、ピルビン酸など有機物検知用各種の
酵素電極をあげることができる。電極8からの信
号は計測部9に導かれ、ここで処理され演算され
て酵素活性値が表示される。7″は反応部1の反
応液を一定流速で所定量フローセル2に導入する
ためのポンプである。ポンプ7,7′,7″として
はプランジヤータイプ、ペリスタタイプなどのも
のをあげることができる。 本発明の方法を以下に説明する。 まず、ポンプ7,7′を作動して試料液供給部
4から標準酵素溶液を、基質含有液供給部5から
は上記緩衝液に基質を含有させた基質含有液をそ
れぞれ所定量反応部1に注入し所定の時間両者を
接触、反応させ、得られた反応液をポンプ7″に
よつてフローセル2に導入して電気信号(ベース
信号)を得る。 ついで反応部1で酵素と基質との反応を継続さ
せながらこの反応液を所定の時間間隔を置いてポ
ンプ7″により液流路3を通してフローセル2に
順次導く。フローセル2では酵素と基質間の化学
反応に基づいて生成若しくは消費された検知物質
の濃度の変化が電極8による電気信号の変化とし
て検知され、それは計測部9で計測される。した
がつて、これら電気信号とベース信号との差は検
知物質の濃度変化に相当する。したがつて、検知
物質の濃度と電気信号との関係を検量線として作
成しておけば、この電気信号から検知物質の濃
度、ひいては酵素活性が測定できることになる。
例えば、酵素がGPT、したがつて酵素基質がL
−アラニンとα−ケトグルタル酸の場合、GPT
の酵素作用によりピルビン酸が生成し、しかもそ
の生成量はGPTの活性に比例する。この場合ピ
ルビン酸が検知物質となる。ピルビン酸はピルビ
ン酸オキシダーゼによつて酸素を消費し過酸化水
素を生成して濃度変化する。したがつて酸素電極
又は過酸化水素電極によりピルビン酸濃度は測定
される。ゆえに、ピルビン酸濃度と電極の電気信
号とから予め検量線を作成しておけば、電極から
の信号でピルビン酸の濃度が、更にGPTの酵素
活性が測定できることになる。また、例えば
LDHの酵素活性については、ピルビン酸濃度が
ピルビン酸
[Technical Field of the Invention] The present invention relates to a method for measuring enzyme activity using an electrochemical measurement technique. [Technical background of the invention and its problems] Conventionally, enzyme activity is measured by adding a sample solution containing a certain enzyme, a solution containing the substrate of the enzyme, and other enzymes, coenzymes, coloring reagents, etc. It is carried out by causing an enzyme substrate to undergo a chemical reaction in a reaction system, and measuring the absorbance of the reaction system at that time. For example, in the case of the enzymatic activity of glutamic pyruvate transaminase (GPT), when GPT is brought into contact with its substrate, pyruvate is produced by the enzymatic action of GPT, and the pyruvate is reduced by the enzymatic action of lactate dehydronase (LDH). do.
At this time, if a predetermined concentration of nicotinamide adenine nucleotide (NADH) is allowed to coexist in this reaction system, the NADH decreases over time and its concentration decreases. The concentration change is at a wavelength of 340nm
This can be determined by measuring the absorbance of NADH in . Therefore, the enzyme activity of GPT can be measured indirectly. However, in this absorbance measurement method,
Measurement costs are extremely high because expensive reagents such as NADH, LDH, or various coloring reagents are used, and these must be discarded after measurement. Furthermore, since absorbance measurement is not possible for reaction systems containing suspended matter, such samples require pretreatment such as removal of suspended matter prior to measurement. In order to solve these drawbacks of absorbance measurement, an apparatus using an electrochemical measurement method has been proposed (see JP-A-56-97864). This is a flow system in which two enzyme electrodes are placed apart from each other and each has a membrane attached with a certain enzyme that acts on a substance (sensing substance) produced by the enzyme in the sample. The electrical signal given by the detection substance originally contained in the sample is used as the base value, and the electrical signal given by the substance (detection substance) produced in response to the activity of the enzyme by the action of the enzyme in the sample is further measured. The activity of the enzyme in the sample is measured from the difference between the two. However, since this device uses two enzyme electrodes, it is not easy to adjust the output of both, and the operation thereof is extremely complicated and requires a great deal of effort. That is, it is extremely difficult to manufacture enzyme electrodes that have exactly the same electrode characteristics such as sensitivity, response speed, and gain, and also have the same change in characteristics over time. Therefore, it is necessary to adjust the output of each electrode during measurement, but even in this case, the linearity and linear region of the obtained calibration curve differ between each electrode, which may cause errors in measurement. invite In addition, if two electrodes are placed apart from each other in the liquid flow path of a flow system, a dilution phenomenon due to sample diffusion will occur in the liquid flow path, and the concentration of the detected substance will decrease at the downstream electrode position. As a result, it becomes extremely difficult to adjust the output difference between the two electrodes, or to adjust it during differential amplification. In particular, it is extremely difficult to measure small amounts of samples containing enzymes with low activity. In addition, an enzyme-substrate-containing buffer solution is passed through the liquid channel at a constant flow rate, a sample solution is injected into the solution, and the enzyme and substrate are brought into contact while flowing through the channel, causing the enzyme to decrease or increase due to the action of the enzyme. A method has also been proposed in which enzyme activity is measured by detecting the electrical signal given by the detected substance using an electrode placed downstream (Japanese Patent Publication No. 1983).
