JP2011149878A - Potential difference measuring device and potential difference measuring method - Google Patents

Potential difference measuring device and potential difference measuring method Download PDF

Info

Publication number
JP2011149878A
JP2011149878A JP2010012518A JP2010012518A JP2011149878A JP 2011149878 A JP2011149878 A JP 2011149878A JP 2010012518 A JP2010012518 A JP 2010012518A JP 2010012518 A JP2010012518 A JP 2010012518A JP 2011149878 A JP2011149878 A JP 2011149878A
Authority
JP
Japan
Prior art keywords
electrode
measurement
ion selective
ions
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012518A
Other languages
Japanese (ja)
Other versions
JP5309042B2 (en
Inventor
Hisashi Ishige
悠 石毛
Yusuke Goto
佑介 後藤
Masao Kamahori
政男 釜堀
Tomonori Mimura
智憲 三村
Hiroaki Ishizawa
宏明 石澤
Kotaro Yamashita
浩太郎 山下
Masafumi Miyake
雅文 三宅
Takuo Tamura
太久夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010012518A priority Critical patent/JP5309042B2/en
Publication of JP2011149878A publication Critical patent/JP2011149878A/en
Application granted granted Critical
Publication of JP5309042B2 publication Critical patent/JP5309042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reference electrode, a potential measuring system and a potential difference measuring method capable of measuring a blood component with sufficient accuracy even when micronization of a measuring solution is performed. <P>SOLUTION: An ion selection electrode, according to circumstances, an ion selection electrode to positive ion or an ion selection electrode to a small quantity of ion included in a sample, is used as a reference electrode, and a potential difference between the reference electrode and a measuring electrode in contact with the measuring solution is measured. An ion concentration in the measuring solution is specified in order to acquire desired accuracy. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,電気的な計測を行い,生体物質を高精度に測定することのできる測定装置,及び測定方法に関する。   The present invention relates to a measuring apparatus and a measuring method capable of performing electrical measurement and measuring a biological material with high accuracy.

血液検査は,健康状態の把握と病気の早期発見を目的として広く普及している。血液検査では,要求精度,迅速性,コストなどに応じて,大型の生化学自動分析装置を用いる場合や,小型のポイント・オブ・ケア・テスティング(POCT)向け装置を用いる場合がある。大型の生化学自動分析装置は総合病院や検査センターに導入されていて,単位時間当たりの検体処理能力が高く測定精度も比較的高く,ランニングコストも比較的低いため,健康診断などの定期的な検査に適している。しかし,検体をパイプライン処理するため検体を装置にセットしてから結果が出るまでにはそれなりの時間がかかり,また,検体の運搬や検査待機の時間や,検査結果集計・送付に要する時間を考慮すると,検体の採取から結果が出るまでには通常数日を要する。一方,POCT向け装置は,現状では測定精度は大型の生化学自動分析装置には及ばないものの,検体を採取したその場ですぐに検査結果が得られる迅速性を有しているため,術中検査などの緊急検査,外来患者に対する検査,救急車内での検査,診療所での検査,自己血糖測定などの在宅での自己検査に適している。   Blood tests are widely used for the purpose of understanding health conditions and early detection of diseases. In a blood test, a large biochemical automatic analyzer or a small point-of-care testing (POCT) device may be used depending on required accuracy, speed, cost, and the like. Large automatic biochemical analyzers are installed in general hospitals and testing centers, have high sample processing capacity per unit time, relatively high measurement accuracy, and relatively low running costs. Suitable for inspection. However, it takes some time to obtain results after setting the sample in the instrument for pipeline processing, and it also takes time to transport and wait for the sample, and to collect and send the test results. When considered, it usually takes several days to get results from the collection of the specimen. On the other hand, the device for POCT currently has a measurement accuracy that is not as good as that of a large-scale automatic biochemical analyzer, but it has the speed to obtain a test result immediately after the sample is collected. It is suitable for emergency tests such as outpatients, tests for outpatients, tests in ambulances, tests at clinics, self-tests at home such as self-blood glucose measurement.

検査にいずれの装置を用いた場合でも,より少ない液量で測定できると様々な利点が生じる。検体の微量化により検査をより低侵襲にでき,試薬の微量化により検査コストを低減でき,廃液量の低減により環境負荷を低減できる。どれほどの測定液量の微量化が可能であるかは,測定方式に依存する面が大きい。現在検査装置に用いられている測定方式には,大きく分けて,吸光光度法(呈色反応を含む),電流計測法,電位差計測法がある。吸光光度法は,試薬と試料(検体)の反応により生じる吸光度の変化から検体中の測定対象物濃度を求める方法である。得られる信号の大きさは光路長と光照射面積に依るため,一般に測定液量の微量化により感度が低下する。電流計測法は,試薬と試料の反応の生成物を電極で反応させて電流値として測定し,測定対象物濃度を求める電気化学的測定法である。電流値は電極の面積に依存するため,単純なスケールダウンでは測定液量の微量化により感度が低下する。例えば,血糖値を測定するグルコースセンサでは,必要とされる測定感度はそれほど高くないため,数滴の血液量で測定可能である(例えば特許文献1)が,一般的な測定項目を有するPOCT向け検査装置では,測定感度を維持するためにより多くの血液量が必要である。POCT向け検査装置として開発されたi-Stat(非特許文献1)は,65μl程度の血液量を必要としていた。   Regardless of which device is used for the inspection, there are various advantages if measurement is possible with a smaller amount of liquid. The test can be made less invasive by reducing the amount of specimen, the test cost can be reduced by reducing the amount of reagent, and the environmental burden can be reduced by reducing the amount of waste liquid. The amount of liquid to be measured that can be made very small depends greatly on the measurement method. The measurement methods currently used in inspection equipment are broadly divided into absorptiometry (including color reaction), current measurement, and potentiometry. The absorptiometry is a method for obtaining the concentration of a measurement object in a specimen from a change in absorbance caused by the reaction between a reagent and a specimen (specimen). Since the magnitude of the obtained signal depends on the optical path length and the light irradiation area, the sensitivity generally decreases due to the small amount of the measurement liquid. The current measurement method is an electrochemical measurement method in which a reaction product of a reagent and a sample is reacted with an electrode, measured as a current value, and a concentration of the measurement object is obtained. Since the current value depends on the area of the electrode, the sensitivity decreases due to the small amount of the measured solution in a simple scale-down. For example, a glucose sensor that measures a blood glucose level is not so high in sensitivity that it can be measured with a few drops of blood (for example, Patent Document 1), but for POCT having general measurement items. Testing equipment requires more blood volume to maintain measurement sensitivity. I-Stat (Non-patent Document 1) developed as an inspection apparatus for POCT required a blood volume of about 65 μl.

電位差計測法はこれらの測定方法とは異なり,信号が電極面積に依存しない電気化学的測定法である。電位差計測法は,金や白金などでできた測定電極(作用電極)と参照電極で構成され,測定溶液中に酵素と酸化還元物質が存在する(特許文献2)。また,測定電極と参照電極は,電圧計などの電圧を測定する装置に接続されている。測定溶液中に測定対象物質が添加されると,酵素反応により測定対象物質が酸化され,同時に酸化状態の酸化還元物質が還元される。その際に生じる測定電極の表面電位は,次のネルンストの式に従う。   Unlike these measurement methods, the potentiometric method is an electrochemical measurement method in which the signal does not depend on the electrode area. The potentiometric method is composed of a measurement electrode (working electrode) made of gold or platinum and a reference electrode, and an enzyme and a redox substance are present in the measurement solution (Patent Document 2). Further, the measurement electrode and the reference electrode are connected to a device for measuring a voltage such as a voltmeter. When the measurement target substance is added to the measurement solution, the measurement target substance is oxidized by the enzyme reaction, and at the same time, the oxidized redox substance is reduced. The surface potential of the measurement electrode generated at that time follows the following Nernst equation.

Figure 2011149878
Figure 2011149878

上式には電極の面積が含まれず,表面電位は電極面積に依存しない。そのため,信号強度を減少させずに電極面積を小さくし,必要な検体の量を低減することができる。   The above equation does not include the electrode area, and the surface potential does not depend on the electrode area. Therefore, the electrode area can be reduced without reducing the signal intensity, and the required amount of specimen can be reduced.

