JPH0582903B2 - - Google Patents

Info

Publication number
JPH0582903B2
JPH0582903B2 JP60298143A JP29814385A JPH0582903B2 JP H0582903 B2 JPH0582903 B2 JP H0582903B2 JP 60298143 A JP60298143 A JP 60298143A JP 29814385 A JP29814385 A JP 29814385A JP H0582903 B2 JPH0582903 B2 JP H0582903B2
Authority
JP
Japan
Prior art keywords
electrode
enzyme
enzyme electrode
concentration
voltage application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60298143A
Other languages
Japanese (ja)
Other versions
JPS62156553A (en
Inventor
Teruo Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP60298143A priority Critical patent/JPS62156553A/en
Publication of JPS62156553A publication Critical patent/JPS62156553A/en
Publication of JPH0582903B2 publication Critical patent/JPH0582903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、濃度測定装置に関する。さらに詳
細には、酵素電極を用い、血液等の試料液中のグ
ルコース等の被検物質の濃度を測定する装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a concentration measuring device. More specifically, the present invention relates to an apparatus that uses an enzyme electrode to measure the concentration of a test substance such as glucose in a sample liquid such as blood.

〈従来の技術〉 従来から、試料液中の被検物質を定量する手段
として、電極上に固定化酵素膜を形成した酵素電
極が広く用いられている。この酵素電極は、試料
中に含まれる種々の被検物質を直接、温和な条件
下に分析できるセンサーとして非常に優れたもの
で、現在、医療、食品、環境計測等の広い分野で
使用され、また研究されている。
<Prior Art> Enzyme electrodes, in which an immobilized enzyme film is formed on an electrode, have been widely used as a means for quantifying a test substance in a sample solution. This enzyme electrode is an excellent sensor that can directly analyze various test substances contained in samples under mild conditions, and is currently used in a wide range of fields such as medicine, food, and environmental measurement. It is also being researched.

このような酵素電極を用いて被検物質の濃度を
定量する方法としては、固定化酵素膜での酵素反
応で生成した物質を測定する方法と酵素反応で消
費された物質を測定する方法が知られている。ま
た、酵素電極に用いられる電極としては、電圧値
の変化をもつて測定するポテンシオメトリー型と
電流値の変化をもつて測定するアンペロメトリー
型が知られている。アンペロトメトリー型電極を
使用し、固定化酵素膜での酵素反応で生成した物
質を測定する酵素電極の例としては、例えば、過
酸化水素電極上にグルコースオキシダーゼ酵素
(以下、GODと称する)を固定化した膜(以下、
固定化GOD膜と称する)を形成し、試料液中の
グルコース濃度を測定するグルコースセンサー等
が挙げられる。
As methods for quantifying the concentration of a test substance using such an enzyme electrode, there are two known methods: one that measures the substance produced by the enzyme reaction on an immobilized enzyme membrane, and the other that measures the substance consumed in the enzyme reaction. It is being Further, as electrodes used for enzyme electrodes, there are known a potentiometry type that measures by changing the voltage value and an amperometric type which measures by changing the current value. An example of an enzyme electrode that uses an amperotometric electrode to measure substances produced by an enzyme reaction on an immobilized enzyme membrane is, for example, a glucose oxidase enzyme (hereinafter referred to as GOD) placed on a hydrogen peroxide electrode. Immobilized membrane (hereinafter referred to as
Examples include a glucose sensor that forms an immobilized GOD membrane (referred to as an immobilized GOD membrane) and measures the glucose concentration in a sample solution.

この種の酵素電極を用いる濃度測定装置は、通
常、酵素電極と酵素電極からの出力電流値を測定
する電流検出手段からなり、その測定機構を、例
えば、上記のグルコースセンサーを例にとつて説
明すると、次の酵素反応を利用するものである。
A concentration measuring device using this type of enzyme electrode usually consists of an enzyme electrode and a current detection means for measuring the output current value from the enzyme electrode.The measurement mechanism will be explained using the above-mentioned glucose sensor as an example. Then, the following enzymatic reaction is used.

