JPH0344653B2 - - Google Patents

Info

Publication number
JPH0344653B2
JPH0344653B2 JP60068098A JP6809885A JPH0344653B2 JP H0344653 B2 JPH0344653 B2 JP H0344653B2 JP 60068098 A JP60068098 A JP 60068098A JP 6809885 A JP6809885 A JP 6809885A JP H0344653 B2 JPH0344653 B2 JP H0344653B2
Authority
JP
Japan
Prior art keywords
membrane
electrode
chemical species
aqueous solution
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60068098A
Other languages
Japanese (ja)
Other versions
JPS61226637A (en
Inventor
Fumio Mizutani
Giichi Tanabe
Keishiro Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60068098A priority Critical patent/JPS61226637A/en
Publication of JPS61226637A publication Critical patent/JPS61226637A/en
Publication of JPH0344653B2 publication Critical patent/JPH0344653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水溶液中に存在する化学種、特に、
糖類、アルコール類、カルボン酸類等の有機化合
物のうちの特定の化学種に対する膜の透過率およ
び拡散定数を、迅速、簡便、かつ精確に測定する
方法に関するものである。本発明の産業上の利用
分野としては、分離膜等の膜を製造する高分子化
学工業に、膜分離工程を利用する発酵工業、食品
工業、有機化学工業に、また、膜による有害成分
除去を利用した医療、福祉分野に好適である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to chemical species present in an aqueous solution, in particular,
The present invention relates to a method for rapidly, simply, and accurately measuring membrane permeability and diffusion constant for specific chemical species among organic compounds such as sugars, alcohols, and carboxylic acids. The industrial fields of application of the present invention include the polymer chemical industry that manufactures membranes such as separation membranes, the fermentation industry that uses membrane separation processes, the food industry, and the organic chemical industry. It is suitable for the medical and welfare fields in which it is used.

従来の技術 膜の透過率および拡散定数は、通常、膜を透過
した化学種の濃度変化の時間的割合を求めること
を介して測定される。このための従来の技術とし
ては、吸光度変化、屈折率変化、電導度変化等を
利用して濃度変化を見積る方法が知られている
(例えば、高分子学会編「高分子材料の試験法と
評価」(昭55.11.25)、培風館、p210)。しかしな
がら、これらの方法は、特定の化学種に対して選
択性の高い方法ではなく、特に、多数の成分が共
存する場合に、特定の化学種についての膜透過を
検知することは、実際上、不可能であるという欠
点を有している。
BACKGROUND OF THE INVENTION Membrane permeability and diffusion constants are typically measured through determining the time rate of change in concentration of a chemical species that has passed through the membrane. Conventional techniques for this purpose include methods for estimating concentration changes using changes in absorbance, refractive index, conductivity, etc. ” (November 25, 1982), Baifukan, p210). However, these methods are not highly selective for specific chemical species, and in practice, it is difficult to detect membrane permeation of specific chemical species, especially when a large number of components coexist. It has the disadvantage of being impossible.

発明が解決しようとする間題点 本発明者らは、発酵液や体液等の多数の成分を
含有する水溶液中における特定の化学種に対する
膜の透過率を、迅速、簡便、かつ精確に測定し得
る方法を開発するために、鋭意研究を重ねた結
果、上記化学種を基質の一つとして、これを酸素
とから、少なく共過酸化水素を生成物の一つとし
て与える酸化酵素を固定化して成る膜と、酵素電
極若しくは過酸化水素電極とを組合せて成る酵素
電極を利用して、この酵素電極の応答電流出力の
時間的変化の割合いを求めることにより、膜を透
過した化学種の濃度の時間的変化の割合いを見積
る方法が、その目的に適合しうることを見出し、
この知見に基づいて本発明をなすに至つた。
Problems to be Solved by the Invention The present inventors have developed a method for quickly, simply, and accurately measuring the permeability of membranes to specific chemical species in aqueous solutions containing many components such as fermentation liquids and body fluids. In order to develop a method to obtain hydrogen peroxide, we have conducted extensive research and found that, using the above chemical species as one of the substrates, we immobilized an oxidase that produces a small amount of co-hydrogen peroxide as one of the products. By using an enzyme electrode consisting of a membrane and an enzyme electrode or a hydrogen peroxide electrode, we can determine the concentration of chemical species that have passed through the membrane by determining the rate of change over time in the response current output of this enzyme electrode. found that a method for estimating the rate of change over time can be suitable for that purpose,
Based on this knowledge, the present invention was accomplished.