電流計測法と電位差計測法の違いは,信号の電極面積への依存性だけでなく,信号が酵素反応の反応速度依存か反応量依存かの違いもある。すなわち,電流計測法では酵素反応の反応速度に比例した信号が得られるのに対し,電位差計測法では酵素反応により生成した還元物質(もしくは酸化物質)の量に依存した信号が得られる。そのため,電流計測法では酵素反応の反応速度を測定するレート法しか用いることができないが,電位差計測法ではレート法に加えて反応産物総量を測定するエンドポイント法を用いることができる。酵素はその特性として基質が低濃度の領域では反応速度は基質濃度に比例するが,基質が高濃度になると反応速度が基質濃度に比例しなくなり,更に高濃度になると一定となる。この境界の濃度をミカエリス定数と言うが,血中の測定対象物質濃度がミカエリス定数以上の場合,レート法による測定では試料を希釈して測定しなくてはならず,測定に必要な操作が複雑となる。一方,エンドポイント法では反応産物総量を測定するためこのような制約はなく,無希釈での測定が可能である。このような酵素の一つにコレステロール脱水素酵素があり,電位差計測法は原理的にコレステロールを無希釈で測定できる方法と言える。   The difference between the current measurement method and the potential difference measurement method is not only the dependence of the signal on the electrode area, but also the difference in whether the signal depends on the reaction rate or the reaction amount of the enzyme reaction. In other words, the current measurement method obtains a signal proportional to the reaction rate of the enzyme reaction, whereas the potential difference measurement method obtains a signal that depends on the amount of reducing substance (or oxidation substance) generated by the enzyme reaction. Therefore, the current measurement method can use only the rate method for measuring the reaction rate of the enzyme reaction, while the potentiometric method can use the endpoint method for measuring the total amount of reaction products in addition to the rate method. As a characteristic of the enzyme, the reaction rate is proportional to the substrate concentration in the region where the substrate concentration is low, but the reaction rate is not proportional to the substrate concentration when the substrate concentration becomes high, and becomes constant when the substrate concentration becomes higher. The concentration at this boundary is called the Michaelis constant. If the concentration of the substance to be measured in the blood is equal to or higher than the Michaelis constant, the rate method must be used to dilute the sample, and the operation required for the measurement is complicated. It becomes. On the other hand, the end point method measures the total amount of reaction products, so there is no such limitation, and measurement without dilution is possible. One such enzyme is cholesterol dehydrogenase, and the potentiometric method is in principle a method that can measure cholesterol without dilution.

電気化学の原理を用いた計測には,一般的に参照電極という溶液中での電位の基準となる電極を用いる。酸化還元電流法においても電位差計測法においても参照電極は必要であるが,酸化還元電流法が電流を測定するのに対して電位差計測法では電位を測定する方法であるため,特に参照電極に高い精度が求められる。参照電極として良く用いられるものの一つに内部液型銀塩化銀参照電極があり,ガラスなどの容器に一定濃度(飽和や3Mのものが良く用いられる)の塩化カリウムや塩化ナトリウム溶液と銀塩化銀電極が入っていて,多孔質ガラスやセラミックスの液絡部を介して測定したい溶液と電気的に結合されているものが一般的である。特定の条件下では,銀塩化銀電極単体を疑似参照電極として用いること(特許文献2)や,塩素イオン選択電極を参照電極として用いること(特許文献3)もあった。   In the measurement using the principle of electrochemistry, an electrode that is a reference for potential in a solution, generally called a reference electrode, is used. The reference electrode is required for both the oxidation-reduction current method and the potentiometric method. However, the redox current method measures the current, whereas the potentiometric method measures the potential, so it is particularly expensive for the reference electrode. Accuracy is required. One of the commonly used reference electrodes is the internal liquid silver-silver chloride reference electrode. In a container such as glass, potassium chloride or sodium chloride solution with a certain concentration (saturated or 3M is often used) and silver-silver chloride. In general, an electrode is inserted and electrically connected to a solution to be measured through a liquid glass or porous liquid junction. Under specific conditions, a silver-silver chloride electrode alone was used as a pseudo reference electrode (Patent Document 2), and a chlorine ion selection electrode was used as a reference electrode (Patent Document 3).

特開平2−245650号公報JP-A-2-245650 特表平9−500727号公報Japanese National Patent Publication No. 9-500727 特開2006−90785号公報JP 2006-90785 A

Clin. Chem. 39/2 (1993) 283-287Clin. Chem. 39/2 (1993) 283-287

上記のような優位性を持つ電位差計測法を用いて,微量溶液で高精度に測定可能な酵素センサの研究開発を行ったところ,従来の参照電極を用いた場合,十分な精度が得られない場合があることが明らかとなった。   Using the potentiometric method with the above advantages, research and development of an enzyme sensor capable of measuring with high accuracy in a small amount of solution has resulted in insufficient accuracy when using a conventional reference electrode. It became clear that there was a case.

内部液型銀塩化銀参照電極を用いた場合,内部液の漏出が主原因となり,測定電極の電位が変動してしまう。これを防ぐには,測定溶液の微量化とともに参照電極,特に液絡部を測定溶液の微小化と同じスケールで微小化することが考えられる。しかしながら,単純に液絡部を微小化すると液絡部のつまりが生じやすくなり,やはり測定の精度が低下してしまう。また,内部液の漏出は液絡部と参照電極容器の接合部からも生じているため,液絡部の単純な微小化では防ぐことができない。   When an internal liquid silver-silver chloride reference electrode is used, leakage of the internal liquid is the main cause, and the potential of the measurement electrode fluctuates. In order to prevent this, it is conceivable that the reference electrode, in particular the liquid junction, is miniaturized on the same scale as the measurement solution as well as the measurement solution. However, if the liquid junction is simply miniaturized, the liquid junction is liable to be clogged, resulting in a decrease in measurement accuracy. Moreover, since leakage of the internal liquid also occurs at the junction between the liquid junction and the reference electrode container, it cannot be prevented by simple miniaturization of the liquid junction.

内部液を有さない銀塩化銀電極などの疑似参照電極を用いることで,内部液の漏出による測定電位変動を防ぐことができる。しかし,その場合,参照電極電位の精度が低下し,測定の精度が低下する新たな問題が生じる。さらに,参照電極と測定溶液が直接接触するため,試料中に含まれる妨害物質の影響を受け,参照電極電位の精度が低下する。妨害物質としては,臭素,チオシアン酸が代表的である。   By using a pseudo-reference electrode such as a silver-silver chloride electrode that does not have internal liquid, it is possible to prevent fluctuations in measurement potential due to leakage of internal liquid. However, in that case, the accuracy of the reference electrode potential is lowered, and a new problem occurs that the measurement accuracy is lowered. Furthermore, since the reference electrode and the measurement solution are in direct contact, the accuracy of the reference electrode potential decreases due to the influence of interfering substances contained in the sample. Typical interfering substances are bromine and thiocyanic acid.

参照電極として,特許文献3のように単純に塩素イオン選択電極を用いたとしても,疑似参照電極で生じた課題を解決することは難しい。というのも,特許文献3では,塩素イオン選択電極は内部液に接触しているため,試料を含む測定溶液と接触する際にどのようにして一定の電位を生じさせるか不明である。また,妨害物質に対する考慮がされておらず,妨害物質の影響を取り除き,どれだけの精度が得られるようになるかも不明である。   Even if a chlorine ion selection electrode is simply used as the reference electrode as in Patent Document 3, it is difficult to solve the problem caused by the pseudo reference electrode. This is because, in Patent Document 3, since the chlorine ion selective electrode is in contact with the internal solution, it is unclear how a constant potential is generated when contacting the measurement solution containing the sample. It is also unclear how much accuracy can be obtained by removing the influence of interfering substances because no consideration is given to interfering substances.

本発明では,測定溶液を微量化しても十分な精度で血中成分を測定することができる参照電極,電位測定系及び電位測定方法を提供する。   The present invention provides a reference electrode, a potential measurement system, and a potential measurement method that can measure blood components with sufficient accuracy even when the amount of the measurement solution is reduced.

本発明では,参照電極として,イオン選択電極を用いた。その際,イオン選択電極の選択係数を考慮し,陽イオンに対するイオン選択電極を参照電極として用いた。所望の精度を得るために,測定溶液中のイオン濃度を規定した。その際,試料中に含まれる量が少ないイオンに対するイオン選択電極を参照電極として用いた。一例では,グルコース,コレステロールなどの有機物に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とした。他の例では,酸化還元物質に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とした。   In the present invention, an ion selective electrode is used as the reference electrode. At that time, in consideration of the selection coefficient of the ion selective electrode, an ion selective electrode for positive ions was used as a reference electrode. In order to obtain the desired accuracy, the ion concentration in the measurement solution was defined. At that time, an ion selective electrode for ions with a small amount contained in the sample was used as a reference electrode. In one example, a sensor for organic substances such as glucose and cholesterol was used as a measurement electrode, and a sensor for inorganic ions was used as a reference electrode. In another example, a sensor for the redox substance was used as a measurement electrode, and a sensor for inorganic ions was used as a reference electrode.

参照電極に用いるイオン選択電極の選択係数を考慮することで,妨害物質に対する応答を抑制でき,十分な測定精度が得られるようになる。その際,妨害物質の多くが陰イオンであることから,参照電極に用いるイオン選択電極を陽イオンに対するイオン選択電極とすることで,妨害物質に対する応答を抑制できる。測定溶液中のイオン濃度を規定することで,試料中の妨害物質やイオン濃度の変動に対する測定電位の変動を抑制できる。試料中に含まれる量が少ないイオンに対するイオン選択電極を参照電極として用いることで,試薬中のイオン濃度が支配的になるようにでき,試料中のイオン濃度の変動に対する測定電位の変動を抑制できる。グルコース,コレステロールなどの有機物に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とすることで,測定溶液中の無機物濃度をある程度任意に設定することができ,測定電極電位の精度を維持したまま参照電極電位を安定化し,十分な測定精度が得られるようになる。酸化還元物質に対するセンサを測定電極とし,無機イオンに対するセンサを参照電極とすることで,測定溶液中の無機物濃度をある程度任意に設定することができ,測定電極電位の精度を維持したまま参照電極電位を安定化し,十分な測定精度が得られるようになる。   Considering the selection coefficient of the ion selection electrode used for the reference electrode, the response to the interfering substance can be suppressed, and sufficient measurement accuracy can be obtained. At that time, since most of the interfering substances are anions, the response to the interfering substances can be suppressed by using the ion selective electrode used for the reference electrode as an ion selective electrode for cations. By regulating the ion concentration in the measurement solution, fluctuations in the measurement potential with respect to interfering substances in the sample and fluctuations in the ion concentration can be suppressed. By using an ion selective electrode for ions with a small amount contained in the sample as the reference electrode, the ion concentration in the reagent can be dominant, and fluctuations in the measurement potential can be suppressed in response to fluctuations in the ion concentration in the sample. . By using a sensor for organic substances such as glucose and cholesterol as the measurement electrode and a sensor for inorganic ions as the reference electrode, the concentration of the inorganic substance in the measurement solution can be arbitrarily set to some extent while maintaining the accuracy of the measurement electrode potential. The reference electrode potential is stabilized and sufficient measurement accuracy can be obtained. By using the sensor for the redox substance as the measurement electrode and the sensor for the inorganic ions as the reference electrode, the inorganic substance concentration in the measurement solution can be arbitrarily set to some extent, while maintaining the accuracy of the measurement electrode potential. This will stabilize the measurement and provide sufficient measurement accuracy.