グルコース+O2+H2OGOD ―――――→ グルコン酸+H2O2 すなわち、GODの存在下、グルコースが溶存
酸素により酸化され、グルコン酸に変化する際の
過酸化水素の発生量を、過酸化水素電極で電流値
に変換し、その電流値を電流検出手段で測定し、
あらかじめ求められた検量線より、その値を用い
てグルコース濃度を求めるものである。この種の
他の酵素電極を用いる濃度測定装置も同様な機構
に基づき、被検物質および酵素反応生成物のそれ
ぞれに応じた固定化酵素膜および電極を使用し
て、同様にして被検物質の濃度を測定する。
Glucose + O 2 + H 2 OGOD ――――→ Gluconic acid + H 2 O 2 In other words, in the presence of GOD, the amount of hydrogen peroxide generated when glucose is oxidized by dissolved oxygen and converted to gluconic acid is calculated as peroxidation. Convert it to a current value with a hydrogen electrode, measure the current value with a current detection means,
The glucose concentration is determined using a calibration curve determined in advance. Concentration measurement devices using other enzyme electrodes of this type are based on a similar mechanism and use immobilized enzyme membranes and electrodes that are appropriate for the analyte and enzyme reaction product. Measure concentration.

〈発明が解決しようとする問題点〉 従来、このような酵素電極を用いた試料液中の
濃度測定装置にあつては、酵素反応で生成した物
質の一部しか電極で検知されておらず、また通
常、試料液は、酵素電極の測定可能な濃度範囲の
制限、酵素反応の最適PH等の関係から緩衝液で希
釈されており、試料液中の被検物質の濃度は低い
ので、電極からの出力電流は小さく、測定精度の
信頼性に欠ける。特に、電極面積の小さな小型の
センサーでは、出力電流が微弱になり、測定回路
の増幅器に特別の設計が必要となるので高価にな
る。
<Problems to be Solved by the Invention> Conventionally, in a device for measuring the concentration in a sample liquid using such an enzyme electrode, only a part of the substance produced by the enzyme reaction is detected by the electrode. In addition, the sample solution is usually diluted with a buffer solution due to the limitations of the measurable concentration range of the enzyme electrode and the optimum pH for the enzyme reaction. The output current is small and the measurement accuracy is unreliable. In particular, a small sensor with a small electrode area has a weak output current and requires a special design for the amplifier in the measurement circuit, making it expensive.

従つて、電極からの出力電流が大きな濃度測定
装置が望まれている。
Therefore, a concentration measuring device with a large output current from the electrode is desired.

〈発明の目的〉 この発明は、上記の問題点に鑑みなされたもの
で、従来からの酵素電極を使用しながら、電極か
らの出力電流を増大できる、試料液中の被検物質
の濃度測定装置を提供することを目的とする。
<Object of the Invention> The present invention was made in view of the above-mentioned problems, and provides a device for measuring the concentration of an analyte in a sample liquid, which uses a conventional enzyme electrode but can increase the output current from the electrode. The purpose is to provide

〈問題を解決するための手段〉 上記の問題点を解決すべくなされた、この発明
の濃度測定装置は、固定化酵素膜と該固定化酵素
膜での酵素反応による生成物を測定するアンペロ
メトリー型電極とを備えた酵素電極と、該酵素電
極からの出力電流値を検出する電流検出手段と、
酵素電極への電圧印加を制御する電圧印加制御手
段と、酵素電極への試料液の供給開始を検出する
供給開始検出手段と、該供給開始検出手段の検出
信号に基づき前記の電圧印加制御手段に対して酵
素電極への電圧印加を一定時間停止させる停止信
号を出力する停止信号出力手段とから構成され、
上記の構成に基づき、酵素電極への電圧印加を、
酵素電極への試料液供給開始から一定時間停止す
ることを特徴とするものである。
<Means for Solving the Problems> The concentration measuring device of the present invention, which has been made to solve the above-mentioned problems, includes an immobilized enzyme membrane and an amperometer for measuring the products of the enzymatic reaction on the immobilized enzyme membrane. an enzyme electrode including a metering type electrode; a current detection means for detecting an output current value from the enzyme electrode;
a voltage application control means for controlling voltage application to the enzyme electrode; a supply start detection means for detecting the start of supply of the sample liquid to the enzyme electrode; and a voltage application control means for controlling the voltage application control means based on a detection signal from the supply start detection means. and stop signal output means for outputting a stop signal that stops the voltage application to the enzyme electrode for a certain period of time.
Based on the above configuration, voltage application to the enzyme electrode is
This is characterized by stopping the supply of sample liquid to the enzyme electrode for a certain period of time after the start of supply.