問題点を解決するための手段 すなわち、本発明は、水溶液中に存在する化学
種に対する膜の透過率および拡散定数を測定する
方法において、上記膜で仕切られた二つの水溶液
相のうちの一方の相に、上記化学種を基質の一つ
として、これと酸素とから、少なく共過酸化水素
を生成物の一つとして与える酸化酵素を固定化し
てなる膜と、酸素電極若しくは過酸化水素電極と
を組合せて成る酵素電極を挿入し、他方の相に上
記化学種を含有する試料を添加し、しかる後の上
記酵素電極の応答電流の時間的変化の割合いを求
めることにより、上記化学種に対する上記膜の透
過率および拡散定数を求めることを特徴とした膜
の透過率および拡散定数の測定方法を提供するも
のである。
Means for Solving the Problems That is, the present invention provides a method for measuring the permeability and diffusion constant of a membrane for chemical species present in an aqueous solution, in which one of the two aqueous solution phases separated by the membrane is used. A membrane having the above chemical species as one of the substrates and an oxidizing enzyme that produces a small amount of co-hydrogen peroxide as one of the products from this and oxygen is immobilized on the phase, and an oxygen electrode or a hydrogen peroxide electrode. by inserting an enzyme electrode consisting of a combination of The present invention provides a method for measuring the transmittance and diffusion constant of a membrane, characterized by determining the transmittance and diffusion constant of the membrane.

本発明の方法の方法において用いられる酸化酵
素は、国際酵素委員会の提案(昭36)に基づくコ
ード番号表示でEC1,X,3,Y(Xは1〜100の
自然数、Yは任意の自然数)に属する酵素または
これに準ずる酵素であつて、対象とする化学種を
基質とするものを任意に選択することができる。
例えば、対象とする化学種がグルコースである場
合には、グルコースオキシダーゼ(EC1.1.3.4)、
カテコールである場合にはカテコールオキシダー
ゼ(EC1.1.3.14)、ピルビン酸である場合にはピ
ルビン酸オキシダーゼ(EC1.2.3.3若しくは
EC1.2.3.6)が、それぞれ好都合に利用できる。
また、対象とする化学種を基質の一つとする酸化
酵素が存在しない時は、補助的に他の酵素を酸化
酵素と共に用しても良い。例えば、対象とする化
学種がサツカロースである場合には、インベルタ
ーゼ(EC3.2.1.26)、ムタロターゼ(EC5.1.3.3)
をグルコースオキシダーゼと併用することが好都
合である。
The oxidases used in the method of the present invention are code numbered EC1, X, 3, Y (X is a natural number from 1 to 100, Y is any natural number ), or enzymes similar thereto, which use the target chemical species as a substrate can be arbitrarily selected.
For example, if the target chemical species is glucose, glucose oxidase (EC1.1.3.4),
Catechol oxidase (EC1.1.3.14) if it is catechol, pyruvate oxidase (EC1.2.3.3 or EC1.2.3.3 or
EC1.2.3.6) can be used conveniently.
Furthermore, when there is no oxidase that uses the target chemical species as one of its substrates, other enzymes may be used as an auxiliary together with the oxidase. For example, if the target chemical species is sutucarose, invertase (EC3.2.1.26), mutarotase (EC5.1.3.3)
is advantageously used in combination with glucose oxidase.

本発者の方法において用いられる酵素の固定化
方法としては、通常用いられる共有結合法、イオ
ン結合法、包括法、吸着法などのいずれの方法で
も良く、上記酸化酵素はこれらのいずれかの方法
で膜上に固定化されて酸素電極若しくは過酸化水
素電極上に取付けられ、酵素電極として構成され
る。本発明の方法において用いられる酸素電極と
しては、白金、金、銀、ニツケル等の金属電極、
若しくは、クラーク式の一般に用いられる電極が
使用できる。過酸化水素電極としては、白金、金
等の貴金属電極、酸化スズ、酸化インジウム等の
金属酸化物電極、若しくはこれらの表面を多孔性
ポリマー膜で被履した一般に用いられる電極が使
用できる。
The enzyme immobilization method used in the inventor's method may be any of the commonly used covalent bonding methods, ionic bonding methods, entrapment methods, adsorption methods, etc., and the above oxidizing enzyme may be immobilized by any of these methods. It is immobilized on a membrane and attached to an oxygen electrode or hydrogen peroxide electrode to form an enzyme electrode. The oxygen electrode used in the method of the present invention includes metal electrodes such as platinum, gold, silver, and nickel;
Alternatively, commonly used Clark-type electrodes can be used. As the hydrogen peroxide electrode, a noble metal electrode such as platinum or gold, a metal oxide electrode such as tin oxide or indium oxide, or a commonly used electrode whose surface is covered with a porous polymer film can be used.

