JPS6147199A - Method of analysis using enzymatic reaction - Google Patents

Method of analysis using enzymatic reaction

Info

Publication number
JPS6147199A
JPS6147199A JP16914184A JP16914184A JPS6147199A JP S6147199 A JPS6147199 A JP S6147199A JP 16914184 A JP16914184 A JP 16914184A JP 16914184 A JP16914184 A JP 16914184A JP S6147199 A JPS6147199 A JP S6147199A
Authority
JP
Japan
Prior art keywords
temperature
diluted solution
substrate
concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16914184A
Other languages
Japanese (ja)
Other versions
JPH0478278B2 (en
Inventor
Yasushi Hateda
羽手田 靖
Ryoichi Motohashi
本橋 亮一
Tadami Morimura
森村 忠美
Yoshihiko Kakefuda
掛札 欣彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP16914184A priority Critical patent/JPS6147199A/en
Publication of JPS6147199A publication Critical patent/JPS6147199A/en
Publication of JPH0478278B2 publication Critical patent/JPH0478278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To prolong life of an enzyme, to prevent occurrence of foam, and to analyze a substrate in a diluted solution up to a high concentration in high accuracy, by feeding diluted solution which is passed through a pipe having permeability to air in a constant temperature bath kept at a specific temperature to a detector. CONSTITUTION:A diluted solution such as an aqueous solution of a phosphate, etc. in the container 9 is passed through the temperature controlling coil 6 consisting of a pipe, such as silicon rubber, etc. having permeability to air set in the constant temperature bath 5 kept at <=25 deg.C lower than room temperature by the pump 8 so that the temperature in the diluted solution is made constant, dissolved oxygen in the diluted solution is saturated, a solution containing a substrate such as beta-D glucose, etc. is added by the sample injector 7 to the diluted solution, which is introduced through the mixing coil 6' to the flow cell 2, and stirred by the stirrer 4 by rotating the rotor 3. Concentration of hydrogen peroxide which is generated a given time after being introduced is taken out as a peak electric potentially by the enzymatic electrode 1 such as glucose oxidase 50mU to which glucose oxidase is attached, and concentration of a substrate such as glucose, etc, is calculated through the amplifier 12 and the microcomputer 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 酵素反応を利用して天然物質等を定量分析することは、
その基質特異性から選択性が高く、常圧、温和な温度、
中性に近いpHで測定ができるので、食品分析、臨床分
析の分野で行なわれている。酵素を利用した分析法には
基本的に酵素反応が完全に終了した状態で測定を行なう
終点検出法と、酵素反応の平衡を利用して反応の途中で
測定を行なう反応速度検出法とがある。本発明はこの後
者に関する。
[Detailed Description of the Invention] [Industrial Application Field] Quantitative analysis of natural substances etc. using enzymatic reactions is
It has high selectivity due to its substrate specificity, and can be used at normal pressure and mild temperature.
Since it can be measured at a pH close to neutrality, it is used in the fields of food analysis and clinical analysis. Analytical methods using enzymes basically include end-point detection methods, which carry out measurements after the enzymatic reaction has completely completed, and reaction rate detection methods, which take advantage of the equilibrium of the enzymatic reaction and carry out measurements mid-way through the reaction. . The present invention relates to the latter.

〔従来の技術〕[Conventional technology]

酵素反応を利用して分析を行なう場合、分析条件を一定
にするという意味から、反応時間、温度等を精密に制御
する必要がある0酵素反応は温度依存性が高いため、温
度の制御は特に重要である。
When performing an analysis using an enzymatic reaction, it is necessary to precisely control the reaction time, temperature, etc. in order to keep the analysis conditions constant.Enzymatic reactions are highly temperature dependent, so temperature control is particularly important. is important.

