JPH049760B2 - - Google Patents

Info

Publication number
JPH049760B2
JPH049760B2 JP57220587A JP22058782A JPH049760B2 JP H049760 B2 JPH049760 B2 JP H049760B2 JP 57220587 A JP57220587 A JP 57220587A JP 22058782 A JP22058782 A JP 22058782A JP H049760 B2 JPH049760 B2 JP H049760B2
Authority
JP
Japan
Prior art keywords
film
magnesia spinel
single crystal
heat treatment
dry oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57220587A
Other languages
Japanese (ja)
Other versions
JPS59111999A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22058782A priority Critical patent/JPS59111999A/en
Publication of JPS59111999A publication Critical patent/JPS59111999A/en
Publication of JPH049760B2 publication Critical patent/JPH049760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Description

【発明の詳細な説明】 本発明は、単結晶シリコン基板表面に設けられ
た単結晶絶縁膜の膜質を改善する手法に関してい
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving the film quality of a single crystal insulating film provided on the surface of a single crystal silicon substrate.

近年、シリコン単結晶基板上にマグネシアスピ
ネル(MgO・Al2O3)又はサフアイア(Al2O3
の単結晶絶縁膜がエピタキシヤル成長できるよう
になつた。かかる単結晶絶縁膜はその表面にさら
に単結晶シリコン膜がエピタキシヤル成長可能で
あることから、従来のSOS(Silicon on
sapphire)基板に代用することができる。特にシ
リコン基板はSOSの基体材料であるサフアイアに
比べ安価大口径であることから、安価な半導体装
置が実現可能である。
In recent years, magnesia spinel (MgO・Al 2 O 3 ) or sapphire (Al 2 O 3 ) has been grown on silicon single crystal substrates.
Single-crystal insulating films can now be grown epitaxially. Since such a single-crystal insulating film can further epitaxially grow a single-crystal silicon film on its surface, conventional SOS (Silicon on
sapphire) can be substituted for the substrate. In particular, silicon substrates are cheaper and have a larger diameter than sapphire, which is the base material for SOS, so it is possible to realize inexpensive semiconductor devices.

SOS基板は寄性容量を少なく出来ることに最大
の特徴があり、上記単結晶シリコン膜/単結晶絶
縁膜/シリコン基板の構成をSOS基板に代用する
には単結晶絶縁膜の容量を少なくすることが望ま
れる。マグネシアスピネルおよびサフアイアは、
比誘電率がSiO2の3.9に比べ8〜9と高いことか
ら、容量を低減するためにはこれら単結晶絶縁膜
厚を増加させることが必要である。しかしなが
ら、例えばマグネシアスピネル膜では膜厚が1ミ
クロンを越えるとその表面の凹凸が著しくなりし
かもシリコン基板との熱膨張係数の相違により膜
にスリツプラインが発生し、著しい場合にはクラ
ツク法が生じる。従つて、マグネシアスピネル膜
の膜厚を1ミクロン以下で容量を低減する工夫を
する必要がある。
The greatest feature of an SOS substrate is that it can reduce parasitic capacitance, and in order to use the above structure of single crystal silicon film/single crystal insulating film/silicon substrate as an SOS substrate, it is necessary to reduce the capacitance of the single crystal insulating film. is desired. Magnesia spinel and sapphire are
Since the dielectric constant is higher at 8 to 9 compared to 3.9 for SiO 2 , it is necessary to increase the thickness of these single crystal insulating films in order to reduce the capacitance. However, for example, in the case of a magnesia spinel film, if the film thickness exceeds 1 micron, its surface becomes noticeably uneven, and slip lines occur in the film due to the difference in thermal expansion coefficient from that of the silicon substrate, and in severe cases, cracking occurs. Therefore, it is necessary to take measures to reduce the capacitance by reducing the thickness of the magnesia spinel film to 1 micron or less.

これを解決する手段として、シリコン基板上に
単結晶絶縁膜を形成した後に、酸化雰囲気中で熱
処理を行い、単結晶絶縁膜を透して下のシリコン
基板表面を酸化し、非晶質SiO2膜を厚く形成す
ることである。かかる手段を適用する場合には単
結晶絶縁膜の厚さは0.5ミクロン以下と薄くし、
一方非晶質SiO2膜厚は0.5ミクロン以上に厚く形
成することが必要であり、かかる手法により総容
量を低減することが可能である。
As a means to solve this problem, after forming a single-crystal insulating film on a silicon substrate, heat treatment is performed in an oxidizing atmosphere to oxidize the underlying silicon substrate surface through the single-crystal insulating film, forming amorphous SiO 2 The goal is to form a thick film. When applying such means, the thickness of the single crystal insulating film should be as thin as 0.5 microns or less,
On the other hand, it is necessary to form the amorphous SiO 2 film thicker than 0.5 microns, and it is possible to reduce the total capacitance by such a method.