本発明の方法においては、通常、透過率および
拡散定数を測定すべき膜試料を二つの槽ではさむ
形で測定セルが構成されるが、この測定セルの形
状、寸法は、一方の槽に酵素電極が挿入しうるも
のであれば、特に制限はない。ただし、測定セル
中に入れられる水溶液は、上記酵素電極が充分そ
の機能を発揮でき、かつ用いる酵素が失活しない
ために20〜37℃程度に液温を保つた中性付近の緩
衝溶液であることが好ましい。
In the method of the present invention, the measurement cell is usually configured such that the membrane sample whose transmittance and diffusion constant are to be measured is sandwiched between two tanks. There is no particular restriction as long as the electrode can be inserted. However, the aqueous solution placed in the measurement cell is a near-neutral buffer solution that is kept at a temperature of about 20 to 37°C so that the enzyme electrode can fully perform its function and the enzyme used will not be deactivated. It is preferable.

本発明の膜の透過率および拡散定数の測定方法
の原理は次の通りである。化学種を添加した一方
の水溶液相より、酵素電極を挿入した今一方の水
溶液相へ膜中を拡散して化学種が拡散する。この
拡散による酵素電極挿入側への化学種の濃度増加
は、ただちに酵素電極での応答電流の変化として
検出される。そこで、応答電流の時間的変化の割
合いから、拡散による化学種の濃度増加速度を求
め、膜の上記化学種に対する透過率および拡散定
数を測定する。
The principle of the method for measuring membrane transmittance and diffusion constant of the present invention is as follows. The chemical species diffuses through the membrane from one aqueous solution phase to which the chemical species have been added to the other aqueous solution phase in which the enzyme electrode is inserted. The increase in the concentration of the chemical species toward the enzyme electrode insertion side due to this diffusion is immediately detected as a change in the response current at the enzyme electrode. Therefore, the rate of increase in the concentration of the chemical species due to diffusion is determined from the rate of change over time in the response current, and the permeability and diffusion constant of the membrane for the chemical species are measured.

次に、添付図面により、本発明の方法を、さら
に具体的に説明する。
Next, the method of the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は、本発明の測定方法に用いられる装置
の一例を示す概略断面図である。ある化学種に対
する透過率および拡散定数を測定すべき膜1を介
して、二つの水溶液相2および3が存在する。水
溶液は、例えば、磁気かくはん子10を用いてか
くはんされる。一方の水溶液相3には、酵素電極
若しくは過酸化水素電極4の表面に、上記化学種
を基質の一つとする酸化酵素を固定化してなる膜
5が取付けられた酵素電極が挿入される。酵素電
極からの出力電流は、電流計6で計られ、記録計
7で記録される。酵素電極若しくは過酸化電極4
として、クラーク式の電池形の酵素電極を用いな
い場合には、銀−塩化銀電極などの参照電極11
および白金線などから成る対極12をも水溶液相
3に挿入し、定電位電源8を用いて、酵素電極若
しくは過酸化水素電極4に適当な電位を印加し、
酸素の還元若しくは過酸化水素の酸化が充分に行
い得るようにすることが必要である。電位の値と
しては参照電極として銀−塩化銀電極を用いた場
合に、酸素の還元には、参照電極に対して−
0.8V前後、過酸化水素の酸化には、参照電極に
対して+0.6V前後の値がそれぞれ適当である。
水溶液相2に上記化学種を含む試料を添加する以
前には、もとより、水溶液相3中でもこの化学種
の濃度は零であるから、電極4として酸素電極を
用いた場合には、水溶液相3からの酸素の電極表
面への拡散速度、すなわち水溶液相3中の溶存酵
素濃度に比例した一定電流値を示し、過酸化水素
電極を用いた場合には、水溶液相に過酸化水素が
存在しないから零に近い電流値を示す。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus used in the measuring method of the present invention. There are two aqueous phases 2 and 3 across the membrane 1 whose permeability and diffusion constant for a chemical species are to be measured. The aqueous solution is stirred using a magnetic stirrer 10, for example. In one aqueous solution phase 3, an enzyme electrode is inserted, in which a membrane 5 is attached to the surface of an enzyme electrode or a hydrogen peroxide electrode 4, on which an oxidase having the above chemical species as one of its substrates is immobilized. The output current from the enzyme electrode is measured by an ammeter 6 and recorded by a recorder 7. Enzyme electrode or peroxide electrode 4
If a Clark-type battery-type enzyme electrode is not used, a reference electrode 11 such as a silver-silver chloride electrode is used.
A counter electrode 12 made of a platinum wire or the like is also inserted into the aqueous solution phase 3, and an appropriate potential is applied to the enzyme electrode or hydrogen peroxide electrode 4 using a constant potential power source 8.
It is necessary to ensure sufficient reduction of oxygen or oxidation of hydrogen peroxide. Regarding the potential value, when using a silver-silver chloride electrode as a reference electrode, for oxygen reduction, -
Appropriate values are around 0.8V, and for hydrogen peroxide oxidation, around +0.6V with respect to the reference electrode.
Before adding the sample containing the above chemical species to the aqueous solution phase 2, the concentration of this chemical species in the aqueous solution phase 3 is zero, so when an oxygen electrode is used as the electrode 4, the concentration of this chemical species from the aqueous solution phase 3 It shows a constant current value that is proportional to the diffusion rate of oxygen to the electrode surface, that is, the dissolved enzyme concentration in the aqueous solution phase 3. When a hydrogen peroxide electrode is used, the current value is zero because there is no hydrogen peroxide in the aqueous solution phase. shows a current value close to .

