JPS58200543A - Thermal oxidizing method - Google Patents

Thermal oxidizing method

Info

Publication number
JPS58200543A
JPS58200543A JP57083482A JP8348282A JPS58200543A JP S58200543 A JPS58200543 A JP S58200543A JP 57083482 A JP57083482 A JP 57083482A JP 8348282 A JP8348282 A JP 8348282A JP S58200543 A JPS58200543 A JP S58200543A
Authority
JP
Japan
Prior art keywords
spinel
thermal oxidation
single crystal
silicon
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57083482A
Other languages
Japanese (ja)
Inventor
Masao Mikami
三上 雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57083482A priority Critical patent/JPS58200543A/en
Publication of JPS58200543A publication Critical patent/JPS58200543A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To prevent the exfoliation of a spinel epitaxial film by thermally oxidizing the whole in dried oxygen in the thermal oxidizing method forming silicon dioxide SiO2 to a boundary between the spinel epitaxial film and a silicon single crystalline substrate. CONSTITUTION:When magnesia spinel is grown onto the silicon single crystalline substrate of a (100) crystal face orientation in an epitaxial manner and thermally oxidized for five hr by dried oxygen at one atmosphere at 1,200 deg.C, exfoliation is not generated at all even through quenching after thermal oxidation through the temperature of thermal oxidation is higher than oxidation in steam. The diffraction intensity of a (400) diffraction peak increases by approximately one and a half times as large as that before thermal oxidation, and single crystallinity is, on the contrary, improved.

Description

【発明の詳細な説明】 本発明はスピネル!!!!酸化物が成長せられたシリコ
ン単結晶基板の熱酸化方法に関するものである。
[Detailed Description of the Invention] The present invention is Spinel! ! ! ! The present invention relates to a method for thermally oxidizing a silicon single crystal substrate on which an oxide has been grown.

半導体集積回路の高速化、高密゛変化のため(ζ、素子
間を絶縁体分離する方法が試゛みら糺ている。
Due to the increasing speed and density of semiconductor integrated circuits (ζ), methods of separating elements with insulators are being investigated.

例えば808 (8i1icon t’* ’5aph
ire)Itその代表的な方法として知られそいる・と
くに近年、半導−活性層を多層化した゛3灰元集積回路
の研究開−気運の盛り上りによって、絶縁体の上に半導
一体単結晶膜を形成する技術開発が盛んである0その中
で、シリコン−結晶基板上にマグネシアスピネルMgO
・”′ムl Oの工゛ビタ今シャル膜を成長し、その上
にs 半導体単結晶膜を形成する方法は、安価で品質の保証さ
れたシリコン単結晶基板を用いるために、良質の半導体
単結晶膜が絶縁体の上に容易かつ安価に形成できるため
に注目されている@本発明者は以前、スピネル酸化物の
エピタキシャル膜が形成されているシリコン単結晶基板
を熱11(1てスピネルエピタキシャルII/8i  
単結晶基板の二層構造をスピネルエピタキシャル膜/8
10□/8i 単結晶基板の三層構造にできること番開
示した(41願56−109367)。二酸化シリコン
StO,は半導体素子の絶縁層として最も広く利用され
ているものであり、舎わめて優れた半導体素子用の絶縁
体である。また、その誘電率がサファイアやマグネシア
スピネルに較べて小さい・従って、半導体活性層に形成
される半導体素子間の寄生容量を小さくできるため素子
動作の高速化に有利に働くという利点がある。
For example, 808 (8i1icon t'* '5aph
ire) It is known as the representative method. Especially in recent years, there has been an upsurge in the research and development of ``3-layer integrated circuits'' in which semiconductors and active layers are multilayered. Technology development for forming crystalline films is actively underway. Among them, magnesia spinel MgO on silicon-crystalline substrates is being developed.
・The method of growing a silicon semiconductor film and forming a semiconductor single-crystal film on it uses a low-cost, quality-guaranteed silicon single-crystal substrate. Single-crystal films are attracting attention because they can be easily and inexpensively formed on insulators. Epitaxial II/8i
Spinel epitaxial film / 8 double layer structure of single crystal substrate
10□/8i Disclosed the ability to create a three-layer structure of a single crystal substrate (41 Application No. 56-109367). Silicon dioxide, StO, is most widely used as an insulating layer for semiconductor devices, and is an extremely excellent insulator for semiconductor devices. In addition, its dielectric constant is smaller than that of sapphire or magnesia spinel, and therefore the parasitic capacitance between semiconductor elements formed in the semiconductor active layer can be reduced, which is advantageous in increasing the speed of element operation.