この発明において使用される酵素電極は、固定
化酵素膜と該固定化酵素膜での酵素反応による生
成物を測定するアンペロメトリー型電極で構成さ
れるものであれば、特に限定されず、例えば、前
記のグルコースセンサーの他に、過酸化水素電極
上に、ウリカーゼ、コレステロールオキシダー
ゼ、アルコールオキシダーゼ、乳酸オキシダー
ゼ、アミノ酸オキシダーゼ、ピルビン酸オキシダ
ーゼ、コリンオキシダーゼ等の酵素をそれぞれ固
定化した膜が設けられた尿酸センサー、コレステ
ロールセンサー、アルコールセンサー、乳酸セン
サー、アミノ酸センサー、ピルビン酸センサー、
コリンセンサー等が挙げられる。
The enzyme electrode used in this invention is not particularly limited as long as it is composed of an immobilized enzyme membrane and an amperometric electrode that measures the product of the enzymatic reaction on the immobilized enzyme membrane. For example, In addition to the above-mentioned glucose sensor, a uric acid sensor is provided with a membrane on which enzymes such as uricase, cholesterol oxidase, alcohol oxidase, lactate oxidase, amino acid oxidase, pyruvate oxidase, and choline oxidase are immobilized on the hydrogen peroxide electrode. sensor, cholesterol sensor, alcohol sensor, lactate sensor, amino acid sensor, pyruvate sensor,
Examples include cholinergic sensors.

〈作用〉 この発明は、上記の構成よりなり、酵素電極へ
の電圧の印加が、試料液が供給されてから一定時
間停止しており、その間、電極上での酸化、還元
反応が起らないので、固定化酵素膜で生成された
酵素反応生成物は消費されず電極上に蓄積されて
高濃度となる。従つて、酵素電極へ電圧を再印加
した時の電極からの出力電流値を大きくすること
ができる。
<Operation> This invention has the above-mentioned configuration, and the application of voltage to the enzyme electrode is stopped for a certain period of time after the sample solution is supplied, and during that time, oxidation and reduction reactions do not occur on the electrode. Therefore, the enzymatic reaction products generated on the immobilized enzyme membrane are not consumed but accumulate on the electrode, resulting in a high concentration. Therefore, when voltage is reapplied to the enzyme electrode, the output current value from the electrode can be increased.

前記の電極上に蓄積される酵素反応生成物量
は、酵素電極への電圧印加停止時間、その他の測
定条件を一定にすれば、試料液中の被検物質の濃
度に比例するので、酵素電極からの出力電流を測
定することにより試料液中の被検物質の濃度を求
めることができる。
The amount of the enzyme reaction product accumulated on the electrode is proportional to the concentration of the analyte in the sample solution if the voltage application stop time to the enzyme electrode and other measurement conditions are kept constant. By measuring the output current of the sample, the concentration of the test substance in the sample solution can be determined.

〈実施例〉 以下、図面に基づき、この発明をより詳細に説
明する。
<Example> Hereinafter, the present invention will be explained in more detail based on the drawings.