このように準備された装置の水溶液相2に上記
化学種を含む試料溶液の所定量を、例えばマイク
ロシリンジ9などを用いて添加すると、添加され
た化学種は膜1を透過して水溶液相3に達する。
水溶液相3において、化学種は、固定化酵素膜5
で酸化され、この結果、電極4近傍での酸素濃度
は減少し、過酸化水素濃度は増加する。これに伴
い、電極4として酸素電極を用いた場合には出力
電流は減少し、過酸化水素電極を用いた場合には
出力電流は増加する。
When a predetermined amount of the sample solution containing the above-mentioned chemical species is added to the aqueous solution phase 2 of the device prepared in this manner using, for example, a microsyringe 9, the added chemical species permeate through the membrane 1 and enter the aqueous solution phase 3. reach.
In the aqueous phase 3, the chemical species are present on the immobilized enzyme membrane 5.
As a result, the oxygen concentration near the electrode 4 decreases and the hydrogen peroxide concentration increases. Accordingly, when an oxygen electrode is used as the electrode 4, the output current decreases, and when a hydrogen peroxide electrode is used, the output current increases.

ここで、水溶液相2および3中の上記化学種の
濃度をそれぞれCAおよびCBとし、膜1の断面積
および厚さをSおよびdとすると、化学種が膜1
を単位時間△t当りに通過する量Jと、膜1の透
過率Pおよび拡散定数Dとの関係は次式で表わさ
れる(例えば、花井哲也著「膜とイオン」(昭
53.11)、化学同人、p.40)。
Here, if the concentrations of the chemical species in the aqueous solution phases 2 and 3 are C A and C B , respectively, and the cross-sectional area and thickness of the film 1 are S and d, then the chemical species in the film 1 are
The relationship between the amount J passing through per unit time Δt, the permeability P and the diffusion constant D of the membrane 1 is expressed by the following equation (for example, "Membranes and Ions" by Tetsuya Hanai (Showa)
53.11), Kagaku Doujin, p.40).

JSΔt=P(CA−CB)SΔt=(D/d) (CA−CB) …(1) ここで、CAは既知濃度でCBは零、もしくは既
知濃度でありSおよびdは実測可能な量だから、
Jを知ればPおよびDを求めることができる。J
は、例えば、次の手順で求めることができる。酸
素電極若しくは過酸化水素電極4と酸化酵素固定
化膜5とから成る酵素電極一定濃度(C)の化学種を
添加した後の出力電流変化(Δi)と、基質濃度
Cとの比(Δi/C)を別に求めて、酵素電極を
校正しておく。しかる後に、図1に示す装置にお
いて、水溶液相2および3中の化学種の濃度差が
(CA−CB)で与えられる場合の酵素電極の出力電
流の時間的変化の割合(Δi2/Δt)を求める。水
溶液相3の体積をVとすると、この時、Jは次式
で表わされる。
JSΔt=P(C A −C B )SΔt=(D/d) (C A −C B ) …(1) Here, C A is a known concentration, C B is zero, or a known concentration, and S and d is a measurable quantity, so
If J is known, P and D can be found. J
can be determined, for example, by the following procedure. The ratio of the output current change (Δi) to the substrate concentration C (Δi/ Calculate C) separately and calibrate the enzyme electrode. Thereafter, in the apparatus shown in FIG. 1, the rate of temporal change in the output current of the enzyme electrode (Δi 2 / Find Δt). If the volume of the aqueous solution phase 3 is V, then J is expressed by the following formula.

J=(Δi1/C)-1(Δi2/Δt)・S-1V …(2) したがつてPおよびDは次式で与えられる。 J=(Δi 1 /C) −1 (Δi 2 /Δt)·S −1 V (2) Therefore, P and D are given by the following equations.