分析を迅速に行なう必要や、臨床化学検査では測定温度
を生体温度に近ずけるという意味から、従来は室温より
高い30〜37C付近の一定の温度で分析が行なわれて
いる。この様な温度での分析をした場合、第一に温度が
高いため、酵素の失活が早くなり、長期間の使用が困難
となる。第二に室温より温度が高いため、液中に気泡が
発生しやすくなり、発生した気泡が、検出器の70−セ
ル内面や、固定化酵素膜面等に付着して分析値に誤差を
生ずる。第三に高温では酵素活性が高いためグルコース
オキシダーゼなどの酸化還元酵素を用いた場合、酵素消
費量が基質濃度の増加に比例して増加するが、基質濃度
がある一定以上になると、溶存酸素を消費しつくして、
検量線が直線がらはずれ、この傾向は温度が高い程低い
基質濃度で発生し、生体サンプルや食品サンプルなどは
基質グルコース濃度が高いため100倍程度の希釈を必
要とするが、測定濃度が高いと、直線範囲から外れた測
定となり不都合を生ずる問題があった0〔発明が解決し
ようとする問題点〕 本発明は上記の問題を改良し、酵素の寿命を延ばし、基
質の測定可能濃度範囲を広げ、検出器中での気泡の発生
を防いで従来より精度よく分析できる方法を供すること
を目的とするものである。
Conventionally, analysis has been carried out at a constant temperature in the vicinity of 30 to 37 C, which is higher than room temperature, because of the need to perform analysis quickly and to bring the measurement temperature close to the body temperature in clinical chemistry tests. When performing analysis at such temperatures, firstly, the high temperature causes the enzyme to deactivate quickly, making long-term use difficult. Second, since the temperature is higher than room temperature, bubbles are likely to form in the liquid, and the generated air bubbles may adhere to the inner surface of the 70-cell of the detector or the surface of the immobilized enzyme membrane, causing errors in analytical values. . Third, enzyme activity is high at high temperatures, so when using redox enzymes such as glucose oxidase, the amount consumed by the enzyme increases in proportion to the increase in substrate concentration, but when the substrate concentration exceeds a certain level, dissolved oxygen Consuming everything,
The calibration curve deviates from the straight line, and this tendency occurs at lower substrate concentrations as the temperature gets higher. Biological samples and food samples have high substrate glucose concentrations, so they need to be diluted about 100 times, but when the measured concentration is high, [Problems to be solved by the invention] The present invention improves the above problems, extends the life of the enzyme, and widens the measurable concentration range of the substrate. The purpose of this invention is to provide a method that prevents the generation of bubbles in the detector and allows for more accurate analysis than conventional methods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、この目的を達するため、酵素反応を利用して
反応速度検出法により基質濃度を測定する分析方法にお
いて、検出器を配置した恒温槽を室温以下の250また
はこれより下の所定の温度に保ち、希釈液をこの恒温槽
内に配置した空気透過性の管を通して該温度に調温して
検出器に供給するようにしたものである。
In order to achieve this object, the present invention provides an analytical method for measuring a substrate concentration by a reaction rate detection method using an enzymatic reaction, in which a constant temperature bath in which a detector is placed is kept at a predetermined temperature of 250℃ or lower than room temperature. The temperature of the diluted liquid is controlled to the same temperature and supplied to the detector through an air-permeable tube placed in the constant temperature bath.

酵素反応を利用して反応速度検出法により基質濃度を分
析する分析計には、固定化酵素を用いるものと、溶液状
の酵素を用いるものと力(ある。固定化酵素を用いる分
析計におpzでは、酵素を固定化した担体をカラムに充
填したものを用I/)る場合、酵素的に活性な内壁をも
つナイロンチューブに酵素を固定化して用いる場合、又
&まイヒ学的あるIz)!1物理的方法により高分子膜
に固定する場合など力(ある。また検出器としては、電
気化学的検出器・光学的検出器などを用いる。これら検
出器Gま固定化酵素を用いる場合にも溶液状の酵素を用
!/)る場合にも用いられる。本発明は上記何れの場合
Gこも適用できるものである。空気透過性の管としてC
まポリ四フッ化エチレンやシリコンゴム製のものを用い
ることができる。
Analyzers that use enzyme reactions to analyze substrate concentrations using reaction rate detection methods include those that use immobilized enzymes, those that use enzymes in solution, and those that use enzymes in solution. For pz, when using a column filled with a carrier on which an enzyme is immobilized, when using a column packed with a carrier on which an enzyme is immobilized, when using a nylon tube with an enzyme immobilized on an enzymatically active inner wall, and when using a column filled with a carrier on which an enzyme is immobilized, )! 1. When immobilizing the enzyme on a polymer membrane by a physical method, there is a force (there is a force). Also, as a detector, an electrochemical detector, an optical detector, etc. are used. It is also used when using enzymes in solution form!/). The present invention can be applied to any of the above cases. C as air permeable tube
Alternatively, one made of polytetrafluoroethylene or silicone rubber can be used.