本発明によると,参照電極としてイオン選択電極を用いることで,従来の内部液型参照電極で問題となった内部液の漏出が抑制でき,測定溶液を微量化しても十分な測定精度が得られるようになる。従来の内部液型参照電極では,液絡部を通じた内部液と測定溶液間のイオンの移動により,内部液と測定溶液間の電位を一定に保っていた。そのため,内部液の漏出を無くすとイオンの移動ができなくなるため,原理的に内部液の漏出を無くすことはできなかった。これに対し,イオン選択電極では,溶液とイオン選択膜の界面でのイオンの平衡により溶液とイオン選択膜の間の電位が定まるため,原理的にイオン選択膜内部をイオンが通り抜ける必要はない。そのため,精度を維持したまま内部液の漏出を抑制することができる。   According to the present invention, by using an ion selective electrode as a reference electrode, leakage of internal liquid, which is a problem with conventional internal liquid type reference electrodes, can be suppressed, and sufficient measurement accuracy can be obtained even if the amount of the measurement solution is reduced. It becomes like this. In the conventional internal liquid type reference electrode, the potential between the internal liquid and the measurement solution is kept constant by movement of ions between the internal liquid and the measurement solution through the liquid junction. For this reason, if the leakage of the internal liquid is eliminated, the ions cannot move, so that the leakage of the internal liquid could not be eliminated in principle. On the other hand, in the ion selective electrode, since the potential between the solution and the ion selective membrane is determined by the equilibrium of ions at the interface between the solution and the ion selective membrane, it is not necessary in principle that ions pass through the inside of the ion selective membrane. Therefore, leakage of internal liquid can be suppressed while maintaining accuracy.

本発明による電位差測定装置の一例を示す図。The figure which shows an example of the electrical potential difference measuring apparatus by this invention. 本発明による電位差測定装置の一例を示す図。The figure which shows an example of the electrical potential difference measuring apparatus by this invention. 本発明による血中成分測定装置の一例を示す図。The figure which shows an example of the blood component measuring device by this invention. 本発明による血中成分測定装置の一例を示す側面模式図。The side surface schematic diagram which shows an example of the blood component measuring device by this invention. 本発明による血中成分測定装置の一例を示す平面模式図。The plane schematic diagram which shows an example of the blood component measuring device by this invention. 本発明による電位差測定装置の一例を示す図。The figure which shows an example of the electrical potential difference measuring apparatus by this invention. 電位差測定装置の回路の一例を示す図。The figure which shows an example of the circuit of an electrical potential difference measuring apparatus. 従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の比較結果を示す図。The figure which shows the comparison result of stability of the conventional internal liquid type silver-silver chloride reference electrode and the ion selective electrode of this invention. 従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の溶液量依存性を示す図。The figure which shows the solution amount dependence of the stability of the conventional internal liquid silver-silver-chloride reference electrode and the ion selective electrode of this invention. イオン選択電極の構成例を示す図。The figure which shows the structural example of an ion selective electrode.

以下,図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は,本発明による電位差測定装置の一例を示す図である。本装置は,イオン選択電極101,測定電極102,電圧計103,容器104,測定溶液105を有し,イオン選択電極101と測定電極102の端子は電圧計103に接続されていて,両端子間の電位差が測定できるようになっている。イオン選択電極101のイオン感応部と測定電極102の電極部は容器104内の測定溶液105に接触している。イオン選択電極101には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。内部液を有していても有していなくても構わない。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,に記載のリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニウムに対するイオン選択膜を用いたイオン選択電極を用いる。   FIG. 1 is a diagram showing an example of a potential difference measuring apparatus according to the present invention. This apparatus has an ion selection electrode 101, a measurement electrode 102, a voltmeter 103, a container 104, and a measurement solution 105, and the terminals of the ion selection electrode 101 and the measurement electrode 102 are connected to the voltmeter 103, and between the two terminals. The potential difference can be measured. The ion sensitive part of the ion selective electrode 101 and the electrode part of the measurement electrode 102 are in contact with the measurement solution 105 in the container 104. As the ion selection electrode 101, a sodium selection electrode, a potassium selection electrode, a lithium selection electrode, a magnesium selection electrode, a calcium selection electrode, a rubidium selection electrode, a cesium selection electrode, a strontium selection electrode, a barium selection electrode, a chlorine selection electrode, or the like is used. It may or may not have an internal liquid. For example, Lithium, potassium, sodium, magnesium, calcium or ammonium described in Pure Appl. Chem., 72, 1851-2082 Umezawa et. Al., Pure Appl. Chem., 74, 923-994 Umezawa et. An ion selective electrode using an ion selective membrane is used.

イオン選択電極は,例えば,図9のように,容器901,イオン選択膜902,内部溶液903,銀塩化銀電極904,端子905からなる構成をしている。内部溶液903は,銀塩化銀電極904の電位を安定化させるための塩素イオンと,イオン選択膜902の電位を安定化させるためのイオン選択膜902の測定対象のイオンが含まれている。   For example, as shown in FIG. 9, the ion selective electrode has a configuration comprising a container 901, an ion selective membrane 902, an internal solution 903, a silver / silver chloride electrode 904, and a terminal 905. The internal solution 903 contains chlorine ions for stabilizing the potential of the silver-silver chloride electrode 904 and ions to be measured by the ion-selective membrane 902 for stabilizing the potential of the ion-selective membrane 902.

測定電極102には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液105の組成は,イオン選択電極101に接触する部位と測定電極102に接触する部位で概ね同一とみなせる。   As the measurement electrode 102, an electrode using a noble metal such as gold, silver, or platinum, a carbon electrode, or an electrode obtained by modifying the electrode with an enzyme is used. The composition of the measurement solution 105 can be considered to be substantially the same at the part in contact with the ion selective electrode 101 and the part in contact with the measurement electrode 102.

図2は,本発明による電位差測定装置の一例を示す図である。本装置は,基板201,イオン選択電極202,測定電極203,電圧計204と,測定溶液205の保持部を有している。イオン選択電極202と測定電極203は基板201の同一平面上に有り,それぞれの電極からの配線は電圧計204に接続されていて,両電極間の電位差が測定できるようになっている。イオン選択電極202のイオン感応部と測定電極203の電極部は基板201上に配置された測定溶液205に接触している。イオン選択電極202には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。イオン選択電極202の構造は,金属の電極とイオン選択膜で内部液に相当するゲル化した溶液を挟み込むような形状であっても,いわゆるコーテットワイヤーと言われる金属の電極にイオン選択膜を張り付けたものであっても良い。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,記載のイオン選択電極を用いる。測定電極102には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液205の組成は,イオン選択電極202に接触する部位と測定電極203に接触する部位で概ね同一とみなせる。   FIG. 2 is a diagram showing an example of a potential difference measuring apparatus according to the present invention. This apparatus includes a substrate 201, an ion selection electrode 202, a measurement electrode 203, a voltmeter 204, and a holding unit for the measurement solution 205. The ion selection electrode 202 and the measurement electrode 203 are on the same plane of the substrate 201, and the wiring from each electrode is connected to a voltmeter 204 so that the potential difference between the two electrodes can be measured. The ion sensitive part of the ion selective electrode 202 and the electrode part of the measurement electrode 203 are in contact with the measurement solution 205 disposed on the substrate 201. As the ion selection electrode 202, a sodium selection electrode, a potassium selection electrode, a lithium selection electrode, a magnesium selection electrode, a calcium selection electrode, a rubidium selection electrode, a cesium selection electrode, a strontium selection electrode, a barium selection electrode, a chlorine selection electrode, or the like is used. Even if the structure of the ion selective electrode 202 is such that the gelled solution corresponding to the internal liquid is sandwiched between the metal electrode and the ion selective membrane, the ion selective membrane is attached to a metal electrode called a so-called coat wire. It may be pasted. For example, the ion selective electrode described in Pure Appl. Chem., 72, 1851-2082 Umezawa et. Al., Pure Appl. Chem., 74, 923-994 Umezawa et. As the measurement electrode 102, an electrode using a noble metal such as gold, silver, or platinum, a carbon electrode, or an electrode obtained by modifying the electrode with an enzyme is used. The composition of the measurement solution 205 can be considered to be substantially the same between the portion in contact with the ion selective electrode 202 and the portion in contact with the measurement electrode 203.