第1a図は、この発明にかかる装置の一実施例
を示す概略図で、この実施例では、酵素電極1と
して、前記の過酸化水素電極上に固定化GOD膜
が形成されたグルコースセンサーが使用されてい
る。該酵素電極1の検知部はフローセル2内に露
出しており、フローセル2には、キヤリアーとし
ての緩衝液および被検物質としてのグルコースを
含有する試料液Sが送液される。フローセル2の
送液側端部に、発光素子3aと受光素子3bとか
らなる試料液の供給開始検出手段3が設けられ、
フローセル2に緩衝液が充填された状態から、試
料液Sが注入され始めると光の透過率の変化が生
ずることから、試料液の供給が開始されたことを
検知する。該検出手段3からの出力信号は、停止
信号出力手段4aに入力され、該信号に基づき電
圧印加制御手段4bにより酵素電極1への電圧印
加が一定時間停止される。グルコースを含有する
試料液Sはフローセル2中を通液し、グルコース
は酵素電極1の固定化GOD膜で酸化され、生成
物である過酸化水素は膜内に取込まれる。この
際、酵素電極1への電圧印加が一定時間停止され
ているので、電極上での酸化、還元反応は停止し
ており、取込まれた過酸化水素は消費されること
なく膜内に蓄積される。
FIG. 1a is a schematic diagram showing an embodiment of the apparatus according to the present invention. In this embodiment, a glucose sensor in which an immobilized GOD film is formed on the hydrogen peroxide electrode is used as the enzyme electrode 1. has been done. The detection portion of the enzyme electrode 1 is exposed in a flow cell 2, and a sample solution S containing a buffer solution as a carrier and glucose as a test substance is fed to the flow cell 2. A sample liquid supply start detection means 3 consisting of a light emitting element 3a and a light receiving element 3b is provided at the liquid sending side end of the flow cell 2,
When the sample liquid S starts to be injected from the state where the flow cell 2 is filled with the buffer solution, a change in light transmittance occurs, so that it is detected that the supply of the sample liquid has started. The output signal from the detection means 3 is input to the stop signal output means 4a, and based on this signal, the voltage application control means 4b stops the voltage application to the enzyme electrode 1 for a certain period of time. A sample solution S containing glucose is passed through the flow cell 2, the glucose is oxidized by the immobilized GOD membrane of the enzyme electrode 1, and the product hydrogen peroxide is taken into the membrane. At this time, since the voltage application to the enzyme electrode 1 is stopped for a certain period of time, the oxidation and reduction reactions on the electrode are stopped, and the hydrogen peroxide taken in is not consumed and accumulates in the membrane. be done.

このようにして、一定時間酵素電極1への電圧
印加を停止した後、酵素電極1への電圧を再印加
する。膜内の過酸化水素は高濃度となつており、
電圧を再印加したときに、大きな出力電流値を得
ることできる。
In this way, after stopping the voltage application to the enzyme electrode 1 for a certain period of time, the voltage is reapplied to the enzyme electrode 1. The hydrogen peroxide inside the membrane is highly concentrated,
When the voltage is reapplied, a large output current value can be obtained.

酵素電極1からの出力電流は、電流検出手段5
に入力され、電流値が求められ、その値をあらか
じめ作成された検量線と比較し、試料液S中の被
検物質たるグルコースの濃度が算出される。
The output current from the enzyme electrode 1 is detected by the current detection means 5.
is input, the current value is determined, and this value is compared with a calibration curve prepared in advance to calculate the concentration of glucose, which is the test substance in the sample liquid S.

第1b図は、この発明にかかる濃度測定装置の
他の実施例を示す概略図で、酵素電極1、フロー
セル2、停止信号出力手段4a、電圧印加制御手
段4bおよび電流検出手段5は、第1a図の実施
例と同様なものを使用しており、同一の部材には
同一の番号を付してある。この実施例では、試料
液容器6中の試料液Sを吸引ポンプ7で吸引し、
試料液Sをフローセル2へ送液する。また、この
例にあつては、試料液供給開始は、吸引ポンプ7
の作動に基づいて、供給開始検出手段3で検知さ
れ、この信号により停止信号出力手段4aおよび
電圧印加制御手段4bが作動し、酵素電極1への
電圧印加が停止される。以後、第1a図の実施例
と同様にして測定される。
FIG. 1b is a schematic diagram showing another embodiment of the concentration measuring device according to the present invention. Components similar to those in the illustrated embodiment are used, and the same members are given the same numbers. In this embodiment, the sample liquid S in the sample liquid container 6 is sucked by the suction pump 7,
The sample solution S is sent to the flow cell 2. In addition, in this example, the sample liquid supply is started by the suction pump 7.
Based on the operation, the supply start detection means 3 detects this, and this signal activates the stop signal output means 4a and the voltage application control means 4b, and the voltage application to the enzyme electrode 1 is stopped. Thereafter, measurements are made in the same manner as in the embodiment shown in FIG. 1a.

