JPS58201977A - Device for measuring enzyme activity - Google Patents

Device for measuring enzyme activity

Info

Publication number
JPS58201977A
JPS58201977A JP57081510A JP8151082A JPS58201977A JP S58201977 A JPS58201977 A JP S58201977A JP 57081510 A JP57081510 A JP 57081510A JP 8151082 A JP8151082 A JP 8151082A JP S58201977 A JPS58201977 A JP S58201977A
Authority
JP
Japan
Prior art keywords
enzyme
electrode
solution
flow path
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57081510A
Other languages
Japanese (ja)
Inventor
Masako Notsuke
野附 正子
Masao Koyama
小山 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57081510A priority Critical patent/JPS58201977A/en
Publication of JPS58201977A publication Critical patent/JPS58201977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:In a device of flow cell system for measuring enzyme activity wherein the enzyme activity is measured by one electrode, to improve measurement accuracy, by setting a liquid flow path part to reduce the concentration of substances responsive to the electrode except the enzyme contained in a specimen, connected to an inlet part for a specimen solution. CONSTITUTION:The constant delivery pumps 4' and 4'' are operated, a buffer solution is sent from the buffer solution tank 9 to the flow cell 5, and a substrate corresponding to an enzyme of a measuring object from the substrate solution tank 9 to it. The constant delivery pump 4 is operated, and an enzyme solution of measuring object is sent from the specimen tank 2 to the flow cell 5. The concentration of substances responsive to an electrode except the object enzyme is reduced with an immobilized enzyme, etc. immobilized to the inner wall of the liquid flow path part 8 while the enzyme solution being passed through the liquid flow path part 8. The enzyme is brought into contact with a substrate and reacted with it in a path from the inlet part 10 to the flow cell 5, and the change in concentration of a substance to be detected, decreasing extremely by the reaction, is measured by the electrode 6 of the flow cell 5.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明ti電気化学的測定fθ、を用いた酵素活性測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an enzyme activity measuring device using electrochemical measurement fθ.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、酵素活性の測定は、ある酵素金倉む試峯[液とそ
の酵素の基質を含む溶液と更に他の酵素、補酔素、発色
試薬等を添加して成る反応系において、酵素作用により
酵素基質(化学反応全行なわせ、そのときの反応系の吸
光度を測定するという方法で行なわれている。
Conventionally, enzyme activity has been measured using a reaction system consisting of a solution containing a certain enzyme, a substrate for the enzyme, and further addition of other enzymes, prosthetics, coloring reagents, etc. Substrate (chemical reaction is carried out in its entirety, and the absorbance of the reaction system at that time is measured).

例えば、グルタミン酸ピルビン酸トランスアミプーゼ(
GPT )の酵素活性の場合、GPTをその基質と接触
させて該GPTの酵素作用によりピルビン酸を生成し、
そのピルビン酸をラクテートデヒト。
For example, glutamate pyruvate transamipase (
In the case of the enzymatic activity of GPT), contacting GPT with its substrate produces pyruvate by the enzymatic action of the GPT,
The pyruvate is lactate dehydrogenated.

ロナーゼ(LDI()の酵素作用で還元する。このとき
、この反応系に所足濃度のニコチン酸アミドアデニンヌ
クレオデド(NADH) を共存させておくと時間の経
過とともに該NADHが減少してその濃度が低下する。
It is reduced by the enzymatic action of lonase (LDI). At this time, if a sufficient concentration of nicotinamide adenine nucleodes (NADH) is allowed to coexist in this reaction system, the NADH decreases over time and its concentration decreases.

その濃度変化は波長340 nmにおけるNADHの吸
光度測定から知ることができる。したがって、間接的に
GPTの酵素活性が測定できることになる。
The change in concentration can be determined by measuring the absorbance of NADH at a wavelength of 340 nm. Therefore, the enzyme activity of GPT can be measured indirectly.