図3は,本発明による血中成分測定装置の一例を示す図である。本装置は,測定部301,制御部302から成り,測定部301はイオン選択電極311,測定電極312,電圧計313,測定溶液用容器314,測定溶液315,試料用分注器316,試料用容器317,試料液318,試薬用分注器319,試薬用容器320,試薬液321から成る。イオン選択電極311,測定電極312には図1で示したものを用いる。試料液318はヒトやその他生物の全血,血清,血漿,尿,体液を用いる。試薬液321は試料液318に適合しグルコース,コレステロールなどの測定項目に応じたものを用いる。測定前は測定溶液用容器314は空であり,試料用分注器316,試薬用分注器319によってそれぞれ試料液318,試薬液321を測定溶液用容器314中に分注し,良く混ぜ合わせて測定溶液315とした後に,イオン選択電極311,測定電極312を測定溶液315に接触させる。イオン選択電極311と測定電極312の間の電位を電圧計313で測定し,測定値とする。   FIG. 3 is a diagram showing an example of a blood component measuring apparatus according to the present invention. The apparatus includes a measurement unit 301 and a control unit 302. The measurement unit 301 includes an ion selection electrode 311, a measurement electrode 312, a voltmeter 313, a measurement solution container 314, a measurement solution 315, a sample dispenser 316, and a sample dispenser. The container 317 includes a sample solution 318, a reagent dispenser 319, a reagent container 320, and a reagent solution 321. The ion selection electrode 311 and the measurement electrode 312 are the same as those shown in FIG. As the sample solution 318, whole blood, serum, plasma, urine, or body fluid of human or other organisms is used. The reagent solution 321 is adapted to the sample solution 318 and used in accordance with measurement items such as glucose and cholesterol. Before measurement, the measurement solution container 314 is empty, and the sample solution 318 and the reagent solution 321 are respectively dispensed into the measurement solution container 314 by the sample dispenser 316 and the reagent dispenser 319, and mixed well. After the measurement solution 315 is obtained, the ion selective electrode 311 and the measurement electrode 312 are brought into contact with the measurement solution 315. A potential between the ion selection electrode 311 and the measurement electrode 312 is measured with a voltmeter 313 to obtain a measured value.

図4A及び図4Bは,本発明による血中成分測定装置の一例を示す図であり,図4Aは側面模式図,図4Bは平面模式図である。本装置は,基板401,イオン選択電極402,測定電極403,電圧計404,測定溶液保持部としての濾紙405を有している。イオン選択電極402と測定電極403は基板401の同一平面上に有り,それぞれの電極からの配線は電圧計404に接続されていて,両電極間の電位差が測定できるようになっている。イオン選択電極402,測定電極403には図2で示したものを用いる。濾紙405は試薬を含んでいて,乾燥していても湿潤していてもよい。規定量の試料液が濾紙405に添加されると,試料液は濾紙405中の試薬を溶解もしくは混合し,反応,測定溶液となる。試料液はヒトやその他生物の全血,血清,血漿,尿,体液を用いる。濾紙405中の試薬にはグルコース,コレステロールなどの測定項目に応じたものを用いる。測定溶液はイオン選択電極402,測定電極403に接触し,イオン選択電極402と測定電極403の間の電位を電圧計404で測定し,測定値とする。   4A and 4B are diagrams showing an example of a blood component measuring apparatus according to the present invention, FIG. 4A is a schematic side view, and FIG. 4B is a schematic plan view. This apparatus includes a substrate 401, an ion selection electrode 402, a measurement electrode 403, a voltmeter 404, and a filter paper 405 as a measurement solution holding unit. The ion selection electrode 402 and the measurement electrode 403 are on the same plane of the substrate 401, and the wiring from each electrode is connected to the voltmeter 404 so that the potential difference between the two electrodes can be measured. As the ion selection electrode 402 and the measurement electrode 403, those shown in FIG. The filter paper 405 contains a reagent and may be dry or wet. When a specified amount of the sample solution is added to the filter paper 405, the sample solution dissolves or mixes the reagent in the filter paper 405 and becomes a reaction and measurement solution. The sample solution is whole blood, serum, plasma, urine, or body fluid from humans or other organisms. As the reagent in the filter paper 405, a reagent according to measurement items such as glucose and cholesterol is used. The measurement solution comes into contact with the ion selection electrode 402 and the measurement electrode 403, and the potential between the ion selection electrode 402 and the measurement electrode 403 is measured with a voltmeter 404 to obtain a measured value.

図5は,本発明による電位差測定装置の一例を示す図である。本装置は,基板501,イオン選択電極502,測定電極503,FET(Field-effect Transistor;電界効果トランジスタ)504,ソース電極505,ドレイン電極506,導電性配線507,508,端子509,測定溶液保持部に保持された測定溶液510を有している。イオン選択電極502と測定電極503は基板501の同一平面上に有る。導電性配線507,508は測定溶液510に直接触れないよう表面が絶縁処理されている。FET504により測定電極503の電位をソース電極505,ドレイン電極506間の電圧−電流特性として測定することができ,これによりイオン選択電極502と測定電極503間の電位差を測定することができる。イオン選択電極502のイオン感応部と測定電極503の電極部は基板501上に保持された測定溶液510に接触している。   FIG. 5 is a diagram showing an example of a potential difference measuring apparatus according to the present invention. This apparatus includes a substrate 501, an ion selection electrode 502, a measurement electrode 503, a field effect transistor (FET) 504, a source electrode 505, a drain electrode 506, conductive wiring 507 and 508, a terminal 509, and a measurement solution holding. The measurement solution 510 held in the part is included. The ion selection electrode 502 and the measurement electrode 503 are on the same plane of the substrate 501. The surfaces of the conductive wirings 507 and 508 are insulated so as not to directly touch the measurement solution 510. The potential of the measurement electrode 503 can be measured as a voltage-current characteristic between the source electrode 505 and the drain electrode 506 by the FET 504, whereby the potential difference between the ion selection electrode 502 and the measurement electrode 503 can be measured. The ion sensitive part of the ion selective electrode 502 and the electrode part of the measurement electrode 503 are in contact with the measurement solution 510 held on the substrate 501.

イオン選択電極502には,ナトリウム選択電極,カリウム選択電極,リチウム選択電極,マグネシウム選択電極,カルシウム選択電極,ルビジウム選択電極,セシウム選択電極,ストロンチウム選択電極,バリウム選択電極,塩素選択電極などを用いる。イオン選択電極502の構造は,金属の電極とイオン選択膜で内部液に相当するゲル化した溶液を挟み込むような形状であっても,いわゆるコーテットワイヤーと言われる金属の電極にイオン選択膜を張り付けたものであっても良い。例えば,Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.,に記載のイオン選択電極を用いる。測定電極503には,金,銀,白金といった貴金属を用いた電極や,カーボン電極,もしくは,それらの電極に酵素の修飾を施した電極を用いる。測定溶液510の組成は,イオン選択電極502に接触する部位と測定電極503に接触する部位で概ね同一とみなせる。   As the ion selection electrode 502, a sodium selection electrode, a potassium selection electrode, a lithium selection electrode, a magnesium selection electrode, a calcium selection electrode, a rubidium selection electrode, a cesium selection electrode, a strontium selection electrode, a barium selection electrode, a chlorine selection electrode, or the like is used. Even if the structure of the ion selective electrode 502 is such that the gelled solution corresponding to the internal liquid is sandwiched between the metal electrode and the ion selective membrane, the ion selective membrane is attached to a metal electrode called a so-called coat wire. It may be pasted. For example, an ion selective electrode described in Pure Appl. Chem., 72, 1851-2082 Umezawa et. Al., Pure Appl. Chem., 74, 923-994 Umezawa et. As the measurement electrode 503, an electrode using a noble metal such as gold, silver, or platinum, a carbon electrode, or an electrode obtained by modifying the electrode with an enzyme is used. The composition of the measurement solution 510 can be considered to be substantially the same between the part in contact with the ion selective electrode 502 and the part in contact with the measurement electrode 503.

図6は,図5に示す電位差測定装置を用いた際の回路の一例を示す図である。基板601には,イオン選択電極に接続された端子602,FETのソースに接続された端子603,FETのドレインに接続された端子604がある。端子602と端子603はアースに接続され,端子603と端子604の間には一定の電圧が印加されている。その際の端子604の電流値を測定する。別途測定したFETの電圧−電流特性から,測定電極とイオン選択電極間の電位差を求めることができる。   FIG. 6 is a diagram illustrating an example of a circuit when the potential difference measuring apparatus illustrated in FIG. 5 is used. The substrate 601 has a terminal 602 connected to the ion selection electrode, a terminal 603 connected to the source of the FET, and a terminal 604 connected to the drain of the FET. The terminals 602 and 603 are connected to the ground, and a constant voltage is applied between the terminals 603 and 604. The current value of the terminal 604 at that time is measured. The potential difference between the measurement electrode and the ion selection electrode can be obtained from the voltage-current characteristics of the FET measured separately.

図1から図6に記載の装置を用いて測定する際の測定溶液中のイオン濃度を次のように規定することで,測定精度を向上させることができる。イオン選択電極の電位Eは,次のニコルスキー−アイゼンマン式から,求まる。   Measurement accuracy can be improved by defining the ion concentration in the measurement solution at the time of measurement using the apparatus described in FIGS. 1 to 6 as follows. The potential E of the ion selective electrode is obtained from the following Nicholsky-Eisenman equation.