前記の供給開始検出手段3は、上記の実施例の
手段に限定されず、被検物質の特性に応じて適宜
選択でき、例えば、屈折率の変化を検知する方
法、電気伝導度の変化を検知する方法等が挙げら
れる。
The supply start detection means 3 is not limited to the means in the above embodiments, and can be selected as appropriate depending on the characteristics of the test substance, for example, a method of detecting a change in refractive index or a method of detecting a change in electrical conductivity. Examples include a method to do so.

酵素電極1への電圧印加停止時間は、使用され
る酵素電極のサイズ、固定化酵素膜の透過特性、
送液速度等により異なり、実験的に最適時間を求
める。
The voltage application stop time to the enzyme electrode 1 depends on the size of the enzyme electrode used, the permeation characteristics of the immobilized enzyme membrane,
The optimal time is determined experimentally, depending on the liquid feeding speed, etc.

次に、具体例をもつて、この発明を説明する。 Next, the present invention will be explained using specific examples.

具体例 1 前記の第1a図において、フローセルとして管
径3mm、供給開始検出手段から酵素電極までの管
長が5mm、酵素電極として過酸化水素電極(YSI
社製、No.110187)上に固定化GOD膜(市販品)
が設けられたグルコースセンサーを用いた装置を
使用した。
Specific Example 1 In Figure 1a above, the flow cell has a tube diameter of 3 mm, the tube length from the supply start detection means to the enzyme electrode is 5 mm, and the enzyme electrode is a hydrogen peroxide electrode (YSI).
GOD membrane (commercial product) immobilized on
A device using a glucose sensor was used.

室温にて、濃度100mg/dlのグルコース水溶液
150ml/hr.の流速で送液した。酵素電極の電圧印
加停止時間を試料液供給後8秒とし、その後、
0.7Vの電圧を印加した。試料供給後の酵素電極
からの出力電流を測定した。その結果を第2図に
示す。
Glucose aqueous solution with a concentration of 100 mg/dl at room temperature
The liquid was fed at a flow rate of 150 ml/hr. The voltage application stop time of the enzyme electrode was 8 seconds after the sample solution was supplied, and then,
A voltage of 0.7V was applied. The output current from the enzyme electrode after sample supply was measured. The results are shown in FIG.

比較として、酵素電極への電圧印加を一時的に
停止しない、従来法における酵素電極からの出力
電流の測定結果も併せて示した。
For comparison, the measurement results of the output current from the enzyme electrode in a conventional method in which the voltage application to the enzyme electrode is not temporarily stopped are also shown.

具体例 2 具体例1と同様な装置および方法で、種々のグ
ルコース濃度水溶液をフローセルに送液し、それ
ぞれの濃度における酵素電極からの出力電流の最
大値を調べた。その結果を第3図に示す。
Specific Example 2 Using the same apparatus and method as in Specific Example 1, aqueous solutions of various glucose concentrations were fed to a flow cell, and the maximum value of the output current from the enzyme electrode at each concentration was investigated. The results are shown in FIG.

比較として、酵素電極への電圧印加を一時的に
停止しない、従来法における酵素電極からの出力
電流の最大値も併せて示した。
For comparison, the maximum value of the output current from the enzyme electrode in a conventional method in which the voltage application to the enzyme electrode is not temporarily stopped is also shown.