本発明はスピネルエピ単結シャル震トシリコン単結晶基
板の境界に二慣化シリコン8iO,を形成する熱酸化方
法を提供するものである0具体的には、とくにその熱酸
化後形成を規定するものである。本発明者はマグネシア
スピネルがエピタキシャル成長したシリコン単結晶基板
を種々の条件下で熱酸化した。そして、その結果、どの
ような条件においても問題なくスピネルエピタキシャル
膜を通してシリコン単結晶基板が熱酸化できるのではな
いことを発見した。その最大の問題は熱酸化して、ウェ
ハーを冷却するとスピネルエピタキシャル膜が剥離して
し才うととであり、この問題を解決するため、種々検討
した結果、この剥離現象は雰囲気にきわめて強く依存し
ており、水蒸気を含む雰囲気で1lIIIIl化すると
剥離が起り易く、乾燥酸紫中での熱酸化では剥離が起ら
ないことを発見した。本発明はこの発見に基ずくもので
あり、以下、実施例によって説明する。
The present invention provides a thermal oxidation method for forming bi-inertial silicon 8iO at the boundary of a spinel epitaxial single crystal silicon single crystal substrate.Specifically, it specifically specifies its formation after thermal oxidation. be. The present inventor thermally oxidized silicon single crystal substrates on which magnesia spinel was epitaxially grown under various conditions. As a result, they discovered that silicon single crystal substrates could be thermally oxidized through a spinel epitaxial film under any conditions without any problem. The biggest problem is that the spinel epitaxial film peels off when the wafer is cooled due to thermal oxidation.As a result of various studies to solve this problem, we found that this peeling phenomenon is extremely dependent on the atmosphere. It was discovered that peeling is likely to occur when oxidized to 1lIII in an atmosphere containing water vapor, but peeling does not occur when thermal oxidation is carried out in dry acid violet. The present invention is based on this discovery and will be explained below by way of examples.

実施例 気相成長法によって、結晶面方位(100)のシリコン
単結晶基板上に膜厚が0.4μ園のマグネシアスピネル
のエピタキシャル成長した。シリコン単結晶基板は大き
さが直径のものを用いたが、これ1Jhc) 15 +
*s X l 5 su++のチップに切断して熱酸化
した。
EXAMPLE Magnesia spinel was epitaxially grown to a thickness of about 0.4 μm on a silicon single crystal substrate with crystal plane orientation (100) by a vapor phase growth method. The silicon single crystal substrate used had a diameter of 1 Jhc) 15 +
*s X l 5 su++ chips were cut and thermally oxidized.

まず、 1000℃、1気圧の水蒸気中で1時間熱酸化
し、徐冷却したところ、冷却直後はマグネシアスピネル
膜はウェハーに付着しており、その単結晶性をX1m回
折で評価したところ熱酸化前と変りがなかった。しかし
時間の経過に伴なってスピネル膜の剥離が起り、数時間
以内に全面が剥離してしまった。そして剥離後、シリコ
ン基板表面に形成されている二酸化シリコンの膜厚をエ
リプソメーターで測定したところ0.2μ隅であった。
First, thermal oxidation was performed in water vapor at 1000°C and 1 atm for 1 hour, and then slowly cooled. Immediately after cooling, the magnesia spinel film was attached to the wafer, and its single crystallinity was evaluated by X1m diffraction. There was no difference. However, with the passage of time, the spinel film began to peel off, and the entire surface peeled off within several hours. After the peeling, the thickness of the silicon dioxide film formed on the surface of the silicon substrate was measured using an ellipsometer and was found to be 0.2 μm.