Figure 2011149878
Figure 2011149878

測定溶液は試薬と試料の混合物であり,試薬中のイオン濃度が一定であっても,試料中のイオン濃度が変動すると,測定溶液中のイオン濃度は変動する。その結果,イオン選択電極の電位は変動し,測定精度の低下を招く。試料中のイオン濃度が全くの未知であれば,この変動を取り除くことは困難である。しかし,試料が全血もしくは血清,血漿,尿であることに着目すると,生命を維持するのに必要なイオン濃度範囲は限られてくるので,試料中のイオン濃度はある程度予測が可能である。すなわち,上式を用いてイオン選択電極の電位変動幅を見積もり,その変動幅が求める精度以下になるように試薬の組成や試薬と試料の混合比を工夫すればよい。   The measurement solution is a mixture of a reagent and a sample. Even if the ion concentration in the reagent is constant, if the ion concentration in the sample varies, the ion concentration in the measurement solution varies. As a result, the potential of the ion selective electrode fluctuates, resulting in a decrease in measurement accuracy. If the ion concentration in the sample is completely unknown, it is difficult to remove this fluctuation. However, focusing on the fact that the sample is whole blood, serum, plasma, or urine, the ion concentration range necessary to maintain life is limited, so the ion concentration in the sample can be predicted to some extent. That is, the potential variation width of the ion selective electrode is estimated using the above equation, and the reagent composition and the reagent-sample mixing ratio may be devised so that the variation width is less than the required accuracy.

試薬由来の測定溶液中のイオン濃度をcr及びcr,j,試料中のイオン濃度の最小値をcs,min及びcs,j,min,試料中のイオン濃度の最大値をcs,max及びcs,j,max,試料の希釈率をd(例えば,9μlの試薬と1μlの試料を混合する時の希釈率は10,乾燥状態の試薬と10μlの試料を混合する時の希釈率は1とする)とし,簡単のため活量係数を1とすると,イオン選択電極の取り得る電位の最小値(Emin)と最大値(Emax)は,ニコルスキー−アイゼンマン式から, The ion concentration in the measurement solution derived from the reagent is cr and cr, j , the minimum value of the ion concentration in the sample is c s, min and c s, j, min , and the maximum value of the ion concentration in the sample is c s. , max and c s, j, max , and the sample dilution rate is d (for example, the dilution rate when mixing 9 μl of reagent and 1 μl sample is 10, dilution when mixing dry reagent and 10 μl sample) If the activity coefficient is 1 for simplicity, the minimum potential (E min ) and maximum value (E max ) that can be taken by the ion selective electrode are obtained from the Nicholsky-Eisenmann equation.

Figure 2011149878
である。すなわち,イオン選択電極の電位変動幅(Eは,
Figure 2011149878
It is. That is, the potential variation width of the ion selective electrode (E is

Figure 2011149878
から求まる。(Eが必要な精度以下に収まるように,試薬由来の測定溶液中のイオン濃度cr及びcr,jを設定する。また,上式から分かるように,試薬由来の測定溶液中のイオン濃度を高くすれば試料由来のイオン濃度変動が相対的に小さくなり,(Eも小さくなる。そのため,試薬由来の測定溶液中のイオン濃度をなるべく大きくしたいが,溶解度や酵素に至適なイオン濃度範囲があるため,これらの濃度を超えないようにする。
Figure 2011149878
Obtained from (The ion concentrations cr and cr, j in the reagent-derived measurement solution are set so that E falls below the required accuracy. Also, as can be seen from the above equation, the ion concentration in the reagent-derived measurement solution is set. The ion concentration variation from the sample becomes relatively small if the value is increased (E also becomes small. Therefore, I want to increase the ion concentration in the reagent-derived measurement solution as much as possible, but the ion concentration range optimal for solubility and enzyme Therefore, do not exceed these concentrations.

試料中のイオン濃度の変動幅の一例を以下に示す。   An example of the fluctuation range of the ion concentration in the sample is shown below.

Figure 2011149878
Figure 2011149878

イオン選択電極の電位を安定させる観点からは,試料中のイオン濃度の低いイオンに対するイオン選択電極を用いることが望ましい。なぜならば,(1)試料中のイオン濃度が低いイオンは変動幅が小さく,試薬中に一定量のイオンを含ませることでイオンの変動率を小さくできる(イオン選択電極の電位はイオン濃度の対数に比例)ため,(2)試薬中に含ませることのできるイオンには上限があるため,である。   From the viewpoint of stabilizing the potential of the ion selective electrode, it is desirable to use an ion selective electrode for ions having a low ion concentration in the sample. (1) Ions with a low ion concentration in the sample have a small fluctuation range, and the ion fluctuation rate can be reduced by including a certain amount of ions in the reagent (the potential of the ion selective electrode is the logarithm of the ion concentration). (2) Because there is an upper limit for ions that can be included in the reagent.

Pure Appl. Chem., 72, 1851-2082 Umezawa et. al., Pure Appl. Chem., 74, 923-994 Umezawa et. al.にあるように,陽イオンのイオン選択電極は陰イオンのイオン選択電極に比べて選択性が良く,例えば塩素イオン電極の臭素やチオシアンに対する応答のように選択性を著しく低くするようなイオン種が少ない。そのため,参照電極として用いるイオン選択電極は陽イオンのイオン選択電極であることが望ましい。   Pure Appl. Chem., 72, 1851-2082 Umezawa et. Al., Pure Appl. Chem., 74, 923-994 Umezawa et. Al. The selectivity is better than that of the electrode. For example, there are few ionic species that significantly lower the selectivity, such as the response of the chlorine ion electrode to bromine and thiocyan. Therefore, it is desirable that the ion selective electrode used as the reference electrode is a positive ion selective electrode.

一例として,血清中グルコースを測定したときの条件を以下に記す。   As an example, the conditions under which serum glucose is measured are described below.

イオン選択電極:ナトリウム選択電極(選択係数(log):K+,−2.4;Li+,−3.0;NH4 +,−4.2;Ca2+,−3.8;Mg2+,−4.0)
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
電圧計:入力インピーダンス10GΩ以上
試薬1
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化ナトリウム(137mM)
塩化カリウム(3mM)
塩化マグネシウム(10mM)
リン酸水素二ナトリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
ヘキソキナーゼ(10U/ml)
グルコース6リン酸脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
試薬2
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(140mM)
塩化マグネシウム(10mM)
リン酸水素二カリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
ヘキソキナーゼ(10U/ml)
グルコース6リン酸脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
試料:ヒト血清
試薬1,試薬2のどちらを用いた場合も,以下の反応式に従い,ヒト血清中のグルコース濃度に応じたフェロシアン化カリウムが生成する。
Ion selective electrode : sodium selective electrode (selection coefficient (log): K + , −2.4; Li + , −3.0; NH 4 + , −4.2; Ca 2+ , −3.8; Mg 2) + , -4.0)
Measurement electrode : 11-ferrocenyl-1-undecanethiol modified gold electrode
Voltmeter : Input impedance 10GΩ or more
Reagent 1 :
Potassium ferricyanide (9.9 mM)
Potassium ferrocyanide (0.1 mM)
Sodium chloride (137 mM)
Potassium chloride (3 mM)
Magnesium chloride (10 mM)
Disodium hydrogen phosphate (10 mM)
Potassium dihydrogen phosphate (1.8 mM)
Adenosine triphosphate (4 mM)
Hexokinase (10U / ml)
Glucose 6-phosphate dehydrogenase (40 U / ml)
Diaphorase (3.75 U / ml)
Nicotinamide adenine dinucleotide (0.5 mg / ml)
Reagent 2 :
Potassium ferricyanide (9.9 mM)
Potassium ferrocyanide (0.1 mM)
Potassium chloride (140 mM)
Magnesium chloride (10 mM)
Dipotassium hydrogen phosphate (10 mM)
Potassium dihydrogen phosphate (1.8 mM)
Adenosine triphosphate (4 mM)
Hexokinase (10U / ml)
Glucose 6-phosphate dehydrogenase (40 U / ml)
Diaphorase (3.75 U / ml)
Nicotinamide adenine dinucleotide (0.5 mg / ml)
Sample : human serum Regardless of whether reagent 1 or reagent 2 is used, potassium ferrocyanide is generated according to the glucose concentration in human serum according to the following reaction formula.

グルコース+アデノシン3リン酸→グルコース6リン酸+アデノシン2リン酸(ヘキソキナーゼにより触媒)
グルコース6リン酸+ニコチンアミドアデニンジヌクレオチド(酸化型)→グルコース1,5ラクトン6リン酸+ニコチンアミドアデニンジヌクレオチド(還元型)(グルコース6リン酸脱水素酵素により触媒)
2フェリシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(還元型)→2フェロシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(酸化型)(ジアホラーゼにより触媒)
Glucose + adenosine triphosphate → glucose 6 phosphate + adenosine diphosphate (catalyzed by hexokinase)
Glucose 6-phosphate + nicotinamide adenine dinucleotide (oxidized form) → Glucose 1,5-lactone 6-phosphate + nicotinamide adenine dinucleotide (reduced form) (catalyzed by glucose 6-phosphate dehydrogenase)
2 potassium ferricyanide + nicotinamide adenine dinucleotide (reduced form) → 2 ferrocyanide potassium + nicotinamide adenine dinucleotide (oxidized form) (catalyzed by diaphorase)

フェリシアン化カリウムとフェロシアン化カリウムの量比は,ネルンストの式に従う測定電極とイオン選択電極の電位差として計測できる。試薬1ではナトリウムイオンが支配的になるように,試薬2ではカリウムイオンが支配的になるように電解質を調節した。酵素反応はこの電解質の違いにほとんど影響を受けず,特に電位差計測で用いることのできるエンドポイント計測においてはその影響はほとんどない。   The quantity ratio between potassium ferricyanide and potassium ferrocyanide can be measured as the potential difference between the measuring electrode and the ion selective electrode according to the Nernst equation. The electrolyte was adjusted so that sodium ions were dominant in reagent 1 and potassium ions were dominant in reagent 2. Enzymatic reactions are almost unaffected by this difference in electrolyte, especially in endpoint measurements that can be used for potentiometric measurements.