-92445, 92446). However, in this method, the liquid flow path between the sample injection port and the electrode is the site of the reaction between the enzyme and the substrate, so the liquid flow path becomes longer in the case of a low-activity enzyme that requires a long reaction time. Additionally, the longer the flow path becomes, the more the injected sample is diluted within the flow path, and as a result, the amount of sample injected increases, but this has the disadvantage of requiring a longer flow path to lengthen the reaction time. occurs. [Object of the Invention] An object of the present invention is to provide a method for measuring enzyme activity with a novel structure that solves the above-mentioned problems in conventional devices using electrochemical techniques. [Summary of the Invention] That is, the method of the present invention supplies a sample liquid and an enzyme substrate-containing liquid from a sample liquid supply section and an enzyme substrate-containing liquid supply section to a reaction section, and combines the sample liquid and the enzyme substrate-containing liquid. After introducing the reaction solution obtained by the reaction into a flow cell equipped with one electrode for detecting electrochemical signal changes and connected to the reaction section via a liquid flow path to obtain an electric signal, Furthermore, the method is characterized in that a reaction solution obtained by continuing the reaction in the reaction section is introduced into the flow cell to obtain an electric signal. The apparatus according to the present invention will be explained in detail based on the schematic diagram shown in FIG. In the figure, 1 is a reaction section, 2 is a flow cell, and both are connected by a liquid flow path 3. A supply section 4 for a sample solution containing an enzyme and a supply section 5 for an enzyme substrate-containing solution containing an enzyme substrate are each independently connected to the reaction section 1 via piping 6, 6', and each is connected to A predetermined amount of the sample liquid and the enzyme substrate-containing liquid are supplied to the reaction section 1 by the metering pumps 7, 7', where they are mixed and brought into contact by, for example, a magnetic stirrer. At this time, the reaction system is adjusted to an appropriate pH for the reaction between the enzyme and the substrate. Specifically, this is carried out by adding an appropriate buffer to the enzyme substrate-containing solution. The flow cell 2 is sensitive to a detection substance whose concentration changes over time by being consumed or produced by the enzyme action in the enzyme-substrate reaction system, and converts the concentration change into a change in electrochemical signal (e.g., current value). One electrode 8 is built-in. The electrode 8 may be any electrode that can detect changes in the concentration of the detection substance. For example, glass electrode for PH,
ammonium ion electrode, ammonia gas electrode,
Examples include various enzyme electrodes for detecting organic substances such as glucose and pyruvic acid. The signal from the electrode 8 is guided to the measuring section 9, where it is processed and calculated, and the enzyme activity value is displayed. 7'' is a pump for introducing a predetermined amount of the reaction liquid from the reaction section 1 into the flow cell 2 at a constant flow rate.Pumps 7, 7', and 7'' may include plunger type, peristaltic type, etc. can. The method of the present invention will be explained below. First, by operating the pumps 7 and 7', a predetermined amount of the standard enzyme solution is supplied from the sample liquid supply section 4 and a substrate-containing solution containing the substrate in the buffer solution is supplied to the reaction section 1 from the substrate-containing solution supply section 5. The enzyme is injected, and the two are brought into contact and reacted for a predetermined period of time, and the resulting reaction solution is introduced into the flow cell 2 by a pump 7'' to obtain an electric signal (base signal).Then, in the reaction section 1, the enzyme and the substrate react. While continuing to do so, the reaction liquid is sequentially introduced into the flow cell 2 through the liquid channel 3 by the pump 7'' at predetermined time intervals. In the flow cell 2, a change in the concentration of a detection substance produced or consumed based on a chemical reaction between an enzyme and a substrate is detected as a change in an electrical signal by an electrode 8, which is measured by a measuring section 9. Therefore, the difference between these electrical signals and the base signal corresponds to a change in the concentration of the detected substance. Therefore, by creating a calibration curve based on the relationship between the concentration of the detection substance and the electrical signal, the concentration of the detection substance and, ultimately, the enzyme activity can be measured from this electrical signal.
For example, if the enzyme is GPT and therefore the enzyme substrate is L
-GPT for alanine and α-ketoglutarate
Pyruvate is produced by the enzymatic action of GPT, and the amount produced is proportional to the activity of GPT. In this case, pyruvic acid is the detection substance. Pyruvate consumes oxygen and generates hydrogen peroxide by pyruvate oxidase, changing its concentration. Therefore, the pyruvate concentration is measured using an oxygen electrode or a hydrogen peroxide electrode. Therefore, if a calibration curve is prepared in advance from the pyruvate concentration and the electric signal from the electrode, the concentration of pyruvate and the enzyme activity of GPT can be measured using the signal from the electrode. Also, for example
Regarding the enzymatic activity of LDH, the pyruvate concentration is