とのような水蒸気中熱酸化に対してs 1200’C%
1気圧の乾燥a!素によって5.時間熱酸化した場合は
、熱酸化温度が水蒸気中酸化の場合よりも高いにもか\
わらず、熱酸化後形成しても剥離は全く起らなかった・
そして、熱酸化後マグネシアスピネル膜の単結晶性を水
蒸気酸化の場合と同様に対称反射のX*回折法によって
評価したところ、(400)回折ピークの回折強度は熱
酸化前に較べて1.5倍程増加しており、むしろ単結晶
性は改善された。もちろん、(40G)回折以外の回折
ピークは観察されなかった0次にり/酸と硫酸のl:l
の混合液(リン硫酸)によって、マグネシアスピネル膜
のみをエツチングして、シリコン単結晶基板に形成され
ている二酸化シリコンの膜厚を測定したところ約0.3
μ南であった0 以上の結果はマグネシアスピネル膜を通してSi単結晶
基板を熱酸化する場合、水蒸気酸化と機素酸化ではその
酸化機構が異なるために熱酸化後形成されるMgO・ム
120 B / 8102 / 8 iなる多層構造の
MgO−ム120.と8i02 の界面の結合状態が異
なり、水蒸気襞化では結合が弱く、スピネル膜の剥離が
鹸ると解釈される。
For thermal oxidation in steam such as s 1200'C%
1 atm drying a! 5. In the case of time thermal oxidation, the thermal oxidation temperature is higher than in the case of steam oxidation.
However, no peeling occurred even when formed after thermal oxidation.
Then, when the single crystallinity of the magnesia spinel film after thermal oxidation was evaluated by the symmetric reflection X* diffraction method as in the case of steam oxidation, the diffraction intensity of the (400) diffraction peak was 1.5% higher than that before thermal oxidation. It has increased by about twice as much, and rather the single crystallinity has been improved. Of course, no diffraction peaks other than (40G) diffraction were observed due to the zero order/l:l of acid and sulfuric acid.
The thickness of the silicon dioxide film formed on the silicon single crystal substrate was measured by etching only the magnesia spinel film with a mixed solution (phosphorus sulfuric acid) of about 0.3.
The result above was 0. The reason for this is that when a Si single crystal substrate is thermally oxidized through a magnesia spinel film, the oxidation mechanism is different between steam oxidation and oxygen oxidation, so MgO・mu120B/ 8102/8i multilayer structure MgO-me 120. It is interpreted that the bonding state of the interface between 8i02 and 8i02 is different, and that the bonding is weaker in the formation of water vapor folds, leading to the separation of the spinel film.

従って、本発明はシリコン単結晶基板上基こ成長せられ
るマグネシアスピネルで代表されるスピネル酸化物のエ
ピタキシャル膜を通してシリコン単結晶基板を熱酸化す
る場合、熱酸化零囲気中の水蒸気を出来るだけ少なくす
ることが必要であることを開示するものである。二酸化
シリコンは良質の絶縁層であり、かつ誘電率が小さいた
めに素子分離による高集積化、動作の高速化にきわめて
有効に働き、MgO・人120&/8s01層は半導体
活性層ヲウェハー全面にエピタキシャル成長できるきわ
めて有用な絶縁層になるものであり、かかる絶縁層の製
造は本発明によってはじめて実現可能になるものである
@従って、本発明の工業的価値は大きいと考える・
Therefore, the present invention aims to reduce water vapor in the thermal oxidation atmosphere as much as possible when thermally oxidizing a silicon single crystal substrate through an epitaxial film of spinel oxide, such as magnesia spinel, grown on a silicon single crystal substrate. It discloses that it is necessary to Silicon dioxide is a high-quality insulating layer and has a low dielectric constant, so it is extremely effective in achieving high integration through device isolation and speeding up operation, and the MgO 120&/8s01 layer can be epitaxially grown on the entire surface of the wafer as a semiconductor active layer. It is an extremely useful insulating layer, and the production of such an insulating layer is only possible with the present invention. Therefore, we believe that the present invention has great industrial value.