ヒト血清中の各イオンの変動幅は,前記の表のように見積もった。試薬1と試料を9:1で混合した場合,式によるとイオン選択電極の電位変動幅は0.23mVである。ここで,簡便のため,活量係数は全て1として計算した。一方,試薬2と試料を9:1で混合した場合,ニコルスキー−アイゼンマン式によるとイオン選択電極の電位変動幅は2.45mVである。ネルンストの式によると,0.23mVの電位変動は0.9%の濃度変動に,2.45mVの電位変動は10%の濃度変動に相当するため,試薬中のイオン濃度を最適化する前(試薬2)と最適化した後(試薬1)とでは測定精度が10倍以上も変わることが分かる。また,通常血中成分の測定では1〜3%程度の精度,すなわち0.25〜0.75mV程度の精度が要求されるため,最適化前の精度では実用に耐えられないことが分かる。   The fluctuation range of each ion in human serum was estimated as shown in the above table. When reagent 1 and the sample are mixed at 9: 1, according to the equation, the potential fluctuation range of the ion selective electrode is 0.23 mV. Here, for the sake of simplicity, the activity coefficients were all calculated as 1. On the other hand, when the reagent 2 and the sample are mixed at 9: 1, the potential fluctuation range of the ion selective electrode is 2.45 mV according to the Nicholsky-Eisenman equation. According to the Nernst equation, a potential variation of 0.23 mV corresponds to a concentration variation of 0.9%, and a potential variation of 2.45 mV corresponds to a concentration variation of 10%. Therefore, before the ion concentration in the reagent is optimized ( It can be seen that the measurement accuracy changes 10 times or more between the reagent 2) and the optimized (reagent 1). Moreover, since the accuracy of about 1 to 3%, that is, the accuracy of about 0.25 to 0.75 mV is required in the measurement of the normal blood component, it can be understood that the accuracy before the optimization cannot withstand practical use.

このような試薬の最適化は,イオンを測定対象としていないために用いることができる。イオンの測定において試薬に測定対象のイオンが含まれていたとしたら,イオン選択電極の原理からして,測定精度を低下させてしまう。一方,グルコースやコレステロールなどの有機物を測定する場合,参照電極として用いるイオン選択電極の電位を安定化させる目的で試薬中にイオンが含まれていたとしても,測定に直接的な影響を及ぼさない。   Such reagent optimization can be used because ions are not the object of measurement. If the ions to be measured are included in the reagent in the measurement of ions, the measurement accuracy is lowered due to the principle of the ion selective electrode. On the other hand, when measuring organic substances such as glucose and cholesterol, even if ions are contained in the reagent for the purpose of stabilizing the potential of the ion selective electrode used as the reference electrode, the measurement is not directly affected.

同様の測定系でコレステロール,中性脂肪を測定した際の最適化した試薬の組成の例を以下に記す。   An example of the optimized reagent composition when measuring cholesterol and neutral fat in the same measurement system is described below.

イオン選択電極:カリウム選択電極(選択係数(log):Na+,−4.0;Li+,−4.0;NH4 +,−1.5;Ca2+,−4.2;Mg2+,−6.0)
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
電圧計:入力インピーダンス10GΩ以上
コレステロール測定試薬
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(100mM)
トリス塩酸(0.2M)
コレステロール脱水素酵素(40U/ml)
ジアホラーゼ(3.75U/ml)
ニコチンアミドアデニンジヌクレオチド(0.5mg/ml)
中性脂肪測定試薬
フェリシアン化カリウム(9.9mM)
フェロシアン化カリウム(0.1mM)
塩化カリウム(140mM)
塩化マグネシウム(10mM)
リン酸水素二ナトリウム(10mM)
リン酸二水素カリウム(1.8mM)
アデノシン3リン酸(4mM)
リパーゼ(10U/ml)
グリセロールキナーゼ(10U/ml)
グリセロール3リン酸酸化酵素(40U/ml)
Ion selective electrode : potassium selective electrode (selection coefficient (log): Na + , −4.0; Li + , −4.0; NH 4 + , −1.5; Ca 2+ , −4.2; Mg 2 + , -6.0)
Measurement electrode : 11-ferrocenyl-1-undecanethiol modified gold electrode
Voltmeter : Input impedance 10GΩ or more
Cholesterol measurement reagent :
Potassium ferricyanide (9.9 mM)
Potassium ferrocyanide (0.1 mM)
Potassium chloride (100 mM)
Tris-HCl (0.2M)
Cholesterol dehydrogenase (40 U / ml)
Diaphorase (3.75 U / ml)
Nicotinamide adenine dinucleotide (0.5 mg / ml)
Neutral fat measurement reagent :
Potassium ferricyanide (9.9 mM)
Potassium ferrocyanide (0.1 mM)
Potassium chloride (140 mM)
Magnesium chloride (10 mM)
Disodium hydrogen phosphate (10 mM)
Potassium dihydrogen phosphate (1.8 mM)
Adenosine triphosphate (4 mM)
Lipase (10U / ml)
Glycerol kinase (10U / ml)
Glycerol 3-phosphate oxidase (40 U / ml)

これらの試薬においては,カリウム選択電極を参照電極として用いる際の精度向上のため,カリウムイオンが支配的な電解質となるようにした。また,それぞれの反応式を以下に記す。   In these reagents, potassium ions are the dominant electrolyte in order to improve accuracy when using a potassium selective electrode as a reference electrode. Each reaction equation is shown below.

コレステロール:
コレステロール+ニコチンアミドアデニンジヌクレオチド(酸化型)→コレステノン+ニコチンアミドアデニンジヌクレオチド(還元型)(コレステロール脱水素酵素により触媒)
2フェリシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(還元型)→2フェロシアン化カリウム+ニコチンアミドアデニンジヌクレオチド(酸化型)(ジアホラーゼにより触媒)
cholesterol:
Cholesterol + nicotinamide adenine dinucleotide (oxidized form) → cholestenone + nicotinamide adenine dinucleotide (reduced form) (catalyzed by cholesterol dehydrogenase)
2 potassium ferricyanide + nicotinamide adenine dinucleotide (reduced form) → 2 ferrocyanide potassium + nicotinamide adenine dinucleotide (oxidized form) (catalyzed by diaphorase)

中性脂肪:
トリグリセライド+3H2O→グリセロール+3RCOOH(リパーゼにより触媒)
グリセロール+アデノシン3リン酸→グリセロール3リン酸+アデノシン2リン酸(グリセロールキナーゼにより触媒)
グリセロール3リン酸+2フェリシアン化カリウム→ジヒドロキシアセトンリン酸+2フェロシアン化カリウム(グリセロール3リン酸酸化酵素により触媒)
Neutral fat:
Triglyceride + 3H 2 O → Glycerol + 3RCOOH (catalyzed by lipase)
Glycerol + adenosine triphosphate → glycerol triphosphate + adenosine diphosphate (catalyzed by glycerol kinase)
Glycerol triphosphate + potassium ferricyanide → dihydroxyacetone phosphate + potassium ferrocyanide (catalyzed by glycerol triphosphate oxidase)

それぞれの反応式に示すようにして生成したフェロシアン化カリウムを,測定電極とイオン選択電極の電位差の変化として計測する。   The potassium ferrocyanide produced as shown in each reaction formula is measured as a change in potential difference between the measurement electrode and the ion selective electrode.

図7は,図1の測定系を用いて,従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極の安定性の比較を行った結果を示している。図中に銀塩化銀で示した線が内部液型銀塩化銀参照電極のもの,ISEで示したのがイオン選択電極を用いた結果である。測定は,次の条件で行った。
参照電極:内部液型銀塩化銀参照電極(内部液:飽和塩化カリウム,液絡部:多孔質ガラス)もしくはナトリウムイオン選択電極
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
測定溶液:10μl
硫酸ナトリウム(0.1M)
フェリシアン化カリウム(5mM)
フェロシアン化カリウム(5mM)
FIG. 7 shows the results of comparing the stability of a conventional internal liquid silver chloride reference electrode and the ion selective electrode of the present invention using the measurement system of FIG. In the figure, the line indicated by silver-silver chloride is that of the internal liquid-type silver-silver chloride reference electrode, and that indicated by ISE is the result of using the ion selective electrode. The measurement was performed under the following conditions.
Reference electrode : internal liquid silver chloride reference electrode (internal liquid: saturated potassium chloride, liquid junction: porous glass) or sodium ion selective electrode
Measurement electrode : 11-ferrocenyl-1-undecanethiol modified gold electrode
Measurement solution : 10 μl
Sodium sulfate (0.1M)
Potassium ferricyanide (5 mM)
Potassium ferrocyanide (5 mM)

50秒間の測定中に,内部液型銀塩化銀参照電極を用いた場合は0.5mV程度の電位ドリフトが観測されたが,イオン選択電極を用いた場合は0.1mV程度の電位ドリフトであった。   During the measurement for 50 seconds, a potential drift of about 0.5 mV was observed when the internal liquid silver-silver chloride reference electrode was used, but a potential drift of about 0.1 mV was observed when the ion selective electrode was used. It was.