〔発明の実施例〕[Embodiments of the invention]

実施例 1 第1図の装置によりグルタミン酸ピルビン酸ト
ランスアミナーゼ(GPT)の酵素活性を測定し
た。装置における全配管系は内径0.5mmの四弗化
エチレンの管で構成した。 電極は、コラーゲン中にピルビン酸オキシダー
ゼを包括固定した膜(膜厚60μm、酵素活性
40IU/cm2)をポーラログラフ挙動の酸素電極の
感応部に装着し、更にその上に膜厚35μmのセル
ロースジアセテート製非対称構造の限外過膜で
被覆したものであつた。 まず、酵素基質含有液供給部5から0.05Mリン
酸緩衝液(PH7.6)に0.01mMフラビンアデニンヌ
クレオチド(FAD)、0.05mM塩化マンガン、
0.1mMチアミンピロリン酸(コカルボキシラー
ゼ)、2mMα−ケトグルタル酸、30mML−アラ
ニンを含む基質含有液900μを反応部1に注入
し、同時にGPT含有の試料液100μを注入し両
者を30℃で撹拌、混合した。 試料液注入後、10秒、5分経過した時点で反応
液450μをそれぞれ0.4ml/mmの流速でポンプ
7″により引き抜き、フローセル2に導入した。
電極8の指示した電流値を計測部9で測定した。
両者の差からGPT活性を求めたときの電極指示
電流値(μA)とGPT活性(IU/)との関係
を第3図に示した。 実施例 2 第2図の装置によりコリンエステラーゼ活性を
測定した。電極は、コラーゲン中にコリンエステ
ラーゼを包括固定した固定化酵素膜を過酸化水素
検知用ポーラログラフ式電極の感応部に装着しそ
の上をセルロースジアセテート製非対称構の孔分
布を有する限外過膜(厚み40μm)の緻密層側
を外に向けて被覆したものを用いた。 反応部1に、試料液供給部4から血清試料200
μ、酵素基質含有液供給部5から0.05Mリン酸
緩衝液(PH7.4)700μ及び15mM塩化アセチル
コリン溶液100μを注入して37℃で撹拌・混合
した。 溶液供給部11には0.05Mリン酸緩衝液(PH
8.5)を貯留した。 3分ごとに200μの混合液をポンプ7″により
流路3に400μ/mmの流速で導入し、これに注
入部10で0.05Mリン酸緩衝液(PH8.5)をポン
プ7を作動して400μ/mmの流速で流入させ
て混合し、フローセル2で電気信号を測定した。
この操作を反復し得られた電気信号の差からコリ
ンエステラーゼの酵素活性を測定したところ、0
〜3000IU/の範囲で良好な検量線を作成する
ことができた。 〔発明の効果〕 本発明方法によると、用いる電極は1本であり
従来のように煩雑かつ困難な電極の出力調整が不
要となり、その取扱いが極めて簡便となるので有
用である。
Example 1 The enzyme activity of glutamate pyruvate transaminase (GPT) was measured using the apparatus shown in FIG. The entire piping system in the apparatus was composed of tetrafluoroethylene pipes with an inner diameter of 0.5 mm. The electrode is a membrane with pyruvate oxidase immobilized in collagen (film thickness 60 μm, enzyme activity
40 IU/cm 2 ) was attached to the sensitive part of an oxygen electrode with polarographic behavior, and was further coated with an asymmetrically structured ultrafiltration membrane made of cellulose diacetate with a film thickness of 35 μm. First, from the enzyme substrate-containing liquid supply section 5, 0.05M phosphate buffer (PH7.6), 0.01mM flavin adenine nucleotide (FAD), 0.05mM manganese chloride,
Inject 900μ of a substrate-containing solution containing 0.1mM thiamine pyrophosphate (cocarboxylase), 2mM α-ketoglutarate, and 30mML-alanine into reaction section 1, and simultaneously inject 100μ of a sample solution containing GPT, and stir and mix both at 30℃. did. After 10 seconds and 5 minutes had elapsed after the sample solution was injected, 450μ of the reaction solution was drawn out by the pump 7'' at a flow rate of 0.4 ml/mm, respectively, and introduced into the flow cell 2.
The current value indicated by the electrode 8 was measured by the measurement unit 9.