しかしながら、この吸光度測定法にあっては、NADH
、LDH又は各攬の発色試薬などの高価な試薬を用いか
つそれらは測定後廃棄せざるを得ないため測定は極めて
コスト高になる。また、懸濁物を含む反応系に対しては
吸光度測定が不可能となるため、それら試料にあっては
測定に先立って懸濁物の除去など前処理を必要とする。
However, in this absorbance measurement method, NADH
, LDH, or various coloring reagents are used, and these must be discarded after the measurement, making the measurement extremely costly. Furthermore, since absorbance measurement is not possible for reaction systems containing suspended matter, these samples require pretreatment such as removal of suspended matter prior to measurement.

このような吸光度測定の欠点を解決するために、電気化
学的測定法を適用した装置が提案されている(特開昭5
6−97864号参照)。
In order to solve these drawbacks of absorbance measurement, a device using an electrochemical measurement method has been proposed (Japanese Patent Application Laid-Open No.
6-97864).

これは、試料中の酵素が関与して生成若【7〈は消滅す
る物質(検知物質)に作用するある酵素を固定した膜を
添着して成る酵素1[捧を2本相屹に離して配設したフ
ローシステムであって、試料中に当初から含まれていた
検知物質の与える・電気信号をベース値とし、更に試料
中の酵素の作用により該酵素の活性に対応して生成袴し
くに消滅した物質(検知物質)の与える電気信号を測定
し、両者の差から試料中の酵素の活性を測定するもので
ある。
This is made by attaching a membrane with an enzyme immobilized on it that acts on a substance (sensing substance) that is produced or annihilated by the enzyme in the sample. It is a flow system that uses the electric signal given by the detection substance originally contained in the sample as a base value, and further generates a signal corresponding to the activity of the enzyme by the action of the enzyme in the sample. The electrical signal given by the annihilated substance (sensing substance) is measured, and the activity of the enzyme in the sample is determined from the difference between the two.

しかしながらこの装置にあっては、2本の酵素電極を用
いるため両者の出力調整をすることが容易ではなくその
操作が極めて煩雑かつ多大な労力を要するものとなる。
However, since this device uses two enzyme electrodes, it is not easy to adjust the output of both, and the operation thereof is extremely complicated and requires a great deal of effort.

す)わち、感゛度、応答速度、ゲイン等の電極特性が全
く同じでかつその特性の経時変化も同一である酵素電極
を製造することは極めて困難である。
In other words, it is extremely difficult to produce enzyme electrodes that have exactly the same electrode characteristics such as sensitivity, response speed, and gain, and also have the same changes over time in these characteristics.

そのため、測定時にあっては各電極の出力の調整が必要
となるが、その場合でも得られた検量線の直線性、直線
領域にそれぞれの電極では相違があり、−1のため測定
に誤差が生じる結果を招く。
Therefore, it is necessary to adjust the output of each electrode during measurement, but even in that case, the linearity and linear region of the obtained calibration curve differ between each electrode, and the -1 error may occur in the measurement. result in consequences.

また、フローシステムの液流路にあって2本の?11極
を相互に離して配設した場合、液流路内で試料の拡散に
基づく希釈現象が発生し下流の電極位置では検知物質の
濃度が低下して、2本のt’FM間の出力差調整、差動
増幅時にあってはその調整が極めて困難となる。とぐに
、低活性の酵素を含む微量の試料の測定にあっては著し
く困難である。
Also, there are two in the liquid flow path of the flow system? When the 11 electrodes are placed apart from each other, a dilution phenomenon occurs due to sample diffusion in the liquid flow path, and the concentration of the detection substance decreases at the downstream electrode position, resulting in a decrease in the output between the two t'FMs. Adjustment becomes extremely difficult during differential adjustment and differential amplification. However, it is extremely difficult to measure small amounts of samples containing enzymes with low activity.