図8は,図1の測定系を用いて,従来の内部液型銀塩化銀参照電極と本発明のイオン選択電極(ISE)の安定性(電位ドリフト)の溶液量依存性を測定した結果を示している。測定条件は,
銀塩化銀:内部液型銀塩化銀参照電極(内部液:飽和塩化カリウム,液絡部:多孔質ガラス)
ISE:ナトリウム選択電極
測定電極:11−フェロセニル−1−ウンデカンチオール修飾金電極
測定溶液
硫酸ナトリウム(0.1M)
フェリシアン化カリウム(5mM)
フェロシアン化カリウム(5mM)
とした。内部液型銀塩化銀参照電極では溶液量に反比例して電位ドリフト量が増大しているのに対し,イオン選択電極では電位ドリフト量が溶液量に依存しないのが分かる。
FIG. 8 shows the results of measuring the solution amount dependency of the stability (potential drift) of the conventional internal liquid silver-silver chloride reference electrode and the ion-selective electrode (ISE) of the present invention using the measurement system of FIG. Show. The measurement conditions are
Silver silver chloride : Internal liquid silver-silver chloride reference electrode (internal liquid: saturated potassium chloride, liquid junction: porous glass)
ISE : Sodium selective electrode
Measurement electrode : 11-ferrocenyl-1-undecanethiol modified gold electrode
Measurement solution :
Sodium sulfate (0.1M)
Potassium ferricyanide (5 mM)
Potassium ferrocyanide (5 mM)
It was. It can be seen that the potential drift amount increases in inverse proportion to the amount of solution in the internal liquid silver chloride reference electrode, whereas the potential drift amount does not depend on the amount of solution in the ion selective electrode.

図7と図8に示すように,従来の内部液型銀塩化銀参照電極を用いた場合,測定溶液量の減少に伴い電位ドリフト量が増加した。その原因として,内部液の漏出が考えられる。イオン選択電極を参照電極に用いることで,少なくとも10μl程度の測定液量では顕著な電位ドリフトは観測されなかった。従来の内部液型参照電極では,液絡部を通じた内部液と測定溶液間のイオンの移動により,内部液と測定溶液間の電位を一定に保っていた。従って,内部液の漏出を無くすとイオンの移動ができなくなるため,原理的に内部液の漏出を無くすことはできなかった。これに対し,イオン選択電極では,溶液とイオン選択膜の界面でのイオンの平衡により溶液とイオン選択膜の間の電位が定まるため,原理的にイオン選択膜内部をイオンが通り抜ける必要はない。そのため,精度を維持したまま内部液の漏出を抑制することができたと考えられる。   As shown in FIGS. 7 and 8, when the conventional internal liquid-type silver-silver chloride reference electrode was used, the amount of potential drift increased as the measured solution amount decreased. The cause may be leakage of internal liquid. By using the ion selective electrode as the reference electrode, no significant potential drift was observed with a measurement liquid volume of at least about 10 μl. In the conventional internal liquid type reference electrode, the potential between the internal liquid and the measurement solution is kept constant by movement of ions between the internal liquid and the measurement solution through the liquid junction. Therefore, if the leakage of the internal liquid is eliminated, the ions cannot move, so that the leakage of the internal liquid cannot be eliminated in principle. On the other hand, in the ion selective electrode, since the potential between the solution and the ion selective membrane is determined by the equilibrium of ions at the interface between the solution and the ion selective membrane, it is not necessary in principle that ions pass through the inside of the ion selective membrane. Therefore, it is considered that leakage of internal liquid could be suppressed while maintaining accuracy.

101 イオン選択電極
102 測定電極
103 電圧計
104 容器
105 測定溶液
201 基板
202 イオン選択電極
203 測定電極
204 電圧計
205 測定溶液
301 測定部
302 制御装置
311 イオン選択電極
312 測定電極
313 電圧計
314 容器
315 測定溶液
316 分注装置
317 容器
318 試薬液
319 分注装置
320 容器
321 試薬液
401 基板
402 イオン選択電極
403 測定電極
404 電圧計
405 測定溶液
501 基板
502 イオン選択電極
503 測定電極
504 電界効果トランジスタ
505 ソース
506 ドレイン
507 導電性配線
508 導電性配線
509 端子
510 測定溶液
601 基板
602 イオン選択電極に接続された端子
603 FETのソースに接続された端子
604 FETのドレインに接続された端子
101 ion selection electrode 102 measurement electrode 103 voltmeter 104 container 105 measurement solution 201 substrate 202 ion selection electrode 203 measurement electrode 204 voltmeter 205 measurement solution 301 measurement unit 302 control device 311 ion selection electrode 312 measurement electrode 313 voltmeter 314 container 315 measurement Solution 316 Dispensing device 317 Container 318 Reagent liquid 319 Dispensing device 320 Container 321 Reagent liquid 401 Substrate 402 Ion selection electrode 403 Measurement electrode 404 Voltmeter 405 Measurement solution 501 Substrate 502 Ion selection electrode 503 Measurement electrode 504 Field effect transistor 505 Source 506 Drain 507 Conductive wiring 508 Conductive wiring 509 Terminal 510 Measurement solution 601 Substrate 602 Terminal 603 connected to ion selection electrode Terminal 604 connected to FET source Contacted to drain of FET Have been terminal

Claims (21)