Figure 3 shows the relationship between the electrode indicated current value (μA) and the GPT activity (IU/) when the GPT activity was determined from the difference between the two. Example 2 Cholinesterase activity was measured using the apparatus shown in FIG. The electrode consists of an immobilized enzyme membrane in which cholinesterase is immobilized in collagen, which is attached to the sensitive part of a polarographic electrode for detecting hydrogen peroxide, and an ultrafiltration membrane (thickness: A material coated with the dense layer (40 μm) facing outward was used. 200 serum samples are added to the reaction section 1 from the sample liquid supply section 4.
700 μ of a 0.05 M phosphate buffer (PH7.4) and 100 μ of a 15 mM acetylcholine chloride solution were injected from the enzyme substrate-containing liquid supply section 5 and stirred and mixed at 37°C. The solution supply section 11 contains 0.05M phosphate buffer (PH
8.5) was stored. Every 3 minutes, 200μ of the mixed solution was introduced into the channel 3 at a flow rate of 400μ/mm using the pump 7″, and 0.05M phosphate buffer (PH8.5) was added to this at the injection part 10 by operating the pump 7. The mixture was mixed by flowing at a flow rate of 400 μ/mm, and the electrical signal was measured using flow cell 2.
When this operation was repeated and the cholinesterase enzyme activity was measured from the difference in the electrical signals obtained, it was found to be 0.
A good calibration curve could be created in the range of ~3000IU/. [Effects of the Invention] The method of the present invention is useful because only one electrode is used, eliminating the need for complicated and difficult electrode output adjustment as in the conventional method, and making handling extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも本発明にかかる装置
を説明するための模式図であり、第3図は本発明
装置(第1図)を用いて測定したGPT活性と電
極指示電流値との関係図である。 1…反応部、2…フローセル、3…液流路、4
…試料液供給部、5…酵素基質含有液供給部、
6,6′,6″…配管、7,7′,7″,7…ポン
プ、8…電極、9…計測部、10…注入部、11
…緩衝液供給部、12…混合用配管。
Figures 1 and 2 are both schematic diagrams for explaining the device according to the present invention, and Figure 3 shows the GPT activity and electrode indicated current value measured using the device of the present invention (Figure 1). It is a relationship diagram. 1... Reaction section, 2... Flow cell, 3... Liquid flow path, 4
... Sample liquid supply section, 5... Enzyme substrate-containing liquid supply section,
6, 6', 6''... Piping, 7, 7', 7'', 7... Pump, 8... Electrode, 9... Measuring section, 10... Injection section, 11
...Buffer supply section, 12...Mixing piping.