しかしながら、本発明者の実験によれば、シリ
コン基板上に例えば厚さ0.5ミクロンのマグネシ
アスピネル膜をエピタキシヤル成長した後に、当
該マグネシアスピネル膜を透してシリコン基板表
面に非晶質の厚いSiO2膜を形成すべく水蒸気酸
化を行うと、前記マグネシアスピネル膜がはがれ
てしまつた。このはがれの原因は非晶質SiO2
とマグネシアスピネル膜との熱膨張係数の差の大
きいことにあると本発明者は推定しているが、い
ずれにしてもマグネシアスピネル膜がはがれてし
まえば後の工程の単結晶シリコン膜のエピタキシ
ヤル成長は不可能であり、何らかの解決策が望ま
れていた。
However, according to experiments conducted by the present inventors, after epitaxially growing a magnesia spinel film with a thickness of, for example, 0.5 microns on a silicon substrate, a thick amorphous SiO 2 film is deposited on the silicon substrate surface through the magnesia spinel film. When steam oxidation was performed to form a film, the magnesia spinel film peeled off. The inventor estimates that the cause of this peeling is the large difference in thermal expansion coefficient between the amorphous SiO 2 film and the magnesia spinel film, but in any case, once the magnesia spinel film peels off, Epitaxial growth of a single-crystal silicon film in a later step is impossible, and some kind of solution has been desired.

本発明は、かかる問題点を解決する手段を提供
するものであり、具体的には高温の乾燥酸素雰囲
気中で熱処理してマグネシアスピネル膜の膜質を
改善することにある。
The present invention provides a means to solve these problems, and specifically, it consists in improving the film quality of a magnesia spinel film by heat-treating it in a high-temperature dry oxygen atmosphere.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

第1図はシリコン基板上に単結晶絶縁膜として
マグネシアスピネル膜を厚さ0.5ミクロン形成し
た後に、種々の温度条件で乾燥酸素雰囲気中熱処
理を行い、続いて水蒸気酸化を行つた場合につい
てマグネシアスピネル膜のはがれの有無を調べた
ものである。1050℃以下の乾燥酸素中熱処理では
その後の水蒸気酸化によりマグネシアスピネル膜
にはがれが生じる。しかし、一旦1100℃以上の乾
燥酸素中で熱処理を行えばこのはがれは生じな
い。
Figure 1 shows the magnesia spinel film formed as a single crystal insulating film on a silicon substrate to a thickness of 0.5 microns, then heat treated in a dry oxygen atmosphere under various temperature conditions, and then steam oxidized. The presence or absence of peeling was investigated. During heat treatment in dry oxygen at temperatures below 1050°C, the magnesia spinel film peels off due to subsequent steam oxidation. However, once heat treatment is performed in dry oxygen at 1100°C or higher, this peeling does not occur.

一方、マグネシアスピネル膜の結晶性について
X線回析法により調べ、乾燥酸素中熱処理前後に
ついて比較した結果、第2図に示す如く半値幅は
マグネシアスピネル膜形成後で0.9度であつた
(a図)ものが、1100℃乾燥酸素中熱処理後で0.7
度と改善された(b図)。これらの結果から、高
温の乾燥酸素中熱処理によりマグネシアスピネル
膜の結晶性が改善されるのは明らかであり、同時
に膜中のO2濃度が増加し、膜質が強固になつた
ためはがれが生じなくなつたものと本発明者は推
定している。従つてシリコン基板上にマグネシア
スピネル膜を形成した後に1050℃を越える高温の
乾燥酸素中で熱処理を行えば、その後の水蒸気酸
化によるマグネシアスピネル膜のはがれを防止す
ることができる。
On the other hand, the crystallinity of the magnesia spinel film was investigated by X-ray diffraction and compared before and after heat treatment in dry oxygen.As shown in Figure 2, the half-width was 0.9 degrees after the magnesia spinel film was formed (Figure a). ) is 0.7 after heat treatment at 1100℃ in dry oxygen.
The results were significantly improved (Figure b). From these results, it is clear that the crystallinity of the magnesia spinel film is improved by heat treatment in dry oxygen at high temperatures, and at the same time, the O 2 concentration in the film increases and the film quality becomes stronger, so that peeling no longer occurs. The inventor estimates that this is the case. Therefore, if a heat treatment is performed in dry oxygen at a high temperature exceeding 1050° C. after forming a magnesia spinel film on a silicon substrate, peeling of the magnesia spinel film due to subsequent steam oxidation can be prevented.

当該乾燥酸素中熱処理の時間は、マグネシアス
ピネル膜の厚さに依存するようで、例えば厚さ
0.5ミクロンの膜では1100℃、90分で充分であつ
たが0.1ミクロンの膜では1100℃、10分で充分で
あつた。膜が薄いと酸素が膜中全体に容易に拡散
できることが関係していると発明者は推定してい
る。
The time for the heat treatment in dry oxygen seems to depend on the thickness of the magnesia spinel film, for example, the thickness
For a 0.5 micron membrane, 1100°C for 90 minutes was sufficient, but for a 0.1 micron membrane, 1100°C for 10 minutes was sufficient. The inventor presumes that this is related to the fact that oxygen can easily diffuse throughout the film if the film is thin.