測定対象物を含む測定溶液が導入される容器又は部位と,
前記測定溶液に接触する測定電極と,
前記測定溶液に接触する参照電極と,
前記測定電極と前記参照電極との間の電位差を測定する電位差計とを備え,
前記参照電極はイオン選択電極であることを特徴とする電位差計測装置。
A container or a part into which a measurement solution containing a measurement object is introduced;
A measurement electrode in contact with the measurement solution;
A reference electrode in contact with the measurement solution;
A potentiometer for measuring a potential difference between the measurement electrode and the reference electrode;
The potential difference measuring apparatus, wherein the reference electrode is an ion selective electrode.
前記イオン選択電極は陽イオンに対するイオン選択電極であることを特徴とする請求項1に記載の電位差計測装置。   The potential difference measuring device according to claim 1, wherein the ion selective electrode is an ion selective electrode for positive ions. 前記イオン選択電極はリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニアに対するイオン選択電極であることを特徴とする請求項1に記載の電位差計測装置。   The potentiometer according to claim 1, wherein the ion selective electrode is an ion selective electrode for lithium, potassium, sodium, magnesium, calcium, or ammonia. 前記測定溶液は試料と試薬の混合物であることを特徴とする請求項1に記載の電位差計測装置。   The potentiometer according to claim 1, wherein the measurement solution is a mixture of a sample and a reagent. 前記測定溶液中のイオンのうち,
前記イオン選択電極の測定対象のイオンの中で前記試薬由来のイオンの濃度cr及び 前記イオン選択電極の妨害イオンjの中で前記試薬由来のイオンの濃度cr,jが,
想定される前記試料中のイオンの最小濃度を,前記イオン選択電極の測定対象のイオンはcs,min,前記イオン選択電極の妨害イオンjはcs,j,minとし,
想定される前記試料中のイオンの最大濃度を,前記イオン選択電極の測定対象のイオンはcr,max,前記イオン選択電極の妨害イオンjはcr,j,maxとし,
前記試料の希釈率をdとし,
気体定数をR,前記測定溶液の絶対温度をT,前記イオン選択電極の測定対象のイオンの価数をz,ファラデー定数をF,前記イオン選択電極の妨害イオンjの選択係数をKj,前記イオン選択電極の妨害イオンjの価数をzjとしたときに,
Figure 2011149878
を満たし,かつ,cr及びcr,jが水への溶解度を上まらないことを特徴とする請求項4に記載の電位差計測装置。
Of the ions in the measurement solution,
Among the ions to be measured by the ion selective electrode, the concentration c r of ions derived from the reagent and the concentration c r, j of ions derived from the reagent among the interfering ions j of the ion selective electrode are:
The assumed minimum concentration of ions in the sample is c s, min for ions to be measured by the ion selective electrode, and c s, j, min for interfering ions j of the ion selective electrode,
The assumed maximum concentration of ions in the sample is c r, max for ions to be measured by the ion selective electrode, and c r, j, max for interfering ions j of the ion selective electrode,
The dilution rate of the sample is d,
The gas constant is R, the absolute temperature of the measurement solution is T, the valence of ions to be measured by the ion selective electrode is z, the Faraday constant is F, the selection coefficient of the interfering ions j of the ion selective electrode is K j , When the valence of interfering ions j of the ion selective electrode is z j ,
Figure 2011149878
The potential difference measuring device according to claim 4, wherein cr and cr, j do not increase solubility in water.
前記試薬は有機物と反応する化学物質もしくは酵素を含むことを特徴とする請求項4に記載の電位差計測装置。   The potentiometer according to claim 4, wherein the reagent contains a chemical substance or an enzyme that reacts with an organic substance. 前記試料は生体物質であることを特徴とする請求項4に記載の電位差計測装置。   The potential difference measuring apparatus according to claim 4, wherein the sample is a biological material. 前記試料は全血,血清,血漿,尿,もしくは体液であることを特徴とする請求項4に記載の電位差計測装置。   The potentiometer according to claim 4, wherein the sample is whole blood, serum, plasma, urine, or body fluid. 前記測定電極により有機物質を測定することを特徴とする請求項1に記載の電位差計測装置。   The potentiometer according to claim 1, wherein an organic substance is measured by the measurement electrode. 前記測定電極により酸化還元物質を測定することを特徴とする請求項1に記載の電位差計測装置。   The potential difference measuring apparatus according to claim 1, wherein the redox substance is measured by the measurement electrode. 測定対象物を含む測定溶液を容器又は部位に導入し,
前記測定溶液に測定電極と参照電極を接触させ,
前記測定電極と前記参照電極との間の電位差を電位差計を用いて測定する電位差計測方法において,
前記参照電極はイオン選択電極であることを特徴とする電位差計測方法。
Introduce the measurement solution containing the measurement object into the container or part,
Bringing a measurement electrode and a reference electrode into contact with the measurement solution;
In a potential difference measuring method for measuring a potential difference between the measurement electrode and the reference electrode using a potentiometer,
The potential difference measuring method, wherein the reference electrode is an ion selective electrode.
前記イオン選択電極は陽イオンに対するイオン選択電極であることを特徴とする請求項11に記載の電位差計測方法。   The potential difference measuring method according to claim 11, wherein the ion selective electrode is an ion selective electrode for positive ions. 前記イオン選択電極はリチウム,カリウム,ナトリウム,マグネシウム,カルシウムもしくはアンモニアに対するイオン選択電極であることを特徴とする請求項11に記載の電位差計測方法。   12. The potential difference measuring method according to claim 11, wherein the ion selective electrode is an ion selective electrode for lithium, potassium, sodium, magnesium, calcium or ammonia. 試料と試薬を混合させることで前記測定溶液を調製することを特徴とする請求項11に記載の電位差計測方法。   The potential difference measuring method according to claim 11, wherein the measurement solution is prepared by mixing a sample and a reagent. 前記測定溶液中のイオンのうち,
前記イオン選択電極の測定対象のイオンの中で前記試薬由来のイオンの濃度cr及び 前記イオン選択電極の妨害イオンjの中で前記試薬由来のイオンの濃度cr,jが,
想定される前記試料中のイオンの最小濃度を,前記イオン選択電極の測定対象のイオンはcs,min,前記イオン選択電極の妨害イオンjはcs,j,minとし,
想定される前記試料中のイオンの最大濃度を,前記イオン選択電極の測定対象のイオンはcr,max,前記イオン選択電極の妨害イオンjはcr,j,maxとし,
前記試料の希釈率をdとし,
気体定数をR,前記測定溶液の絶対温度をT,前記イオン選択電極の測定対象のイオンの価数をz,ファラデー定数をF,前記イオン選択電極の妨害イオンjの選択係数をKj,前記イオン選択電極の妨害イオンjの価数をzjとしたときに,
Figure 2011149878
を満たし,かつ,cr及びcr,jが水への溶解度を上まらないことを特徴とする請求項14に記載の電位差計測方法。
Of the ions in the measurement solution,
Among the ions to be measured by the ion selective electrode, the concentration c r of ions derived from the reagent and the concentration c r, j of ions derived from the reagent among the interfering ions j of the ion selective electrode are:
The assumed minimum concentration of ions in the sample is c s, min for ions to be measured by the ion selective electrode, and c s, j, min for interfering ions j of the ion selective electrode,
The assumed maximum concentration of ions in the sample is c r, max for ions to be measured by the ion selective electrode, and c r, j, max for interfering ions j of the ion selective electrode,
The dilution rate of the sample is d,
The gas constant is R, the absolute temperature of the measurement solution is T, the valence of ions to be measured by the ion selective electrode is z, the Faraday constant is F, the selection coefficient of the interfering ions j of the ion selective electrode is K j , When the valence of interfering ions j of the ion selective electrode is z j ,
Figure 2011149878
The potential difference measuring method according to claim 14, wherein cr and cr, j do not increase the solubility in water.
前記試薬は有機物と反応する化学物質もしくは酵素を含むことを特徴とする請求項15に記載の電位差計測方法。   The potential difference measuring method according to claim 15, wherein the reagent includes a chemical substance or an enzyme that reacts with an organic substance. 前記試料は生体物質であることを特徴とする請求項15に記載の電位差計測方法。   The potential difference measuring method according to claim 15, wherein the sample is a biological material. 前記試料は全血,血清,血漿,尿,もしくは体液であることを特徴とする請求項15に記載の電位差計測方法。   The potential difference measuring method according to claim 15, wherein the sample is whole blood, serum, plasma, urine, or body fluid. 前記測定電極により有機物質を測定することを特徴とする請求項11に記載の電位差計測方法。   The potential difference measuring method according to claim 11, wherein an organic substance is measured by the measurement electrode. 前記測定電極により酸化還元物質を測定することを特徴とする請求項11に記載の電位差計測方法。   The potential difference measuring method according to claim 11, wherein the redox substance is measured by the measurement electrode. 前記測定溶液は前記測定電極と接触する部位と前記参照電極と接触する部位で概ね同一の組成であることを特徴とする請求項11に記載の電位差計測方法。   The potential difference measuring method according to claim 11, wherein the measurement solution has substantially the same composition at a site in contact with the measurement electrode and a site in contact with the reference electrode.
JP2010012518A 2010-01-22 2010-01-22 Potential difference measuring apparatus and potential difference measuring method Active JP5309042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012518A JP5309042B2 (en) 2010-01-22 2010-01-22 Potential difference measuring apparatus and potential difference measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012518A JP5309042B2 (en) 2010-01-22 2010-01-22 Potential difference measuring apparatus and potential difference measuring method

Publications (2)

Publication Number Publication Date
JP2011149878A true JP2011149878A (en) 2011-08-04
JP5309042B2 JP5309042B2 (en) 2013-10-09

Family

ID=44536986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012518A Active JP5309042B2 (en) 2010-01-22 2010-01-22 Potential difference measuring apparatus and potential difference measuring method

Country Status (1)

Country Link
JP (1) JP5309042B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238324A (en) * 2013-06-07 2014-12-18 住友金属鉱山株式会社 Calibration method of oxidation-reduction potential measurement, and standard solution for calibration used for the same
JP2018194467A (en) * 2017-05-18 2018-12-06 横河電機株式会社 pH sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176846A (en) * 1985-02-01 1986-08-08 Toshiba Corp Ion sensor body
JPS6435260A (en) * 1987-07-30 1989-02-06 Shimadzu Corp Chlorine ion concentration measuring apparatus
JPS6466558A (en) * 1987-09-07 1989-03-13 Toa Electronics Oxidizing/reducing potential difference
JPH02245650A (en) * 1989-03-17 1990-10-01 Matsushita Electric Ind Co Ltd Biosensor
JPH09500727A (en) * 1993-07-23 1997-01-21 ベーリンガー マンハイム コーポレーション Potentiometric biosensor and method of using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176846A (en) * 1985-02-01 1986-08-08 Toshiba Corp Ion sensor body
JPS6435260A (en) * 1987-07-30 1989-02-06 Shimadzu Corp Chlorine ion concentration measuring apparatus
JPS6466558A (en) * 1987-09-07 1989-03-13 Toa Electronics Oxidizing/reducing potential difference
JPH02245650A (en) * 1989-03-17 1990-10-01 Matsushita Electric Ind Co Ltd Biosensor
JPH09500727A (en) * 1993-07-23 1997-01-21 ベーリンガー マンハイム コーポレーション Potentiometric biosensor and method of using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238324A (en) * 2013-06-07 2014-12-18 住友金属鉱山株式会社 Calibration method of oxidation-reduction potential measurement, and standard solution for calibration used for the same
JP2018194467A (en) * 2017-05-18 2018-12-06 横河電機株式会社 pH sensor

Also Published As

Publication number Publication date
JP5309042B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
US8512546B2 (en) Method and apparatus for assay of electrochemical properties
US8128796B2 (en) Analyzer
RU2491549C2 (en) Amperometry with strobing and fast reading
JP5203620B2 (en) Method and apparatus for analyzing a sample in the presence of interfering substances
EP0255291B1 (en) Method and apparatus for electrochemical measurements
TWI449905B (en) Underfill detection system for a biosensor
JP5139538B2 (en) Potential difference sensor chip, potential difference measuring method, and measurement kit
JP4751302B2 (en) Potential difference sensor and analytical element
JP6539369B2 (en) Normalized calibration of analyte concentration determination
CN105784814A (en) Sensor based on concentration cell principle
JP5309042B2 (en) Potential difference measuring apparatus and potential difference measuring method
WO2006026120A1 (en) Potentiometric measurement of chloride concentration in an acidic solution
Abdullin et al. Determination of uric acid by voltammetry and coulometric titration
Fisicaro et al. Assessment of the uncertainty budget for the amperometric measurement of dissolved oxygen
Lewenstam Clinical analysis of blood gases and electrolytes by ion-selective sensors
JP2010002401A (en) Method and device for measuring hemoglobin
EP3887398A1 (en) Systems and methods for electrochemical point-of-care detection of hemoglobin
Kao et al. Serum cholinesterase assay using a reagent-free micro pH-stat
Yoon et al. Electrochemical Sensors
JPS62184345A (en) Method for measuring ion concentration
JP2024504830A (en) Electrochemical measurements with additional reference measurements
JP2010117183A (en) Potential difference measuring device
Razumiene et al. Development of multi-parameter analyser based on electrochemical urea biosensors and electrolyte electrodes for monitoring of hemodialysis patients
Jalali et al. Measurement of dissolved oxygen in biological fluids by using a modified carbon paste electrode
Buck et al. Experience with Direct-Dip Potentiometry of Blood Serum Electrolytes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350