〔作用〕[Effect]

本発明方□法において恒温槽を室温以下の25rまたは
25C以下の温度にして分析を行なうようGこしたのは
、従来行なわれている分析湿度で0才、酵素の失活が早
く寿命が短かいため、酵素の活性を長時間維持できるよ
うにすると共に基質濃度力ダ下言己実施例に示すように
従来より高濃度まで分析可能とし分析範囲を広げること
ができるようにするためである。25C以下の室温より
低い温度で分析を行なうと、室温に保存された希釈液が
温度低下により、液中に存在する気泡が消失しA検出器
や・フローセル、固定化酵素等の表面に気泡が発生する
ことがなく、精度の良い分析ができるようにするためで
ある。
In the method of the present invention, the temperature of the constant temperature bath is set to 25r or 25C or lower, which is below room temperature, for analysis. This is to enable enzyme activity to be maintained for a long period of time, and to enable analysis of substrate concentrations up to higher concentrations than conventional ones, as shown in the following examples, and to broaden the analytical range. If analysis is performed at a temperature lower than room temperature (25C or less), the temperature of the diluted solution stored at room temperature will drop, causing the bubbles present in the solution to disappear and forming bubbles on the surface of the A detector, flow cell, immobilized enzyme, etc. This is to prevent this from occurring and to enable highly accurate analysis.

溶液の飽和溶存酸素量は、温度が低いほど多くなる。希
釈液を室温より冷すと、液中への溶存酸素を増すことが
できるので、恒温槽内に配置した空気透過性の管を通し
て希釈液を検出器に送る途中で管を通して希釈液の溶存
酸素を飽和させることにより、酸化還元反応に必要な酸
素を供給し高濃度の基質に対する分析を可能にし分析範
囲を広げることを可能としたものである。
The saturated dissolved oxygen amount of the solution increases as the temperature decreases. When the diluted solution is cooled below room temperature, the amount of dissolved oxygen in the solution can be increased, so when the diluted solution is sent to the detector through an air-permeable tube placed in a constant temperature bath, the dissolved oxygen in the diluted solution is By saturating the oxygen, the oxygen necessary for the redox reaction is supplied, making it possible to analyze highly concentrated substrates and expand the analytical range.

〔実施例〕〔Example〕

第1図に示す容器9内に入れたPH5,6の燐酸塩水溶
液を希釈液とし、これをポンプ8により毎分6 mlの
流量で、一定温度に保持した恒温槽5内に配置したシリ
コンゴム製(内径2鴎、外径3間、長さ7m)、の調温
コイル6を通過させ・希釈液の温度を一定量にすると共
に希釈液中の溶存酸素を飽和せしめた。恒温槽5中には
、調温コイル6の他サンプルインジェクター、混合コイ
ル6’、攪拌子3を入れたフローセル、フローセル20
こ装着した酵素電極1が収納されており、調温コイル6
を通した希釈液は、サンプルインジェクター7で、β−
Dグルコース溶液を8μb添加し、混合コイル6′を通
してフローセル2内に一定量導入しスターラー4.で攪
拌子aを回転して攪拌した0グルフースオキシダーゼ固
定化膜を取付けたグルフースオキシダーゼ5Q mUの
酵素電極1により、フローセル2内に導入してから一定
時間後発生した過酸化水素濃度をピーク電位として取り
出し、微分回路を具えた増幅器12で電流値として検出
した。この結果を増幅器12に接続したマイクロコンヒ
゛ユータ1aに入力し、グルコース濃度を計算した。測
定後の70−セル2内の液はポンプ10で廃液タンク1
1に排出し基質濃度を変えて試験した。このときのピー
ク電位とグルコース濃度との関係を第2図に示す。希釈
倍率は約500倍である。
A phosphate aqueous solution with a pH of 5.6 placed in a container 9 shown in FIG. The diluted liquid was passed through a temperature control coil 6 made by the company (inner diameter 2 mm, outer diameter 3 mm, length 7 m) to maintain the temperature of the diluted liquid at a constant level and to saturate the dissolved oxygen in the diluted liquid. In the thermostat 5, there are a temperature control coil 6, a sample injector, a mixing coil 6', a flow cell containing a stirrer 3, and a flow cell 20.
The attached enzyme electrode 1 is stored in the temperature control coil 6.
The diluted solution passed through the β-
Add 8 μb of D-glucose solution, introduce a certain amount into the flow cell 2 through the mixing coil 6', and stirrer 4. The hydrogen peroxide concentration generated after a certain period of time after being introduced into the flow cell 2 is peaked by the enzyme electrode 1 of the glufus oxidase 5Q mU with the glufus oxidase immobilized membrane attached. It was taken out as a potential and detected as a current value with an amplifier 12 equipped with a differentiation circuit. This result was input into the microcomputer 1a connected to the amplifier 12, and the glucose concentration was calculated. After measurement, the liquid in 70-cell 2 is pumped to waste liquid tank 1 by pump 10.
1, and the substrate concentration was varied. FIG. 2 shows the relationship between the peak potential and glucose concentration at this time. The dilution factor is approximately 500 times.