第2図および第3図から明らかなように、この
発明の濃度測定装置による酵素電極からの出力電
流は、従来法による酵素電極からの出力電流に比
べ、はるかに大きく、また酵素電極の測定可能な
濃度範囲も従来法に比べて広い。尚、この発明は
上記の実施例に限定されるものではなく、例え
ば、フローセル2を用いることなく酵素電極1に
直接試料液を点着することが可能であるほか、こ
の発明の要旨を変更しない範囲内において種々の
設計変更を施すことが可能である。
As is clear from FIGS. 2 and 3, the output current from the enzyme electrode using the concentration measuring device of the present invention is much larger than the output current from the enzyme electrode using the conventional method, and the enzyme electrode can also be used for measurement. The concentration range is also wider than that of conventional methods. Note that the present invention is not limited to the above-described embodiments, and for example, it is possible to directly apply a sample liquid to the enzyme electrode 1 without using the flow cell 2, and the gist of the present invention is not changed. Various design changes can be made within the scope.

〈効果〉 以上のように、この発明の濃度測定装置によれ
ば、従来の酵素電極をそのまま使用しながら、酵
素電極からの出力電流を増加でき、かつ測定可能
な濃度範囲が広いという特有の効果を奏する。
<Effects> As described above, the concentration measuring device of the present invention has the unique effects of being able to increase the output current from the enzyme electrode and widening the measurable concentration range while using the conventional enzyme electrode as is. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図および第1b図は、それぞれ、この発
明の濃度測定装置の例を示す概略図、第2図は、
この発明の濃度測定装置および従来の装置におけ
る、酵素電極からの出力電流を示す図、第3図
は、この発明の濃度測定装置および従来の装置に
おける、種々のグルコース濃度水溶液に対する酵
素電極からの出力電流の最大値を示す図である。 1……酵素電極、2……フローセル、3a……
発光素子、3b……受光素子、3……供給開始検
出手段、4a……停止信号出力手段、4b……電
圧印加制御手段、5……電流検出手段、6……試
料液容器、7……吸引ポンプ、S……試料液。
FIG. 1a and FIG. 1b are schematic diagrams showing an example of the concentration measuring device of the present invention, and FIG.
FIG. 3 is a diagram showing the output current from the enzyme electrode in the concentration measuring device of the present invention and the conventional device. It is a figure showing the maximum value of electric current. 1... Enzyme electrode, 2... Flow cell, 3a...
Light emitting element, 3b... Light receiving element, 3... Supply start detection means, 4a... Stop signal output means, 4b... Voltage application control means, 5... Current detection means, 6... Sample liquid container, 7... Suction pump, S...Sample liquid.

Claims (1)

【特許請求の範囲】 1 固定化酵素膜と該固定化酵素膜での酵素反応
による生成物を測定するアンペロメトリー型電極
で構成された酵素電極と、 該酵素電極の出力電流値を検出する電流検出手
段と、 酵素電極への電圧印加を制御する電圧印加制御
手段と、 酵素電極への試料液の供給開始を検出する供給
開始検出手段と、 該供給開始検出手段の検出信号に基づき前記の
電圧印加制御手段に対して酵素電極への電圧印加
を一定時間停止させる停止信号を出力する停止信
号出力手段とからなることを特徴とする試料液中
の被検物質の濃度測定装置。 2 固定化酵素膜での酵素反応による生成物を測
定する電極が、過酸化水素電極である上記特許請
求の範囲第1項記載の試料液中の被検物質の濃度
測定装置。 3 被検物質がグルコースである上記特許請求の
範囲第1項または第2項記載の試料液中の被検物
質の濃度測定装置。
[Scope of Claims] 1. An enzyme electrode composed of an immobilized enzyme membrane and an amperometric electrode for measuring the product of the enzymatic reaction on the immobilized enzyme membrane, and detecting the output current value of the enzyme electrode. current detection means; voltage application control means for controlling voltage application to the enzyme electrode; supply start detection means for detecting the start of supply of sample liquid to the enzyme electrode; 1. An apparatus for measuring the concentration of an analyte in a sample liquid, comprising a stop signal output means for outputting a stop signal for stopping the voltage application to the enzyme electrode for a certain period of time to the voltage application control means. 2. The device for measuring the concentration of a test substance in a sample liquid according to claim 1, wherein the electrode for measuring the product of the enzyme reaction on the immobilized enzyme membrane is a hydrogen peroxide electrode. 3. The device for measuring the concentration of a test substance in a sample liquid according to claim 1 or 2, wherein the test substance is glucose.
JP60298143A 1985-12-27 1985-12-27 Concentration measuring instrument Granted JPS62156553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298143A JPS62156553A (en) 1985-12-27 1985-12-27 Concentration measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298143A JPS62156553A (en) 1985-12-27 1985-12-27 Concentration measuring instrument