tた、液流路内に酵素基質含有緩衝液を一定の流速で流
し、ここに試料液を注入し、両者が流路内を流れる間に
酵素と基質とを接触させて、酵素作用によシ減少若しく
は増加した検知物質の与える電気信号全下流に配設した
電極で演出して酵素活性k TJ41J定するという方
法も提案されている(特公昭56−92445.924
46号参照)2゜しかしながら、この方法にあっては、
試料注入口と電極間の液流路は酵素と基質の反応の鴫C
あるため、長い反応時間の低活性酵素の場合は液流路が
長くなる。また、流路が長くなればなるほどそれは注入
した試料の流路内での希釈が進み、その結果、試料注入
M金噌すり1、まり流路金(乏ぐ1て反応時間を長くし
なければならないという不都合が生ずる。
In addition, an enzyme substrate-containing buffer solution is flowed at a constant flow rate in the liquid flow channel, a sample solution is injected into the flow channel, and the enzyme and substrate are brought into contact while both flow in the flow channel to cause the enzyme action to occur. A method has also been proposed in which the enzyme activity kTJ41J is determined by directing the electric signal given by the detection substance, which decreases or increases, using an electrode placed completely downstream (Japanese Patent Publication No. 56-92445.924
46) 2゜However, in this method,
The liquid flow path between the sample injection port and the electrode is the center of the reaction between enzyme and substrate.
Therefore, in the case of a low-activity enzyme that requires a long reaction time, the liquid flow path becomes long. In addition, the longer the flow path becomes, the more diluted the injected sample is in the flow path, and as a result, the reaction time must be lengthened due to the sample injection M hole (1) and the flow path metal (1). This causes the inconvenience of not being able to do so.

一方、1本の電極を用いても酵素活性を測定することが
できる(特開昭56−92445号参照)。
On the other hand, enzyme activity can also be measured using a single electrode (see JP-A-56-92445).

すなわち、一定流速で溶液流路内t70−セルに向って
流れる基質溶液に、所足駿の酵素試料液を注入し、該流
路内で両者の反応を進行せしめ、そのとき酵素の作用に
より生成若しくは消滅する検知物質の濃度変化′ft1
本の゛電極で電気信号として翔る方法である。
That is, the enzyme sample solution of Shun Toreashi is injected into the substrate solution flowing toward the t70-cell in the solution flow channel at a constant flow rate, and the reaction between the two proceeds in the flow channel, and at that time, the enzyme is produced by the action of the enzyme. Or the concentration change of the detected substance that disappears'ft1
This is a method in which electric signals are transmitted using book electrodes.

しかしながら、この場合、試料液中に測定対象とする酵
素以外の電極感応物質が予め含有されていると、4極は
該物質にも感応してその濃度を電気tfIi号とするの
で、結局は該物質の濃度に相当する誤差が生じ対象とす
る酵素の活性測定が不正確になる。
However, in this case, if the sample solution contains in advance an electrode-sensitive substance other than the enzyme to be measured, the quadrupole will also be sensitive to this substance and its concentration will be the electrical tfIi. An error corresponding to the concentration of the substance occurs, making the measurement of the activity of the target enzyme inaccurate.

〔発明の目的〕 本発明は、電気化学的−手法を用いた従来装置にしける
上記し念問題点k +l/+’決した新規な構造の酵−
賽活性1j111定装置の提供を目的とする。
[Object of the Invention] The present invention solves the above-mentioned problems of conventional devices using electrochemical techniques, and solves the above-mentioned problems.
The purpose of the present invention is to provide a device for determining activation 1j111.

1発明の概要〕 本帛明者らは、検知物質の濃度を測定する邂極が1本で
ある酵素活性測定装置における上記の如き問題点、すな
わち、試料液中に予め当初から含有されていた電極感応
物質の妨害作用の除去に関し鋭意研究tl−重ねた結果
、試料液と基質溶液と金混合して試料液中の酵素と基質
溶液中の基質とt反応させる前に、該試料液中に含有さ
れている電極感応物質t−線除去はその濃度を低減させ
れば、該電極感応物質の影響全抑制できるとのM @k
 1@、本発明装置を開発するに到つ九。
1. Summary of the Invention The inventors of the present invention have solved the above-mentioned problem with an enzyme activity measuring device that has a single electrode for measuring the concentration of a detection substance, namely, that the concentration of a detection substance is contained in the sample solution from the beginning. As a result of extensive research into removing the interfering effects of electrode sensitive substances, we found that before mixing the sample solution and substrate solution with gold and allowing the enzyme in the sample solution to react with the substrate in the substrate solution, M@k states that the influence of the electrode sensitive substance can be completely suppressed by reducing the concentration of the contained electrode sensitive substance T-ray.
1@, 9. Developing the device of the present invention.