P=Δi1 -1i2C(CA−CB-1Δt-1Δt-1S-1V …(3) D=Δi1 -1Δi2C(CA−CB-1Δt-1S-1Vd…(4) このようにして化学種に対する膜の透過率およ
び拡散定数を測定することができる。
P=Δi 1 -1 i 2 C(C A −C B ) −1 Δt −1 Δt −1 S −1 V …(3) D=Δi 1 −1 Δi 2 C(C A −C B ) −1 Δt -1 S -1 Vd...(4) In this way, the permeability and diffusion constant of the membrane for chemical species can be measured.

次に実施例により本発明をさらに具体的に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 乳酸に対する光架橋性ポリビニルアルコール膜
の透過率および拡散定数の測定 ラクテートオキシダーゼ(ベーリンガー・マン
ハイム社、EC1.13.12.4,15U/mgをpH7.0の
0.02Mリン酸緩衝溶液0.3mlに溶液し、光架橋性
ポリビニルアルコール(市村国宏、「ジヤーナ
ル・オブ・ポリマー・サイエンス、ポリマー・ケ
ミストリー・エデイシヨン」(J.Polym.Sci.,
Polym.Chem Ed)22巻.P2817−2828,1984年)
0.7mlと混合し、これを約6cm2の面積に展開した
後風乾し、さらに20mW/cm2のキセノンアークラ
ンプ光を10分間照射して水に不溶のラクテートオ
キシダーゼ固定化膜を得た。固定化膜を直径約1
cmに切り抜き、これを面積約0.06cm2の白金電極を
陰極とし、多孔性ポリテトラフルオロエチレン膜
を隔膜とするクラーク型の電池式酸素電極(石川
製作所DG−1型)の隔膜上に載せ、Oリングで
締めつけて固定し、ラクテートオキシダーゼ固定
化酵素電極を得た。これとは別に、同一の光架橋
性ポリビニルアルコールのみを展開、風乾、光照
射し、試料膜を得た。試料膜の厚さは、膨潤状態
で0.008cmである。有効表面積1cm2の試料膜を介
して成る二つの水溶液相は、それぞれ、0.1Mリ
ン酸緩衝溶液10mlを含み、一方の水溶液相に上記
のようにして得た酵素電極を挿入した。二つの相
の溶液は、共に、磁気かくはん子を用いてかくは
んし、その温度は25℃に保つた。
Example 1 Measurement of transmittance and diffusion constant of photocrosslinkable polyvinyl alcohol membrane for lactic acid Lactate oxidase (Boehringer Mannheim, EC1.13.12.4, 15U/mg at pH 7.0
It was dissolved in 0.3 ml of 0.02M phosphate buffer solution and photocrosslinkable polyvinyl alcohol (Kunihiro Ichimura, "Journal of Polymer Science, Polymer Chemistry Edition" (J.Polym.Sci.)
Polym.Chem Ed) Volume 22. P2817−2828, 1984)
The mixture was mixed with 0.7 ml, spread on an area of about 6 cm 2 , air-dried, and further irradiated with 20 mW/cm 2 xenon arc lamp light for 10 minutes to obtain a water-insoluble lactate oxidase-immobilized membrane. The diameter of the immobilized membrane is approximately 1
This was cut out to a size of 0.06 cm 2 and placed on the diaphragm of a Clark-type battery-type oxygen electrode (Ishikawa Seisakusho DG-1 model), which has a platinum electrode with an area of about 0.06 cm 2 as the cathode and a porous polytetrafluoroethylene membrane as the diaphragm. It was tightened and fixed with an O-ring to obtain a lactate oxidase-immobilized enzyme electrode. Separately, the same photocrosslinkable polyvinyl alcohol alone was developed, air-dried, and irradiated with light to obtain a sample film. The thickness of the sample membrane is 0.008 cm in the swollen state. Two aqueous solution phases separated by a sample membrane with an effective surface area of 1 cm 2 each contained 10 ml of a 0.1 M phosphate buffer solution, and the enzyme electrode obtained as described above was inserted into one of the aqueous solution phases. Both phase solutions were stirred using a magnetic stirrer and the temperature was maintained at 25°C.

第2図は、上記測定系の酵素電極を挿入した側
の水溶液相に0.05mMの乳酸を加え、この2分後
に他方の側の水溶液相に0.2Mの乳酸を加えた時
の酸素電極における出力電流の時間変化を示すグ
ラフである。最初に酵素電極を挿入した側の水溶
液相に乳酸を加えた後、約1分後の定常電流値を
初期電流値から差し引いた値と、この時加えた乳
酸濃度との関係から酵素電極を校正することがで
きる。次いで、他方の水溶液相に乳酸を加えた後
の酵素電極の出力電流が、時間と共に直線的に減
少する部分での出力電流減少の時間的割合を求め
れば、(3),(4)式に従つて試料膜の乳酸に対する透
過率および拡散定数として、それぞれ、3.1×
10-5cms-1および2.5×10-7cm2s-1の値を得ることが
できる。上記測定系を用いて、乳酸含有溶液とし
て3種の乳酸飲料を用い、この中の乳酸に対する
試料膜の透過率および拡散定数を求めた結果、そ
れぞれ2.8〜3.1×10-5cms-1,2.2〜2.5×10-7cm2s-1
の値を得た。
Figure 2 shows the output at the oxygen electrode when 0.05mM lactic acid was added to the aqueous solution phase on the side where the enzyme electrode was inserted in the measurement system, and 2 minutes later, 0.2M lactic acid was added to the aqueous solution phase on the other side. It is a graph showing a change in current over time. After adding lactic acid to the aqueous solution phase on the side where the enzyme electrode is first inserted, the enzyme electrode is calibrated based on the relationship between the steady current value subtracted from the initial current value after about 1 minute and the lactic acid concentration added at this time. can do. Next, if we calculate the time rate of output current decrease in the part where the output current of the enzyme electrode decreases linearly with time after adding lactic acid to the other aqueous solution phase, we can obtain equations (3) and (4). Therefore, the permeability and diffusion constant of the sample membrane for lactic acid are 3.1×
Values of 10 −5 cms −1 and 2.5×10 −7 cm 2 s −1 can be obtained. Using the above measurement system, we used three types of lactic acid beverages as lactic acid-containing solutions, and determined the transmittance and diffusion constant of the sample membrane for lactic acid, which were 2.8 to 3.1×10 -5 cms -1 and 2.2, respectively. ~2.5×10 -7 cm 2 s -1
obtained the value of

実施例 2 グルコースに対するトリアセチルセルロース含
有膜の透過率および拡散定数の測定。
Example 2 Measurement of permeability and diffusion constant of triacetylcellulose-containing membranes for glucose.

グルコースオキシダーゼ(ベーリンガー・マン
ハイム社、EC1.1.3.4,250U/mg)10mgを実施例
1と同様の方法により、光架橋性ポリビニルアル
コール膜中に固定化した。固定化膜を直径約1.5
cmに切り抜き、これを面積約0.2cm2の白金電極表
面に載せ、Oリングで締めつけて固定し、グルコ
ースオキシダーゼ固定化酵素電極を得た。一方、
試料膜としては、文献記載の方法(小山昌夫ら、
「アナレテイカ・シミカ・アクタ」116巻、P307,
1980年)に従つて、トリアセチルロース、1.8−
ジアミノ−4−アミノメチルオクタン、およびグ
ルタルアルデヒドから成る膜を作製し、さらにこ
の膜を水素化ホウ素ナトリウム水溶液中で還元処
理して試料膜とした。試料膜の厚さは、膨潤状態
で0.0033cmである。有効表面積1cm2の試料膜を介
して成る二つの水溶液相はそれぞれ、0.1Mリン
酸緩衝溶液10mlから成り、一方の水溶液相に上記
のようにして得た酵素電極、銀−塩化銀電極(東
亜電波工業HS−907型)および白金ワイヤ電極を
挿入し、これら電極をそれぞれ定電位電源(北斗
電工 HA−501型)の作用極、参照極および対
極のコネクターに接続し、作用極の電位を参照極
に対して+0.65Vに規正した。二つの相の溶液
は、共に、磁気かくはん子を用いてかくはんし、
その温度は25℃に保つた。
10 mg of glucose oxidase (Boehringer Mannheim, EC1.1.3.4, 250 U/mg) was immobilized in a photocrosslinkable polyvinyl alcohol film in the same manner as in Example 1. The diameter of the immobilized membrane is approximately 1.5
This was cut out to a size of 1 cm, placed on the surface of a platinum electrode with an area of about 0.2 cm 2 , and fixed by tightening with an O-ring to obtain a glucose oxidase-immobilized enzyme electrode. on the other hand,
The sample membrane was prepared using the method described in the literature (Masao Koyama et al.
"Anaretica Simica Acta" Volume 116, P307,
(1980), triacetylulose, 1.8−
A membrane consisting of diamino-4-aminomethyloctane and glutaraldehyde was prepared, and this membrane was further subjected to reduction treatment in an aqueous sodium borohydride solution to obtain a sample membrane. The thickness of the sample membrane is 0.0033 cm in the swollen state. Two aqueous solution phases are formed through a sample membrane with an effective surface area of 1 cm 2 , each consisting of 10 ml of 0.1 M phosphate buffer solution. Dempa Kogyo HS-907 model) and a platinum wire electrode, connect these electrodes to the working electrode, reference electrode, and counter electrode connectors of a constant potential power supply (Hokuto Denko HA-501 model), and refer to the potential of the working electrode. It was regulated to +0.65V with respect to the pole. The two phase solutions are stirred together using a magnetic stirrer;
Its temperature was kept at 25℃.

第3図は、上記測定系の酵素電極を挿入した側
の水溶液相に0.1mMのグルコースを加え、この
2分後に他方の側の水溶液相に50mMのグルコー
スを加えた時の酵素電極における出力電流の時間
的変化を示すグラフである。本実施例において
は、実施例1と異なり、過酸化水素を電極で検出
しているので、酵素電極の出力電流はグルコース
の添加に伴い増加しているが、実施例1と同様の
手法により、試料膜のグルコースに対する透過率
および拡散定数として、それぞれ、1.9×10-5cm
s-1および6.3×10-7cms-1の値が得られる。
Figure 3 shows the output current at the enzyme electrode when 0.1mM glucose was added to the aqueous solution phase on the side where the enzyme electrode of the measurement system was inserted, and 2 minutes later, 50mM glucose was added to the aqueous solution phase on the other side. It is a graph showing the temporal change of. In this example, unlike Example 1, hydrogen peroxide is detected with an electrode, so the output current of the enzyme electrode increases with the addition of glucose. The permeability and diffusion constant of the sample membrane for glucose are 1.9 × 10 -5 cm, respectively.
A value of s -1 and 6.3×10 -7 cms -1 is obtained.

第4図は、グルコースを適宜加えて、濃度
20mMとした1/4希釈の血清を酵素電極を挿入
せぬ側の水溶液相に入れ、上記の方法により、上
記試料膜のグルコースに対する拡散定数をくり返
して測定した結果を示すグラフである。測定回数
をふやす毎に、試料膜表面へのタンパク質吸着に
より、若干、拡散定数が低下していくことがわか
る。
Figure 4 shows the concentration by adding glucose appropriately.
This is a graph showing the results of repeated measurements of the diffusion constant of the sample membrane for glucose using the method described above, using a 1/4 diluted serum of 20 mM in the aqueous phase on the side where the enzyme electrode is not inserted. It can be seen that as the number of measurements increases, the diffusion constant decreases slightly due to protein adsorption to the sample membrane surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の膜の透過率および拡散定数
の測定装置の一例を示す概略断面図、第2図は、
本発明の方法により、試料膜の乳酸に対する透過
率および拡散定数を求めることを目的とした、ラ
クテートオキシダーゼ固定化酵素電極における出
力電流の時間的変化を示すグラフ、第3図は、本
発明の本法により、試料膜のグルコースに対する
透過率および拡散定数を求めることを目的とした
グルコースオキシダーゼ固定化酵素電極における
出力電流の時間的変化を示すグラフ、第4図は、
本発明の本法により、試料膜の血清中のグルコー
スに対する拡散定数をくり返して測定した結果を
示すグラフである。 第1図中の符号1は試料膜、2,3は試料膜で
隔てられた水溶液相、4は酵素電極若しくは過酸
化水素電極、5は酸化酵素固定化膜、6は電流
計、7は記録計、8は定電位電源、9は化学種供
給用のマイクロシリンジ、10は磁気かくはん
子、11は参照電極、12は対極である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for measuring transmittance and diffusion constant of a membrane according to the present invention, and FIG.
FIG. 3 is a graph showing temporal changes in output current in a lactate oxidase-immobilized enzyme electrode for the purpose of determining the permeability and diffusion constant of a sample membrane for lactic acid by the method of the present invention. FIG. 4 is a graph showing temporal changes in output current at a glucose oxidase-immobilized enzyme electrode for the purpose of determining glucose permeability and diffusion constant of a sample membrane using the method.
1 is a graph showing the results of repeated measurements of the diffusion constant of a sample membrane for glucose in serum using the present method of the present invention. In Figure 1, 1 is the sample membrane, 2 and 3 are the aqueous solution phases separated by the sample membrane, 4 is the enzyme electrode or hydrogen peroxide electrode, 5 is the oxidase-immobilized membrane, 6 is the ammeter, and 7 is the recorder. 8 is a constant potential power supply, 9 is a microsyringe for supplying chemical species, 10 is a magnetic stirrer, 11 is a reference electrode, and 12 is a counter electrode.

Claims (1)

【特許請求の範囲】 1 水溶液中に存在する化学種に対する膜の透過
率および拡散定数を測定する方法において、上記
膜で仕切られた二つの水溶液相のうちの一方の相
に、上記化学種に応答性を示す酵素電極を挿入
し、他方の相に上記化学種を含有する試料を添加
し、しかる後の上記酵素電極の応答出力の時間的
変化の割合いを求めることにより、上記膜の透過
率および拡散定数を測定することを特徴とした膜
の透過率および拡散定数の測定方法。 2 上記酵素電極が、上記化学種と酸素とを基質
として、少なく共、過酵化水素を生成物の一つと
して与える酸化酵素を固定化してなる膜と、酸素
電極若しくは過酸化水素電極とから構成されるも
のである特許請求の範囲第1項記載の膜の透過率
および拡散定数の測定方法。
[Claims] 1. In a method for measuring the permeability and diffusion constant of a membrane for chemical species present in an aqueous solution, one of the two aqueous solution phases partitioned by the membrane is provided with a membrane for the chemical species. By inserting a responsive enzyme electrode, adding a sample containing the above chemical species to the other phase, and then determining the rate of change over time in the response output of the enzyme electrode, the permeation of the membrane can be determined. A method for measuring the transmittance and diffusion constant of a membrane, the method comprising measuring the permeability and diffusion constant of a membrane. 2. The enzyme electrode comprises a membrane immobilized with an oxidizing enzyme that uses the chemical species and oxygen as substrates and gives at least hydrogen perfermented product as one of the products, and an oxygen electrode or a hydrogen peroxide electrode. A method for measuring the transmittance and diffusion constant of a membrane according to claim 1, which comprises:
JP60068098A 1985-03-30 1985-03-30 Measuring method for permeability and diffusion constant of film Granted JPS61226637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068098A JPS61226637A (en) 1985-03-30 1985-03-30 Measuring method for permeability and diffusion constant of film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068098A JPS61226637A (en) 1985-03-30 1985-03-30 Measuring method for permeability and diffusion constant of film

Publications (2)

Publication Number Publication Date
JPS61226637A JPS61226637A (en) 1986-10-08
JPH0344653B2 true JPH0344653B2 (en) 1991-07-08

Family

ID=13363922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068098A Granted JPS61226637A (en) 1985-03-30 1985-03-30 Measuring method for permeability and diffusion constant of film

Country Status (1)

Country Link
JP (1) JPS61226637A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184604A1 (en) * 2013-05-16 2014-11-20 L'oreal Installation and method for determining the diffusion profile of at least one molecule through skin
US10598622B2 (en) 2014-04-15 2020-03-24 Hitachi Chemical Company, Ltd. Permeability evaluation method
JP6464921B2 (en) * 2015-05-19 2019-02-06 日立化成株式会社 Permeability evaluation method

Also Published As

Publication number Publication date
JPS61226637A (en) 1986-10-08

Similar Documents

Publication Publication Date Title
CA2045616C (en) Enzyme electrochemical sensor electrode and method of making it
CA1177735A (en) Method of polarographic analysis of lactic acid and lactate
Mullen et al. Glucose enzyme electrode with extended linearity: application to undiluted blood measurements
CA1167923A (en) Substrate specific galactose oxidase enzyme electrodes
Palleschi et al. Ideal hydrogen peroxide-based glucose sensor
Clark Jr [41] The hydrogen peroxide sensing platinum anode as an analytical enzyme electrode
Akyilmaz et al. Voltammetric determination of epinephrine by White rot fungi (Phanerochaete chrysosporium ME446) cells based microbial biosensor
US4317879A (en) Glucose analyzer membrane containing immobilized glucose oxidase
Moore et al. Enzymically amplified voltammetric sensor for microliter sample volumes of salicylate
CA1109374A (en) Stabilization of activated galactose oxidase enzyme
Taylor et al. The characterization of liposomal glucose oxidase electrodes for the measurement of glucose
Bertrand et al. Enzyme electrode with collagen-immobilized cholesterol oxidase for the microdetermination of free cholesterol
Tang et al. Composite liquid membrane for enzyme electrode construction
JPH061257B2 (en) Inert film diffusive substance concentration measuring device
JPH0344653B2 (en)
EP0503943A1 (en) Sensor devices
Lubrano et al. Amperometric alcohol electrode with extended linearity and reduced interferences
Koochaki et al. The diffusion limited oxidase-based glucose enzyme electrode: relation between covering membrane permeability and substrate response
Horie et al. Hybrid tissue/enzyme biosensor for pectin
CA1247700A (en) Two-dimensional diffusion glucose substrate sensing electrode
Chen et al. Selectivity enhancement of an immobilized apple powder enzymatic sensor for dopamine
RU2049991C1 (en) Method and active member for detecting metabolites in biological fluids
JPH04326054A (en) Glucose sensor
JPH04121652A (en) Biosensor
Yoda [5] Multienzyme membrane electrodes

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term