このように、本技術を用いれば単結晶シリコン
膜/単結晶絶縁膜/単結晶シリコン基板の構成を
容易にかつ確実に形成できる。
In this way, by using the present technology, the structure of single crystal silicon film/single crystal insulating film/single crystal silicon substrate can be formed easily and reliably.

なお、上記説明では乾燥酸素雰囲気中で熱処理
を行うと説明したが、O2を含むAr、N2、He等
の不活性もしくはこれに近いガス雰囲気中でも同
様の効果を得ている。
In the above description, it was explained that the heat treatment is performed in a dry oxygen atmosphere, but the same effect can be obtained even in an inert gas atmosphere such as Ar, N 2 , He, etc. containing O 2 or an inert gas atmosphere close to this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱処理条件と膜のはがれの有無を示す
図であり、第2図は熱処理前後のX線回折結果を
示す図である。
FIG. 1 is a diagram showing the heat treatment conditions and the presence or absence of film peeling, and FIG. 2 is a diagram showing the X-ray diffraction results before and after the heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 表面にマグネシア・スピネル膜を設けた単結
晶シリコン基板を、乾燥酸素雰囲気中もしくは乾
燥酸素を含む不活性ガス雰囲気中で1050℃を越え
る温度で熱処理することを特徴とした単結晶絶縁
膜の熱処理方法。
1 Heat treatment of a single crystal insulating film characterized by heat treating a single crystal silicon substrate with a magnesia spinel film on the surface at a temperature exceeding 1050°C in a dry oxygen atmosphere or an inert gas atmosphere containing dry oxygen. Method.
JP22058782A 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal Granted JPS59111999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22058782A JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22058782A JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Publications (2)

Publication Number Publication Date
JPS59111999A JPS59111999A (en) 1984-06-28
JPH049760B2 true JPH049760B2 (en) 1992-02-21

Family

ID=16753306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22058782A Granted JPS59111999A (en) 1982-12-16 1982-12-16 Heat treatment of insulating film of single crystal

Country Status (1)

Country Link
JP (1) JPS59111999A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072329B2 (en) 2011-12-23 2018-09-11 Hong Kong Baptist University Sapphire thin film coated flexible substrate
US9932663B2 (en) 2011-12-23 2018-04-03 Hong Kong Baptist University Sapphire thin film coated substrate
US11713503B2 (en) 2011-12-23 2023-08-01 Hong Kong Baptist University Sapphire coated substrate with a flexible, anti-scratch and multi-layer coating
US11535926B2 (en) 2011-12-23 2022-12-27 Hkbu R&D Licensing Limited Sapphire thin film coated substrate
WO2016037590A1 (en) * 2014-09-12 2016-03-17 Hong Kong Baptist University Sapphire thin film coated flexible substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336182A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Thin semiconductor single crystal film forming insulation substrate
JPS5538044A (en) * 1978-09-12 1980-03-17 Toshiba Corp Preparation of multiplex-winding coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336182A (en) * 1976-09-16 1978-04-04 Hitachi Ltd Thin semiconductor single crystal film forming insulation substrate
JPS5538044A (en) * 1978-09-12 1980-03-17 Toshiba Corp Preparation of multiplex-winding coil

Also Published As

Publication number Publication date
JPS59111999A (en) 1984-06-28

Similar Documents

Publication Publication Date Title
JPH0475655B2 (en)
US4902642A (en) Epitaxial process for silicon on insulator structure
US4597804A (en) Methods of forming denuded zone in wafer by intrinsic gettering and forming bipolar transistor therein
JPH049760B2 (en)
JPH06104268A (en) Semiconductor substrate having gettering effect and its manufacturing method
JPH0236059B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPH0454966B2 (en)
Yokoyama et al. Growth of crystalline zinc sulfide films on a (111)‐oriented silicon by molecular‐beam epitaxy
JPS6315442A (en) Semiconductor substrate
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
JPS6185815A (en) Method for formation of polycrystalline silicon film
JPS6326541B2 (en)
JPH0412092A (en) Compound semiconductor and method for growing the same
JP3157280B2 (en) Method for manufacturing semiconductor device
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPH0577311B2 (en)
JPH0666305B2 (en) Method for forming SOI substrate
JPS58200525A (en) Preparation of substrate for semiconductor device
JPS60176241A (en) Manufacture of semiconductor substrate
JP2696928B2 (en) Heteroepitaxial growth method
JPH0577315B2 (en)
JP2776109B2 (en) Method for manufacturing semiconductor device
JPH02105517A (en) Manufacture of semiconductor device
JPH0261144B2 (en)
JPH05198503A (en) Manufacture of semiconductor device