すなわち、本発明装置は、1本の酸惟て酵素活性音測定
するフローセルシステムの酵素活性1′111I定装置
であって、試料液槽及び緩衝液槽からそれぞれ試料液及
び緩衝液が注入されて両者ケ混合する試料液注入部と;
譲試料液注入部に接続し、該試料液中に予め含有されて
いる電極感応物質の濃度全低減するための液流路部と;
該液流路部及び基質溶液槽に接続し、該液流路部からの
該混合液に基質溶液krE人して混合する基疼溶液7F
友部と;該基質溶液注入部に接続し、該試料液中の酵素
と該基質溶液中の基質との反応により生成若しくは消滅
する検知物質の濃度変化を電気信号に変換する1本の電
極管備えたフローセルとをこの順序で配列した構造であ
ることを特徴とする。
That is, the device of the present invention is an enzyme activity 1'111I determination device of a flow cell system that measures enzyme activity sound using one acid solution, and a sample solution and a buffer solution are injected from a sample solution tank and a buffer solution tank, respectively. A sample liquid injection part that mixes both;
a liquid flow path connected to a sample liquid injection part for reducing the total concentration of an electrode sensitive substance previously contained in the sample liquid;
A substrate solution 7F is connected to the liquid flow path section and the substrate solution tank and mixed with the mixed liquid from the liquid flow path section as a substrate solution.
Tomobe; equipped with one electrode tube that is connected to the substrate solution inlet and converts into an electrical signal a change in the concentration of a detection substance produced or extinguished by the reaction between the enzyme in the sample solution and the substrate in the substrate solution; It is characterized by a structure in which the flow cells are arranged in this order.

以下に本発明装置の1fllt−示すブロック図によ勢
説明する0図において、1は試料液注入部であり、ここ
に、試料液槽2からは試料液が、緩衝液槽3からは緩衝
液がそれぞれ定量ポンプ4.4′によって所定量注入さ
れ、両者が混合される。混合液は酵素と基質の反応を進
めながら矢印Aの方向に送液されていく。
In Figure 0, which will be explained below with reference to a block diagram of the apparatus of the present invention, reference numeral 1 is a sample liquid injection section, where the sample liquid is supplied from the sample liquid tank 2, and the buffer solution is supplied from the buffer liquid tank 3. A predetermined amount of each is injected by a metering pump 4.4', and both are mixed. The mixed solution is fed in the direction of arrow A while the reaction between the enzyme and the substrate progresses.

5はフローセルで、この中には酵1素の作用により生成
若しくは消滅した検知物質の濃度又は試料中に予め含有
されている電極感応物質の濃度を電気信号に変換する1
本の電極6が装着され、該電極6の電気信号は測定系7
によって測定・表示される。電極6は、検知物質の濃度
変化に感応できる電極であれば何であってもよく、測定
対象とする酵素の攬類によって適宜に選定される0例え
ば、…電極、アンモニウムイオン電極、アンモニアカス
電極、炭酸ガス電極、酸素電極、過酸化水素電極、更に
はグルコース、ピルビン酸などの有機物を検知できるい
わゆる酵xi極など會あげることができる。
Reference numeral 5 denotes a flow cell, which contains a flow cell 1 that converts the concentration of a detection substance produced or extinguished by the action of an enzyme 1 or the concentration of an electrode sensitive substance previously contained in a sample into an electrical signal.
A book electrode 6 is attached, and the electrical signal of the electrode 6 is transmitted to a measuring system 7.
Measured and displayed by. The electrode 6 may be any electrode as long as it is sensitive to changes in the concentration of the detection substance, and is appropriately selected depending on the type of enzyme to be measured.For example, an electrode, an ammonium ion electrode, an ammonia gas electrode, Carbon dioxide electrodes, oxygen electrodes, hydrogen peroxide electrodes, and so-called fermentation electrodes that can detect organic substances such as glucose and pyruvic acid can be used.

