JPH01146361A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01146361A
JPH01146361A JP30530287A JP30530287A JPH01146361A JP H01146361 A JPH01146361 A JP H01146361A JP 30530287 A JP30530287 A JP 30530287A JP 30530287 A JP30530287 A JP 30530287A JP H01146361 A JPH01146361 A JP H01146361A
Authority
JP
Japan
Prior art keywords
layer
insulating substrate
crystal
silicide layer
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30530287A
Other languages
Japanese (ja)
Inventor
Masaru Ihara
賢 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30530287A priority Critical patent/JPH01146361A/en
Publication of JPH01146361A publication Critical patent/JPH01146361A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the generation of crystal defect caused by lattice inconformity between an insulating substrate and an Si active layer, and enable the high density integration and the high speed operation of a device, by installing element forming layers, the insulating substrate, and a silicide layer inserted between them. CONSTITUTION:The subject device is provided with element forming layers 3-6, an insulating substrate 1 and a silicide layer 2' inserted between them. In other case, the following are arranged; the element forming layers 3-6, the insulating substrate 1, and a multilayer structure 2 composed of one or more silicide layer 2A and one or more silicon layer 2B which are alternately laminated between them. For example, in the element forming regions composed of silicon, are formed a collector region 3, a base region 4, an emitter region 6 and a collector contact region 6. The above-mentionded silicide layer 2' or multilayer structure 2 is turned into a collector leading out layer. For the above- mentioned insulating substrate 1, a sapphire substrate or magnesia spinel (MgO.Al2O3) crystal is used. For the above-mentioned silicide layer 2A, NiSi2 or CoSi2 is used.

Description

【発明の詳細な説明】 〔概要〕 本発明は5oI(Silicon On In5ula
tor)構造の半導体装置に関し。
[Detailed Description of the Invention] [Summary] The present invention is based on 5oI (Silicon On In5ula).
(tor) structure semiconductor device.

絶縁基体とSi活性層との格子不整合に起因する結晶欠
陥の発生を抑止し、デバイスの高集積化。
Suppresses the occurrence of crystal defects caused by lattice mismatch between the insulating substrate and the Si active layer, resulting in higher integration of devices.

高速化を目的とし、。Aimed at speeding up.

素子形成層と絶縁基体と、それらの間に挿入されたシリ
サイド層とを有する構成、あるいは素子形成層と絶縁基
体と、それらの間に交互に積層された。各1層以上のシ
リサイド層とシリコン層からなる多層構造とを有する構
成とする。
The structure includes an element forming layer, an insulating substrate, and a silicide layer inserted between them, or an element forming layer and an insulating substrate are alternately laminated between them. The structure has a multilayer structure each consisting of one or more silicide layers and a silicon layer.

〔産業上の利用分野〕[Industrial application field]

本発明はsor構造の半導体装置に関する。 The present invention relates to a semiconductor device having a sor structure.

SO5(Silicon On 5apphire)や
、 Si基板上に形成されたマグネシャスピネル(Mg
O・AlzO+)に代表される絶縁物上のSi構造(S
OT)の半導体装置は次のような多くの優れた特徴があ
り、注目されている。
SO5 (Silicon On 5apphire) and magnetic spinel (Mg) formed on a Si substrate.
Si structure (S
OT) semiconductor devices have many excellent features, such as the following, and are attracting attention.

■ 基板容量が小さく、高速化がはかれる。■Small board capacitance, allowing for faster speeds.

■ 高耐圧化がはかれる。■ High voltage resistance is possible.

■ 耐放射線強化がはかれる。■ Enhanced radiation resistance.

■ ランチアンプがなく、誤動作しない。■ No launch amplifier, no malfunctions.

〔従来の技術〕[Conventional technology]

SOS構造は最も古くから開発され、技術的に一番進歩
したSOI構造であり、 MO3型トランジスタとして
一部実用化されている。
The SOS structure has been developed for the longest time, is the most technologically advanced SOI structure, and has been partially put into practical use as MO3 type transistors.

し−かしながらサファイア結晶とSi結晶との格子不整
合は約5.6%あり、このために発生する多数の結晶欠
陥によりバイポーラトランジスタへの適用は未だなされ
ていない。
However, the lattice mismatch between the sapphire crystal and the Si crystal is approximately 5.6%, and due to the large number of crystal defects that occur due to this, it has not yet been applied to bipolar transistors.

特に、縦型バイポーラトランジスタに応用する場合、 
Si活性層のサファイア基板との界面側にコレクタ抵抗
を減らすために高濃度不純物SiNを最低数μmの膜厚
で導入しなければならない。
Especially when applied to vertical bipolar transistors,
In order to reduce collector resistance on the interface side of the Si active layer with the sapphire substrate, high concentration impurity SiN must be introduced to a thickness of at least several μm.