第2図において、25 t:: 、 10 Cの曲線は
室温を28C,20tZ’とし恒温槽を250.loC
としたときのもの、35Cの曲線は室温25Cで、恒温
槽を35Cとしたときのものである。0 この結果によれば、低温はど直線部分が伸びており、2
5Cの曲線では35trの場合より約3%110Cでは
35t11′の場合より約11%濃い基質まで精度よく
測定できることが判る。
In FIG. 2, the curve of 25 t::, 10 C assumes that the room temperature is 28 C, 20 tZ' and the constant temperature bath is 250. loC
The 35C curve is obtained when the room temperature is 25C and the constant temperature oven is 35C. 0 According to this result, the straight line part is elongated at low temperature, and 2
It can be seen that in the 5C curve, it is possible to accurately measure substrates that are about 3% thicker than in the case of 35tr, and at 110C, about 11% thicker than in the case of 35t11'.

〔発明の効果〕〔Effect of the invention〕

本発明分析方法によれば、従来より高濃度の基質を分析
でき分析濃度範囲を拡大できると共に気泡の発生を防止
できることから分析値をより正確ならしめることができ
、固定化酵素を用いる場合には恒温槽の温度が従来より
低いだけ寿命を延長できる。
According to the analytical method of the present invention, it is possible to analyze substrates with higher concentrations than before, expand the analytical concentration range, and prevent the generation of bubbles, making analytical values more accurate. The lifespan can be extended as the temperature of the thermostatic chamber is lower than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例に用いた分析装置の概略図
、第2図は実施例の結果をピーク電位とグルコース濃度
の関係の曲線として示した図である。 第1図 児2区 グルコ−ス濃度(%ン 手続補正書(自発) 1.事件の表示 昭和59 年 特 許 願第169141号2、発明の
名称  酵素度応を利用した分析方法3、 補正をする
者 事件との関係 出 願 人 4、代理人 6 補正により増加する発明の数 7、補正の対象 (1)明細書2頁18行の「酵素消費量」を「酸素消費
量」と訂正する。 (2)同 6頁13〜14行の「過酸化水素濃度」の「
濃度」を削除する。 (3)図面第1図中の「6混合コイル」を「6′混合コ
イル」と別紙の通り訂正します。
FIG. 1 is a schematic diagram of an analyzer used in an example of the method of the present invention, and FIG. 2 is a diagram showing the results of the example as a curve of the relationship between peak potential and glucose concentration. Figure 1 Glucose concentration in child's 2nd area (%) Procedural amendment (voluntary) 1. Indication of the case 1982 Patent Application No. 169141 2, Title of the invention Analytical method using enzymatic reaction 3, Amendment Applicant 4, Agent 6 Number of inventions increased by amendment 7, subject of amendment (1) “Enzyme consumption” on page 2, line 18 of the specification is corrected to “oxygen consumption” (2) "Hydrogen peroxide concentration" on page 6, lines 13-14.
Delete "Concentration". (3) "6 Mixing Coil" in Figure 1 of the drawing has been corrected to "6' Mixing Coil" as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] (1)酵素反応を利用して反応速度検出法により基質濃
度を測定する分析方法において、検出器を配置した恒温
槽を室温以下の25℃またはこれより下の所定の温度に
保ち、希釈液をこの恒温槽内に配置した空気透過性の管
を通して該温度に調温して検出器に供給することを特徴
とする酵素反応を利用した分析方法。
(1) In an analytical method that uses an enzymatic reaction to measure the substrate concentration using a reaction rate detection method, the thermostat in which the detector is placed is kept at a predetermined temperature of 25°C or lower than room temperature, and the diluted solution is An analysis method using an enzyme reaction characterized by supplying the temperature to the detector through an air-permeable tube placed in the constant temperature bath.
JP16914184A 1984-08-13 1984-08-13 Method of analysis using enzymatic reaction Granted JPS6147199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16914184A JPS6147199A (en) 1984-08-13 1984-08-13 Method of analysis using enzymatic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16914184A JPS6147199A (en) 1984-08-13 1984-08-13 Method of analysis using enzymatic reaction