さて、本発明装Rは、試料液注入部1から70−セル5
0間に、液流路部8、基質溶液槽9に定着ポンプ4“を
介して接続する基質溶液注入部1゜がこの順序に配列さ
れることを最大の特徴とする。
Now, the device R of the present invention includes sample liquid injection section 1 to 70-cell 5.
The main feature is that a substrate solution injection section 1° connected to a liquid flow path section 8 and a substrate solution tank 9 via a fixing pump 4'' are arranged in this order.

液流路部8は、試料液注入部1に注入された試料液に含
有される電極感応物質の濃度全低減させる機能を有する
。この場合、試料液中の測定対象の酵素の活性を損うこ
となく、シかも測定@度に近い温度でかつ極端にp!1
、イオン強度に変化させずに該電極感応物質のS11度
を低減することが必要である。
The liquid flow path section 8 has a function of reducing the total concentration of the electrode sensitive substance contained in the sample liquid injected into the sample liquid injection section 1. In this case, without impairing the activity of the enzyme to be measured in the sample solution, it is possible to measure at a temperature close to the temperature at which p! 1
, it is necessary to reduce the S11 degree of the electrode sensitive material without changing the ionic strength.

このために、本発明装置にあっては、屯惟N&応物質v
t極に感応しない物質に変質せしめるか分解せしめるよ
うな所定の酵素を内壁に81定し皮固定化llW素チュ
ーブ又は微細な担体(例えばガラスピーズ)のと面に所
定の酵:1gを固定化した粉粒を充填し、て構成される
固足化#素カラムなどが液流路部として適用されること
が好ましい。また、一般に電極感応物質は低分子量なの
で、これk濾過又は透析できる限外r過膜で液流路部を
構成しその外周に流水會通してもその効果を得ることが
できる。
For this purpose, in the device of the present invention, it is necessary to
A predetermined enzyme that transforms or decomposes into a substance that is not sensitive to the t-pole is fixed on the inner wall, and 1 g of the predetermined enzyme is immobilized on the surface of a skin-immobilized IW element tube or a fine carrier (e.g., glass beads). It is preferable that a solidified #element column filled with powder particles or the like is used as the liquid flow path section. Further, since the electrode-sensitive substance generally has a low molecular weight, the effect can be obtained even if the liquid flow path section is constructed of an ultrafiltration membrane capable of filtration or dialysis, and running water is passed around the outer circumference of the ultrafiltration membrane.

本発明装置は次のようにして操作される。まず、定量ポ
ンプ4′、4“會作動し天、緩衝液槽3からは所定の緩
衝液を、基質溶液槽9からFi測定対象の酵素に対する
基質を含有する基質溶液をそれぞれ送液し続ける0両者
は混合してフローセル5を流れる。
The device of the invention operates as follows. First, the metering pumps 4' and 4' are activated and continue to pump a predetermined buffer solution from the buffer solution tank 3 and a substrate solution containing a substrate for the enzyme to be measured by Fi from the substrate solution tank 9, respectively. Both are mixed and flow through the flow cell 5.

つぎに、定量ポンプ4を作動して、試料液槽2から測定
対象の酵素及び!極感庖物質を含有する試料液會所定量
試料液注入部1に注入する。ここで、試料液と蛯衝液は
所定の割合いで混合し、混合液となって液流路部8内?
矢印A方向に送液されていく。このとき、試料液内に予
め含有されていた電極感応物質は、液流路部8の作用に
より除去若しくは分解されてその濃度ケ低減する。
Next, the metering pump 4 is operated, and the enzyme to be measured and! A predetermined amount of a sample solution containing a highly sensitive substance is injected into the sample solution injection section 1. Here, the sample liquid and the liquid solution are mixed at a predetermined ratio, and a mixed liquid is formed inside the liquid flow path section 8.
The liquid is fed in the direction of arrow A. At this time, the electrode sensitive substance previously contained in the sample liquid is removed or decomposed by the action of the liquid flow path section 8, and its concentration is reduced.