Claims (1)

【特許請求の範囲】 1 試料液供給部及び酵素基質含有液供給部から
試料液及び酵素基質含有液を反応部へ供給して該
試料液と該酵素基質含有液とを反応させ得られた
反応液を、電気化学的信号変化を検知する1本の
電極を備え、かつ、該反応部と液流路を介して接
続するフローセルに導入して電気信号を得た後、
更に、該反応部で反応を継続させて得られた反応
液を該フローセルに導入して電気信号を得ること
を特徴とする酵素活性測定方法。 2 該液流路に、該反応液のPHを調整する緩衝液
供給部を付設した特許請求の範囲第1項記載の酵
素活性測定方法。
[Scope of Claims] 1. A reaction obtained by supplying a sample solution and an enzyme substrate-containing solution from a sample solution supply section and an enzyme substrate-containing solution supply section to a reaction section, and causing the sample solution and the enzyme substrate-containing solution to react. After introducing the liquid into a flow cell equipped with one electrode for detecting electrochemical signal changes and connected to the reaction section via a liquid flow path to obtain an electric signal,
Furthermore, the method for measuring enzyme activity is characterized in that the reaction solution obtained by continuing the reaction in the reaction section is introduced into the flow cell to obtain an electrical signal. 2. The method for measuring enzyme activity according to claim 1, wherein the liquid flow path is provided with a buffer supply section for adjusting the pH of the reaction solution.
JP57065510A 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity Granted JPS58183090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065510A JPS58183090A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065510A JPS58183090A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Publications (2)

Publication Number Publication Date
JPS58183090A JPS58183090A (en) 1983-10-26
JPS6260080B2 true JPS6260080B2 (en) 1987-12-14

Family

ID=13289120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065510A Granted JPS58183090A (en) 1982-04-21 1982-04-21 Measuring apparatus for enzymic activity

Country Status (1)

Country Link
JP (1) JPS58183090A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558461A (en) * 1978-10-25 1980-05-01 Hitachi Ltd Oxygen utilizing analysis device

Also Published As

Publication number Publication date
JPS58183090A (en) 1983-10-26

Similar Documents

Publication Publication Date Title
Vadgama Enzyme electrodes as practical biosensors
EP0086108B1 (en) Method of measuring lactic acid in a liquid
Clark Jr et al. One-minute electrochemical enzymic assay for cholesterol in biological materials.
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
Mor et al. Assay of glucose using an electrochemical enzymatic sensor
Kihara et al. Determination of creatinine with a sensor based on immobilized glutamate dehydrogenase and creatinine deiminase
US5306413A (en) Assay apparatus and assay method
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
Kihara et al. Determination of glutamate-pyruvate transaminase activity in blood serum with a pyruvate oxidase/poly (vinyl chloride) membrane sensor
Tang et al. Enzyme electrode for amplification of NAD+/NADH using glycerol dehydrogenase and diaphorase with amperometric detection
JPS6260080B2 (en)
JPS6258717B2 (en)
EP1027602A1 (en) A method of determining the concentration of an analyte with the use of a bioelement and a device operating in accordance with the method
Jaenchen et al. An Electrochemical Determination of Uric Acid in Sera by a Flow-Through Equipment with and Without Uricase
JPH0555816B2 (en)
Qu et al. Simultaneous determination of maltose and glucose using a dual-electrode flow injection system
Bertocchi et al. A flow-through system for the determination of salicylate in blood
JPS629312B2 (en)
Júnior et al. Potentiometrie FIA System with Reactor Based on Natural Urease Source and Tubular Detector of Ammonium Ions. Determination of Urea in Fertilizers
EP0405583A1 (en) Method and apparatus for flow analysis with enzyme electrode
JPS58201977A (en) Device for measuring enzyme activity
Power et al. Electrochemical assay for catecholase activity of mushroom tyrosinase
JPS6041600B2 (en) Enzyme activity measurement method and device
JPS6120279B2 (en)
JPH0630763A (en) Quantitative analyzer