Publications (2)

Publication Number Publication Date
JPS6147199A true JPS6147199A (en) 1986-03-07
JPH0478278B2 JPH0478278B2 (en) 1992-12-10

Family

ID=15881043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16914184A Granted JPS6147199A (en) 1984-08-13 1984-08-13 Method of analysis using enzymatic reaction

Country Status (1)

Country Link
JP (1) JPS6147199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518964A (en) * 2012-06-06 2015-07-06 アトークアント・ダイアグノスティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングAttoquant Diagnostics Gmbh Method for measuring peptide degradation products of proteolytic cascades in blood samples

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518964A (en) * 2012-06-06 2015-07-06 アトークアント・ダイアグノスティクス・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングAttoquant Diagnostics Gmbh Method for measuring peptide degradation products of proteolytic cascades in blood samples

Also Published As

Publication number Publication date
JPH0478278B2 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
US4340448A (en) Potentiometric detection of hydrogen peroxide and apparatus therefor
Huang et al. Amperometric determination of total cholesterol in serum, with use of immobilized cholesterol ester hydrolase and cholesterol oxidase
Khue et al. Immobilized enzyme electrode for creatinine determination in serum
De Beer et al. Gradients in immobilized biological systems
Kirstein et al. Enzyme electrode for urea with amperometric indication: Part I—Basic principle
Kawashima et al. Potentiometric enzyme electrode for uric acid
Pemberton et al. An assay for the enzyme N-acetyl-β-D-glucosaminidase (NAGase) based on electrochemical detection using screen-printed carbon electrodes (SPCEs)
US5306413A (en) Assay apparatus and assay method
Reddy et al. Ion exchanger modified PVC membranes—selectivity studies and response amplification of oxalate and lactate enzyme electrodes
Thévenot Problems in adapting a glucose-oxidase electrochemical sensor into an implantable glucose-sensing device
Kalaycı et al. Preparation and application of a new glucose sensor based on iodide ion selective electrode
JPS6147199A (en) Method of analysis using enzymatic reaction
Han et al. Clinical determination of glucose in human serum by a tomato skin biosensor
Váradi et al. Application of biosensor with amperometric detection for determining ethanol
Duffy et al. A conductometric device for monitoring of enzyme-catalyzed reactions
JPS6328264B2 (en)
JP2001242133A (en) Disposable bun sensor and production method thereof
JPH0555816B2 (en)
Zinchenko et al. Highly selective amperometric biosensor for uric acid determination in real samples
Begum et al. Nylon shavings enzyme reactor for batch determination of urea
EP0405583A1 (en) Method and apparatus for flow analysis with enzyme electrode
JPH0480651A (en) Flow type measuring apparatus using immobilized enzyme
JP3319008B2 (en) Measuring device and measuring method
Kolev et al. Mathematical modelling of single-line flow-injection analysis systems with single-layer enzyme electrode detection Part 3. Experimental verification of the model
JPH0427858A (en) Method and apparatus for measuring alcohol