液流路部8を通過した試料液と緩衝液との混合液は、基
質溶液注入部10で基質溶液と合流して混合し、フロー
セル5へと送液される。かくして、該注入部10から7
0−セル5に到る流路内では酵素と基質との接触が進行
して検知物質の生成若しくは消滅の反応が起生ずる。こ
のときの流路の長さは、上記反応を起生せしめるに適正
な長さに選定される。
The mixture of sample liquid and buffer that has passed through the liquid flow path section 8 joins and mixes with the substrate solution in the substrate solution injection section 10 , and is sent to the flow cell 5 . Thus, the injection sections 10 to 7
In the flow path leading to the 0-cell 5, contact between the enzyme and the substrate progresses, and a reaction occurs to generate or eliminate the detection substance. The length of the channel at this time is selected to be an appropriate length to cause the above reaction.

したがって、このときの検知物質の濃度変化は電極6に
より電気信号に変換されて測定系7で測足・表示される
ことになる。以上の説明で明らかなようにこの測定値は
、試料液に予め含有されていた電極感応物質によるもの
が除去された酵素活性に相当するものである。
Therefore, the change in the concentration of the detection substance at this time is converted into an electrical signal by the electrode 6 and measured and displayed by the measurement system 7. As is clear from the above explanation, this measured value corresponds to the enzyme activity from which the electrode sensitive substance previously contained in the sample solution has been removed.

〔発明の実施例〕[Embodiments of the invention]

実施例1 図に示した装置でα−アミラーゼの酵素活性を測定した
Example 1 The enzymatic activity of α-amylase was measured using the apparatus shown in the figure.

緩衝液としてpi−+ 6.0の0.02 M リン酸
塩緩衝液、基質溶液として可溶スターチ5y/ls ア
ミロース5 fi/lを含むpH7,0の0.11Mリ
ン酸塩緩衝液【用い、それぞれを緩衝液槽3、基質溶液
槽9に貯留し友。
0.02 M phosphate buffer with pi-+ 6.0 as buffer, 0.11 M phosphate buffer with pH 7.0 containing soluble starch 5y/ls amylose 5 fi/l as substrate solution. , respectively, are stored in the buffer solution tank 3 and the substrate solution tank 9.

を極は、過酸化水素電極の電極感応面に、セルロースジ
アセテートの非対称膜(厚み25μm1イ一ストマンコ
ダツク社製)の粗密層側と約40■tJ/l112のグ
ルコースオキシダーゼ及び約1sro/Jのα−グルコ
シダーゼ全固定化したコラーゲン膜(厚み15μm)と
上記非対称膜を85℃の温水中で2分間熱処理した処理
膜の粗密層側とをこの順序で圧着して構成した三層膜を
、該熱処理膜が該電極の白金極と近接するように装着し
た構造のものを用いた。測定に当っては、白金電極には
対極の銀電極に対して、外部から十〇、 S Vの電圧
を印加した。
The electrode is a hydrogen peroxide electrode with a dense layer side of an asymmetric membrane of cellulose diacetate (25 μm thick, manufactured by Istoman Kodak Co., Ltd.) and about 40 tJ/l of glucose oxidase and about 1 sro/J of α. - A three-layer membrane is formed by pressing in this order a collagen membrane (thickness: 15 μm) on which glucosidase is completely immobilized and the coarse layer side of the treated membrane, which is obtained by heat-treating the above asymmetric membrane in hot water at 85°C for 2 minutes. An electrode with a structure in which the membrane was attached in close proximity to the platinum electrode was used. During the measurement, a voltage of 10.5 SV was externally applied to the platinum electrode with respect to the counter silver electrode.

つぎに、液流路部としては、内径1.0飄長さ50αの
ナイロンチューブの内壁にグルコースオキシダーゼ(米
国ジグ→社製 タイプII)約551U/讐及びカタラ
ーゼ(米国マグマ社製)約110r IJ /1m’ 
t−固定化し次固定化酵素チューブを用い念。
Next, as a liquid flow path section, glucose oxidase (Type II, manufactured by Jig Corporation, USA) was placed on the inner wall of a nylon tube with an inner diameter of 1.0 and a length of 50α, approximately 551 U/IJ, and catalase (manufactured by Magma Corporation, USA), approximately 110 R IJ. /1m'
T-immobilize and then use the immobilized enzyme tube.