Claims (1)

【特許請求の範囲】 1、単結晶シリコン上にスピネル盤結晶構造の酸化物単
結晶層が形成され、その後で該単結晶シリコンを酸化し
て、−骸スピネル酸化物の下に二酸化シリコン層を形成
する1揚において、酸化雰囲気中に水蒸気を含まないこ
とを特徴とする熱酸化方法。 2 スピネル酸化物がマグネシアスピネルMg0−AI
 20.である特許請求の範囲第1項記載の熱酸化方法
。 3、酸化零囲気が乾燥酸素零囲党である特許請求の範囲
第1項記載の熱酸化方法
[Claims] 1. An oxide single crystal layer with a spinel disc crystal structure is formed on single crystal silicon, and then the single crystal silicon is oxidized to form a silicon dioxide layer under the skeleton spinel oxide. A thermal oxidation method characterized in that no water vapor is included in the oxidizing atmosphere during the first stage of formation. 2 Spinel oxide is magnesia spinel Mg0-AI
20. The thermal oxidation method according to claim 1. 3. The thermal oxidation method according to claim 1, wherein the oxidizing atmosphere is a dry oxygen atmosphere.
JP57083482A 1982-05-18 1982-05-18 Thermal oxidizing method Pending JPS58200543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083482A JPS58200543A (en) 1982-05-18 1982-05-18 Thermal oxidizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083482A JPS58200543A (en) 1982-05-18 1982-05-18 Thermal oxidizing method

Publications (1)

Publication Number Publication Date
JPS58200543A true JPS58200543A (en) 1983-11-22

Family

ID=13803682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083482A Pending JPS58200543A (en) 1982-05-18 1982-05-18 Thermal oxidizing method

Country Status (1)

Country Link
JP (1) JPS58200543A (en)

Similar Documents

Publication Publication Date Title
CN101276791B (en) Semiconductor wafer and process for its production
Ho et al. Electrical and optical properties of MgO thin film prepared by sol-gel technique
JP2623100B2 (en) Superconducting Josephson junction and method of forming the same
JPS58200543A (en) Thermal oxidizing method
JP3096050B2 (en) Method for manufacturing semiconductor device
JPS59111999A (en) Heat treatment of insulating film of single crystal
JPS63300580A (en) Substrate for electronic device
JPS6315442A (en) Semiconductor substrate
JPH0454966B2 (en)
JPH0282585A (en) Superconducting wiring
Konishi et al. Homoepitaxial growth of a-axis oriented YBa2Cu3O7− δ thin films on single crystals
JPH0412092A (en) Compound semiconductor and method for growing the same
JP2703403B2 (en) Superconducting wiring fabrication method
JPS5853824A (en) Manufacture of semiconductor device
JPH0577315B2 (en)
JPH01146361A (en) Semiconductor device
JP3013340B2 (en) Semiconductor substrate and manufacturing method thereof
JPS6219046B2 (en)
JP2821885B2 (en) Superconducting thin film forming method
JPH0476967A (en) Superconducting device and its manufacture
JPH01305579A (en) Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element
JPH04285097A (en) Production of thin superconducting film
JPH04280803A (en) Method for forming oxide thin film and laminate of oxide thin film and insulating thin film
JPH0548159A (en) Oxide superconductor device and manufacture thereof
JPH01259526A (en) Formation of single crystal silicon film on insulating film