Publications (2)

Publication Number Publication Date
JPS62156553A JPS62156553A (en) 1987-07-11
JPH0582903B2 true JPH0582903B2 (en) 1993-11-22

Family

ID=17855749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298143A Granted JPS62156553A (en) 1985-12-27 1985-12-27 Concentration measuring instrument

Country Status (1)

Country Link
JP (1) JPS62156553A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36268E (en) * 1988-03-15 1999-08-17 Boehringer Mannheim Corporation Method and apparatus for amperometric diagnostic analysis
US6576102B1 (en) 2001-03-23 2003-06-10 Virotek, L.L.C. Electrochemical sensor and method thereof
JP6055847B2 (en) * 2013-01-23 2016-12-27 株式会社日立ハイテクノロジーズ Electrochemical measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647497A (en) * 1979-09-26 1981-04-30 Mitsubishi Petrochemical Co Detergent composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647497A (en) * 1979-09-26 1981-04-30 Mitsubishi Petrochemical Co Detergent composition

Also Published As

Publication number Publication date
JPS62156553A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
US3933593A (en) Rate sensing batch analysis method
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
US7879617B2 (en) Method, device and apparatus for measuring the concentration of creatinine, and method, device and apparatus for measuring the amount of salt in urine using the same
JPH0617889B2 (en) Biochemical sensor
US7816145B2 (en) Method, device and apparatus for measuring the concentration of creatinine, and method, device and apparatus for measuring the amount of salt using the same
Fogh-Andersen et al. Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood
CN111398386A (en) Immobilized enzyme electrode, immobilized enzyme sensor and enzyme membrane anti-interference detection method thereof
US4045296A (en) Rate sensing batch analysis method and enzyme used therein
JP2690053B2 (en) Biosensor
JPH0582903B2 (en)
KR20130060963A (en) Method for making bio sensor element to detect glucose, bio sensor element and method for detecting glucose
Hu et al. An enzyme-chemically modified carbon paste electrode as a glucose sensor based on glucose oxidase immobilized in a polyaniline film
EP0310824B1 (en) Method and apparatus for the determination of two different substances in a sample using enzyme electrodes
JP4249549B2 (en) Sample measuring apparatus and sample measuring method
Christiansen et al. The slow penetration of enzymebased biosensors into clinical chemistry analysis
US20150027905A1 (en) Reagent composition for biosensors and biosensor comprising reagent layer formed of the same
JP3687789B2 (en) Substance concentration measuring device
Kriz et al. SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements
JP2781980B2 (en) Measurement electrode, method for measuring peroxide concentration and method for measuring substrate or organic substance concentration using the electrode
JPH1038844A (en) Online biosensor
JP2009281907A (en) Method, device and instrument for measuring creatinine, and method, device and instrument for measuring amount of salt in urine using those means
Guilbault Enzymatic glucose electrodes
JP2010008182A (en) Creatinine measuring method, creatinine measuring device, creatinine measuring apparatus, and urinary salinity measuring method, urinary salinity measuring device, and urinary salinity measuring apparatus using them
JPH0344653B2 (en)
JPH10262645A (en) Enzymatic sensor for measuring activity of alpha-amylase enzyme and measurement of activity of alpha-amylase enzyme

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees