JPH0454966B2 - - Google Patents

Info

Publication number
JPH0454966B2
JPH0454966B2 JP57220586A JP22058682A JPH0454966B2 JP H0454966 B2 JPH0454966 B2 JP H0454966B2 JP 57220586 A JP57220586 A JP 57220586A JP 22058682 A JP22058682 A JP 22058682A JP H0454966 B2 JPH0454966 B2 JP H0454966B2
Authority
JP
Japan
Prior art keywords
film
magnesia spinel
single crystal
heat treatment
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220586A
Other languages
Japanese (ja)
Other versions
JPS59110112A (en
Inventor
Yasuaki Hokari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP22058682A priority Critical patent/JPS59110112A/en
Publication of JPS59110112A publication Critical patent/JPS59110112A/en
Publication of JPH0454966B2 publication Critical patent/JPH0454966B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Description

【発明の詳細な説明】 本発明は、単結晶シリコン基板表面に単結晶絶
縁膜を介して単結晶シリコン膜を設けた構造の半
導体基体を形成する手法に関している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a semiconductor substrate having a structure in which a single crystal silicon film is provided on the surface of a single crystal silicon substrate with a single crystal insulating film interposed therebetween.

近年シリコン単結晶基板上にマグネシアスピネ
ル(MgO・Al2O2)又はサフアイア(Al2O2)の
単結晶絶縁膜がエピタキシアル成長できるように
なつた。かかる単結晶絶縁膜は、その表面にさら
に単結晶シリコン膜がエピタキシヤル成長可能で
あることから、従来のSOS(silieon on
sapphire)基板に代用することができる。特に、
シリコン基板はSOSのベース材料であるサフアイ
アに比べ安価・大口径であることから、安価な半
導体装置が実現可能である。
In recent years, it has become possible to epitaxially grow magnesia spinel (MgO.Al 2 O 2 ) or sapphire (Al 2 O 2 ) single crystal insulating films on silicon single crystal substrates. Since such a single crystal insulating film can further epitaxially grow a single crystal silicon film on its surface, conventional SOS (silieon on
sapphire) can be substituted for the substrate. especially,
Silicon substrates are cheaper and have a larger diameter than sapphire, the base material for SOS, making it possible to create inexpensive semiconductor devices.

SOS基板は寄生容量を少く出来ることに最大の
特徴があり、上記単結晶シリコン膜/単結晶絶縁
膜/シリコン基板の構成をSOS基板に代用するに
は単結晶絶縁膜の容量を少くすることが望まれ
る。マグネシアスピネルおよびサフアイアは、比
誘電率がSiO2の3.9に比べ8〜9と高いことから、
容量を低減するためにはこれら単結晶絶縁膜厚を
増加させることが必要である。しかしながら、例
えばマグネシアスピネル膜では膜厚が1ミクロン
を越えるとその表面の凹凸が著しくなり、しかも
シリコン基板との熱膨張係数の相違により膜にス
リツプラインが発生し、著しい場合にはクラツク
が生ずる。従つてマグネシアスピネル膜の膜厚を
1ミクロン以下で容量を低減する工夫をする必要
がある。これを解決する手段として、シリコン基
板上に単結晶絶縁膜を形成した後に、酸化雰囲気
中で熱処理を行い、単結晶絶縁膜を透して下のシ
リコン基板表面を酸化し非晶質SiO2膜を厚く形
成することである。かかる手段を適用する場合に
は単結晶絶縁膜の厚さは0.5ミクロン以下と薄く
し、一方非晶質SiO2膜厚は0.5ミクロン以上に厚
く形成することが必要であり、かかる手法により
総容量を低減することが可能である。
The greatest feature of an SOS substrate is that it can reduce parasitic capacitance, and in order to use the above structure of single crystal silicon film/single crystal insulating film/silicon substrate as an SOS substrate, it is necessary to reduce the capacitance of the single crystal insulating film. desired. Magnesia spinel and sapphire have a higher dielectric constant of 8 to 9 than SiO 2 's 3.9, so
In order to reduce the capacitance, it is necessary to increase the thickness of these single crystal insulating films. However, for example, when the thickness of a magnesia spinel film exceeds 1 micron, its surface becomes noticeably uneven, and slip lines occur in the film due to the difference in thermal expansion coefficient from that of the silicon substrate, and in severe cases, cracks occur. Therefore, it is necessary to take measures to reduce the capacitance by reducing the thickness of the magnesia spinel film to 1 micron or less. As a means to solve this problem, after forming a single-crystal insulating film on a silicon substrate, heat treatment is performed in an oxidizing atmosphere to oxidize the surface of the underlying silicon substrate through the single-crystal insulating film, forming an amorphous SiO 2 film. The goal is to form a thick layer. When applying such a method, the thickness of the single crystal insulating film must be as thin as 0.5 microns or less, while the amorphous SiO 2 film must be formed as thick as 0.5 microns or more. It is possible to reduce the

しかしながら、本発明者の実験によればシリコ
ン基板上に例えば厚さ0.5ミクロンのマグネシア
スピネル膜をエピタキシヤル成長した後に、当該
マグネシアスピネル膜を透してシリコン基板表面
に非晶質の厚いSiO2を形成するべく水蒸気酸化
を行うと、前記マグネシアスピネル膜がはがれて
しまつた。このはがれの原因は非晶質SiO2膜と
マグネシアスピネル膜との熱膨張係数の差の大き
いことにあると本発明者は推定しているが、いず
れにしても、マグネシアスピネル膜がはがれてし
まえば、後の工程の単結晶シリコン膜のエピタキ
シヤル成長は不可能であり、何らかの解決策が望
まれていた。
However, according to the inventor's experiments, after epitaxially growing a magnesia spinel film with a thickness of, for example, 0.5 microns on a silicon substrate, thick amorphous SiO 2 is grown on the silicon substrate surface through the magnesia spinel film. When steam oxidation was performed to form the magnesia spinel film, it peeled off. The inventor estimates that the cause of this peeling is the large difference in thermal expansion coefficient between the amorphous SiO 2 film and the magnesia spinel film, but in any case, the magnesia spinel film peels off. For example, it is impossible to epitaxially grow a single crystal silicon film in a later step, and some kind of solution has been desired.

本発明は、かかる問題点を解決する手段を提供
するものであり、具体的には高温の乾燥酸素雰囲
気中で熱処理しマグネシアスピネル膜の膜質を改
善した後に厚いSiO2膜を形成することにある。
以下、本発明を詳細に説明する。
The present invention provides a means to solve such problems, and specifically, it consists in forming a thick SiO 2 film after improving the film quality of the magnesia spinel film by heat treatment in a high-temperature dry oxygen atmosphere. .
The present invention will be explained in detail below.

第1図は、シリコン基板上に単結晶絶縁膜とし
てマグネシアスピネル膜を厚さ0.5ミクロン形成
した後に、種々の温度条件で乾燥酸素雰囲気中熱
処理を行い、続いて水蒸気酸化を行つた場合につ
いてマグネシアスピネル膜のはがれの有無を調べ
たものである。1050℃以下の乾燥酸素中熱処理で
はその後の水蒸気酸化によりマグネシアスピネル
膜にはがれが生ずる。しかし、いつたん1100℃以
上の乾燥酸素中で熱処理を行えばこのはがれは生
じない。
Figure 1 shows the magnesia spinel film formed on a silicon substrate to a thickness of 0.5 microns as a single crystal insulating film, heat treated in a dry oxygen atmosphere under various temperature conditions, and then steam oxidized. The presence or absence of peeling of the membrane was investigated. When heat-treated in dry oxygen at temperatures below 1050°C, the magnesia spinel film peels off due to subsequent steam oxidation. However, if heat treatment is performed in dry oxygen at temperatures above 1100°C, this peeling will not occur.

一方、マグネシアスピネル膜の結晶性について
X線回析法により調べ、乾燥酸素中熱処理前後に
ついて比較した結果、第2図に示す如く半値幅は
マグネシアスピネル膜形成後で0.9度あつた(a
図)ものが1100℃乾燥酸素中熱処理後で0.7度と
改善された(b図)。この結果から、高温の乾燥
酸素中熱処理によりマグネシアスピネル膜の結晶
性が改善されるのは明らかであり、同時に膜中の
O2濃度が増加し、膜質が強固になつたためはが
れが生じなくなつたものと発明者は推定してい
る。従つて、シリコン基板上にマグネシアスピネ
ル膜を形成した後に1050℃を越える高温の乾燥酸
素中で熱処理を行えば、その後の水蒸気酸化によ
るマグネシアスピネル膜のはがれを防止すること
ができる。当該乾燥酸素中熱処理の時間は、マグ
ネシアスピネル膜の厚さに依存するようで、例え
ば0.5ミクロンの膜では1100℃、90分で充分であ
つたが、0.1ミクロンの膜では1100℃、10分で充
分であつた。膜が薄いと酸素が膜中全体に容易に
拡散できることが関係していると発明者は推定し
ている。
On the other hand, the crystallinity of the magnesia spinel film was investigated by X-ray diffraction and compared before and after heat treatment in dry oxygen.As shown in Figure 2, the half-width was 0.9 degrees after forming the magnesia spinel film (a
Figure) The temperature was improved to 0.7 degrees after heat treatment at 1100℃ in dry oxygen (Figure b). From this result, it is clear that the crystallinity of the magnesia spinel film is improved by heat treatment in dry oxygen at high temperature, and at the same time, the crystallinity of the magnesia spinel film is improved.
The inventor estimates that peeling no longer occurs because the O 2 concentration increased and the film quality became stronger. Therefore, if a heat treatment is performed in dry oxygen at a high temperature exceeding 1050° C. after forming a magnesia spinel film on a silicon substrate, peeling of the magnesia spinel film due to subsequent steam oxidation can be prevented. The time for the heat treatment in dry oxygen seems to depend on the thickness of the magnesia spinel film; for example, 90 minutes at 1100°C was sufficient for a 0.5 micron film, but 10 minutes at 1100°C for a 0.1 micron film. It was enough. The inventor presumes that this is related to the fact that oxygen can easily diffuse throughout the film if the film is thin.

更に、水蒸気酸化の温度の選択にも注意が必要
である。例えば1100℃乾燥酸素中で熱処理を行つ
た基体を、950℃の低温で水蒸気酸化を行つた場
合にはマグネシアスピネル膜に荒れが生ずるが、
この基体を1100℃で水蒸気酸化した場合には荒れ
ず良い結果を得た。この荒れの原因は、恐らく
1100℃乾燥酸素中での熱処理によりマグネシアス
ピネル膜中の酸素濃度が当該温度での飽和値に達
して安定となるが、しかしその後の950℃水蒸気
酸化では当該温度での膜中飽和酸素濃度が低いた
め過剰の酸素が急激に放出されるため膜が破壊さ
れるものと本発明者は推定している。これを防止
するには乾燥酸素中熱処理と水蒸気酸化の温度を
同じにするかあるいは大差ない温度で行うよう選
ぶことが重要である。本発明者の実験では1100℃
で乾燥酸素中熱処理および水蒸気酸化を行い良い
結果を得ている。
Furthermore, care must be taken in selecting the temperature for steam oxidation. For example, if a substrate that has been heat treated in dry oxygen at 1100°C is subjected to steam oxidation at a low temperature of 950°C, the magnesia spinel film will become rough.
When this substrate was steam oxidized at 1100°C, good results were obtained without any roughness. The cause of this roughness is probably
By heat treatment in dry oxygen at 1100°C, the oxygen concentration in the magnesia spinel film reaches the saturated value at that temperature and becomes stable, but in the subsequent steam oxidation at 950°C, the saturated oxygen concentration in the film at that temperature is low. The present inventor estimates that the film is destroyed due to the sudden release of excess oxygen. In order to prevent this, it is important to select the temperatures for the heat treatment in dry oxygen and the steam oxidation to be the same or not much different. In the inventor's experiment, 1100℃
Good results were obtained by heat treatment in dry oxygen and steam oxidation.

このように、本発明を用いれば単結晶シリコン
膜/単結晶絶縁膜/単結晶シリコン基板の構成を
容易にかつ確実に形成できる。なお、上記説明で
は乾燥酸素雰囲気中で熱処理を行うと説明した
が、O2を含むAr,N2,He等の不活性もしくは
これに近いガス雰囲気中でも同様の効果を得てい
る。
As described above, by using the present invention, the structure of single crystal silicon film/single crystal insulating film/single crystal silicon substrate can be formed easily and reliably. In the above description, the heat treatment is performed in a dry oxygen atmosphere, but the same effect can be obtained even in an inert gas atmosphere such as Ar, N 2 , He, etc. containing O 2 or a similar gas atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱処理条件と膜のはがれの有無を示す
図であり、第2図は熱処理前後のX線回析結果を
示す図である。
FIG. 1 is a diagram showing the heat treatment conditions and the presence or absence of film peeling, and FIG. 2 is a diagram showing the X-ray diffraction results before and after the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 表面にマグネシアスピネル膜を設けた単結晶
シリコンを基板を、酸素もしくは酸素を含む不活
性ガス雰囲気中で1050℃を超える温度で熱処理
し、次に1000℃以上の温度で水蒸気酸化を行な
い、前記マグネシアスピネル膜に接する前記単結
晶シリコン基板の表面を非晶質SiO2膜と成し、
次に前記マグネシアスピネル膜表面に単結晶シリ
コン膜を形成することを特徴とした半導体基体の
製造方法。
1 A single-crystal silicon substrate with a magnesia spinel film provided on its surface is heat-treated at a temperature exceeding 1050°C in an atmosphere of oxygen or an inert gas containing oxygen, and then steam oxidized at a temperature of 1000°C or higher. forming an amorphous SiO 2 film on the surface of the single crystal silicon substrate in contact with the magnesia spinel film;
A method for manufacturing a semiconductor substrate, comprising: next forming a single crystal silicon film on the surface of the magnesia spinel film.
JP22058682A 1982-12-16 1982-12-16 Manufacture of semiconductor base material Granted JPS59110112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22058682A JPS59110112A (en) 1982-12-16 1982-12-16 Manufacture of semiconductor base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22058682A JPS59110112A (en) 1982-12-16 1982-12-16 Manufacture of semiconductor base material

Publications (2)

Publication Number Publication Date
JPS59110112A JPS59110112A (en) 1984-06-26
JPH0454966B2 true JPH0454966B2 (en) 1992-09-01

Family

ID=16753289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22058682A Granted JPS59110112A (en) 1982-12-16 1982-12-16 Manufacture of semiconductor base material

Country Status (1)

Country Link
JP (1) JPS59110112A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62137847A (en) * 1985-12-12 1987-06-20 Agency Of Ind Science & Technol Formation of insulating film
JPS63137412A (en) * 1986-11-29 1988-06-09 Sharp Corp Manufacture of semiconductor substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317069A (en) * 1976-07-30 1978-02-16 Fujitsu Ltd Semiconductor device and its production
JPS5328384A (en) * 1976-08-27 1978-03-16 Fujitsu Ltd Production method of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317069A (en) * 1976-07-30 1978-02-16 Fujitsu Ltd Semiconductor device and its production
JPS5328384A (en) * 1976-08-27 1978-03-16 Fujitsu Ltd Production method of semiconductor device

Also Published As

Publication number Publication date
JPS59110112A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US4906594A (en) Surface smoothing method and method of forming SOI substrate using the surface smoothing method
FR2490401A1 (en) IMPROVED PROCESS FOR MANUFACTURING INTEGRATED CIRCUITS
US5721145A (en) Method of making a semiconductor substrate having gettering effect
EP0167208B1 (en) A method for growing an oxide layer on a silicon surface
JP3950189B2 (en) Element isolation method
JPH049760B2 (en)
JPH0454966B2 (en)
KR970030626A (en) Device Separation Method of Semiconductor Device
JP2861343B2 (en) Semiconductor device and manufacturing method thereof
JPS62123098A (en) Silicon single crystal
JPS6315442A (en) Semiconductor substrate
JPS5812340A (en) Manufacture of semiconductor device
JP3576323B2 (en) Heat treatment method for compound semiconductor
JP2000277525A (en) Silicon wafer for semiconductor and its manufacture
JPH0412092A (en) Compound semiconductor and method for growing the same
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPS6326541B2 (en)
JPS6012737A (en) Manufature of silicon nitride film
JP2601208B2 (en) Semiconductor substrate processing method
JPS60176241A (en) Manufacture of semiconductor substrate
JPH0234170B2 (en)
JP3272908B2 (en) Method for manufacturing semiconductor multilayer material
JPS59188957A (en) Manufacture of capacitor for semiconductor device
JPS58200543A (en) Thermal oxidizing method
JPS63146447A (en) Formation of soi structure