他の配隋ハいずれも内径1.5 mのテフロンチューブ
、定量ポンプ4はピストン式ポンプ、4’、’4“はペ
リスタポンプを用い次。
All other arrangements used Teflon tubes with an inner diameter of 1.5 m, metering pump 4 was a piston type pump, and 4' and '4'' were peristaltic pumps.

基質溶液注入部1oから電極6に到る配管は内径1.5
 am長さ2mのテア0/チユーブであっ友。
The inner diameter of the piping from the substrate solution injection part 1o to the electrode 6 is 1.5
Am 2m long Tear 0/Tube and friends.

測定11t35℃で行なっ念。Measurements were carried out at 11t and 35°C.

試料液は酵素としてα−アミラーゼを含有する血清であ
シ、このときの電極感応物質はグルコースであった。
The sample solution was serum containing α-amylase as an enzyme, and the electrode sensitive substance at this time was glucose.

以上の条件で、緩衝液の流量、基質溶液の流量をいずれ
も0.5ml/minに設定し、試料液5oμtを間欠
的に試料液注入部lに注入しα−アミラーゼの酵素活性
を測足し次ところ、活性頃20〜2000IU/lの範
囲で誤差なく測定することができた。
Under the above conditions, the flow rate of the buffer solution and the flow rate of the substrate solution were both set to 0.5 ml/min, and 5 μt of the sample solution was intermittently injected into the sample solution injection port 1 to measure the enzymatic activity of α-amylase. Next, it was possible to measure without error in the range of 20 to 2000 IU/l around the active level.

実施例2 電極が、厚み10βmのポリ四フッ化エチレン膜を備え
念ガルバニ式酸素電極全グルコースオキシダーゼが約5
0■U/112固定化されたコラーゲン膜(厚み7μm
)で被覆し、史にその上?アセチルセルロースの非対称
膜(厚み20 lAm )の粗密層側で覆ったもの、液
流路部がα−グルコシダーゼ251Uf内壁に固定化し
た内径2■長さ1mのナイロンチューブであることを除
いては実施例1と同様の条件で血清中のα−アミラーゼ
の酵素活性を測定し友。繰返し精度31チ(α−アミラ
ーゼの酵素活性: 500 IU/1lI2)で測定が
可能であった。
Example 2 The electrode was equipped with a polytetrafluoroethylene membrane having a thickness of 10βm, and the total glucose oxidase concentration was approximately 5%.
0 ■ U/112 immobilized collagen membrane (thickness 7 μm
) coated with history and on top of that? The procedure was carried out except that the asymmetric membrane of acetyl cellulose (thickness: 20 lAm) was covered with a dense layer side, and the liquid flow path was a nylon tube with an inner diameter of 2 mm and a length of 1 m fixed on the inner wall of α-glucosidase 251Uf. The enzymatic activity of α-amylase in serum was measured under the same conditions as in Example 1. Measurement was possible with a repeatability of 31 inches (α-amylase enzyme activity: 500 IU/1lI2).

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明装置は、1本の電
極で酵素活性が測定で金電極の煩雑な調整作業が不要と
なると同時に、試料液中に予め含有されていた電極感応
物質の影響全除去して精度よく酵素活性が測定できるの
で、その工業的価匝は大である。
As is clear from the above explanation, the device of the present invention measures enzyme activity with a single electrode, eliminating the need for complicated adjustment of gold electrodes, and at the same time eliminating the need for the electrode-sensitive substance pre-contained in the sample solution. Since enzyme activity can be measured with high precision by removing all influences, its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明装置の1例のブロック図である。 1・・・試料液注入部、2・・・試料液槽、3・・・緩
Ili液槽、4.4’、4“・・・定量ポンプ。5・・
・フローセル、6・・・電極、7・・・測定系、8・・
・液流路部、9・・・基質溶液槽、10・・・基質溶液
注入部。
The figure is a block diagram of an example of the device of the present invention. 1... Sample liquid injection part, 2... Sample liquid tank, 3... Slow Ili liquid tank, 4.4', 4"... Metering pump. 5...
・Flow cell, 6... Electrode, 7... Measurement system, 8...
-Liquid flow path section, 9...substrate solution tank, 10...substrate solution injection section.

Claims (1)

【特許請求の範囲】 1、 1本の電極で酵素活性を測定するフローセルシス
テムの酵素活性測定装置であって、試料液槽及び緩衝液
槽からそれぞれ試料液及び緩衝液が注入されて両者を混
合する試料液注入部と; 該試料液注入部に接続し、該試料液中に予め含有されて
いる電極感応物質の濃度を低減するための液流路部と; 該液流路部と基質溶液槽に接続し、該液流路部からの該
混合液に基質溶液を注入して混合する基質溶液注入部と
; 該基質溶液注入部に接続し、該試料液中の酵素と該基質
溶液中の基質との反応により生成著1.〈1よ消滅する
検知物質の#度変化を゛電気信号に変換する1本の電極
全備えたフローセルとを、この順序で配列した構造であ
ることを特徴とする酵素活性測定装置。 2、該液流路部が、固定化酵素チューブ、固定化酵素カ
ラムのいずれかである特許請求の範囲第1項記載の酵素
活性測定装置。
[Claims] 1. An enzyme activity measuring device using a flow cell system that measures enzyme activity with one electrode, in which a sample solution and a buffer solution are injected from a sample solution tank and a buffer solution tank, respectively, and the two are mixed. a sample liquid injection part; a liquid flow path part connected to the sample liquid injection part and for reducing the concentration of an electrode sensitive substance previously contained in the sample liquid; the liquid flow path part and a substrate solution. a substrate solution injection section connected to the tank and configured to inject and mix a substrate solution into the mixed solution from the liquid flow path section; 1. Produced by reaction with a substrate. An enzyme activity measuring device characterized by having a structure in which a flow cell equipped with one electrode that converts a degree change in a detected substance to be annihilated into an electrical signal is arranged in this order. 2. The enzyme activity measuring device according to claim 1, wherein the liquid flow path section is either an immobilized enzyme tube or an immobilized enzyme column.
JP57081510A 1982-05-17 1982-05-17 Device for measuring enzyme activity Pending JPS58201977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081510A JPS58201977A (en) 1982-05-17 1982-05-17 Device for measuring enzyme activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081510A JPS58201977A (en) 1982-05-17 1982-05-17 Device for measuring enzyme activity

Publications (1)

Publication Number Publication Date
JPS58201977A true JPS58201977A (en) 1983-11-25

Family

ID=13748348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081510A Pending JPS58201977A (en) 1982-05-17 1982-05-17 Device for measuring enzyme activity

Country Status (1)

Country Link
JP (1) JPS58201977A (en)

Similar Documents

Publication Publication Date Title
US4517291A (en) Biological detection process using polymer-coated electrodes
Gorton et al. Flow injection analysis for glucose and urea with enzyme reactors and on-line dialysis
US4759828A (en) Glucose electrode and method of determining glucose
JP2646848B2 (en) Glucose sensor measurement method
Ruzicka et al. Enzymic determination of urea in serum based on pH measurement with the flow injection method
US4153513A (en) Method and apparatus for the continuous determination of the concentration of an enzyme substrate
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
Llenado et al. Ion-electrode based automatic glucose analysis system
US4604182A (en) Perfluorosulfonic acid polymer-coated indicator electrodes
Rosario et al. Use of ionomer membranes to enhance the selectivity of electrode-based biosensors in flow-injection analysis
Wingard Jr et al. Immobilized enzyme electrodes for the potentiometric measurement of glucose concentration: immobilization techniques and materials
Vadgama et al. Determination of urea in blood plasma by enzyme-pH electrode
JPS58201977A (en) Device for measuring enzyme activity
JPS6375655A (en) Enzyme electrode apparatus
JPH0555816B2 (en)
JPS629312B2 (en)
Bertocchi et al. A flow-through system for the determination of salicylate in blood
Mandenius et al. An online sensor for monitoring of ethanol in beer
Qu et al. Simultaneous determination of maltose and glucose using a dual-electrode flow injection system
JPS6260080B2 (en)
JPS6328264B2 (en)
JPS58201997A (en) Method for determining enzymic activity and apparatus therefor
JP2515005B2 (en) Measuring method and apparatus using enzyme electrode
JPS6120279B2 (en)
JPH0243475B2 (en)