しかしながら、 Si層の膜厚を厚くすると微細な素子
間分離が困難となり、デバイスの高集積化。
However, increasing the thickness of the Si layer makes it difficult to achieve fine isolation between elements, which leads to higher integration of devices.

高速化をはかる上で問題となる。This poses a problem when trying to increase speed.

上記のように、サファイア結晶とSi結晶との格子不整
合は約5.6%であるが、さらに、格子不整合の緩和を
はかったスピネル結晶を用いたSO■構造でMgO・A
l2O3結晶とSi結晶との格子不整合はSiの3格子
とMgO・AhOzの2格子との間で約0.8%である
As mentioned above, the lattice mismatch between the sapphire crystal and the Si crystal is approximately 5.6%, but in addition, the MgO・A
The lattice mismatch between the 12O3 crystal and the Si crystal is about 0.8% between the 3-lattice of Si and the 2-lattice of MgO.AhOz.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような、絶縁体とSi結晶との格子不整合に起因す
る結晶欠陥は素子性能に悪影響を与えるため、集積回路
用の材料としてさらに薄膜で、高品位の結晶を得る技術
が望まれている。
Crystal defects such as these caused by lattice mismatch between the insulator and the Si crystal have a negative impact on device performance, so there is a need for technology to obtain thinner, higher-quality crystals as materials for integrated circuits. .

本発明は、薄膜で、高品位のSO■結晶を得て。The present invention obtains high-quality SO* crystals in thin films.

これを用いてバイポーラトランジスタの低コレクタ抵抗
化、高集積化、高速化を目的とする。
The aim is to use this to lower the collector resistance, increase the integration density, and increase the speed of bipolar transistors.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、素子形成層と絶縁基体と5それら
の間に挿入されたシリサイド層とを有する半導体装置、
あるいは素子形成層と絶縁基体と。
The solution to the above problem is to provide a semiconductor device having an element formation layer, an insulating substrate, and a silicide layer inserted between them.
Or an element forming layer and an insulating base.

それらの間に交互に積層された。各1層以上のシリサイ
ド層とシリコン層からなる多層構造とを有する半導体装
置により達成される。
Laminated alternately between them. This is achieved by a semiconductor device having a multilayer structure each consisting of one or more silicide layers and a silicon layer.

前記の絶縁基体にサファイア基板、もしくは半導体基板
上に形成されたマグネシャスピネル結晶を、前記シリサ
イド層はN15Iz +  もしくはCo51zを用い
ると結晶欠陥の少ない高品質のSOT構造が得られる。
When a sapphire substrate or a magnetic spinel crystal formed on a semiconductor substrate is used as the insulating substrate, and N15Iz + or Co51z is used as the silicide layer, a high-quality SOT structure with few crystal defects can be obtained.

また、バイポーラトランジスタにおいては前記シリサイ
ド層、あるいは多層構造をコレクタ引き出し層に使用す
れば、薄膜で低コレクタ抵抗が実現でき、素子の微細化
が可能となる。
Furthermore, in a bipolar transistor, if the silicide layer or multilayer structure is used as a collector lead-out layer, a thin film can realize low collector resistance, and the device can be miniaturized.

〔作用〕[Effect]

本発明者により最近開発されたシリサイド気相成長法に
より、絶縁体上にNiSi、やCo51z等のシリサイ
ド結晶をエピタキシャル成長できるようになった。
By the silicide vapor phase growth method recently developed by the present inventor, it has become possible to epitaxially grow silicide crystals such as NiSi and Co51z on an insulator.

本発明はこの技術を用いて、絶縁体上にシリサイド結晶
、あるいはシリサイド結晶/Si結晶の多層構造を形成
し、この上にSi活性層を成長したものである。
The present invention uses this technique to form a silicide crystal or a multilayer structure of silicide crystal/Si crystal on an insulator, and then grows a Si active layer thereon.

次に、これらの中間バッファ層の機能を説明する。Next, the functions of these intermediate buffer layers will be explained.

(1)  シリサイド結晶 (al  SOS構造: 格子定数はCoS i 2が5.36人、 N15iz
が5.41人でいずれもSiに比し小さく9例えばCo
S i zはサファイアとの格子不整合は4.1%で、
 Si/サファイア□間の5.6%に比し約30%整合
性が向上する。第5↓ 図のX線回折パターンより分かように、 Co51z/
サファイア結晶の方がSi/サファイア結晶より半値幅
が小さく、結晶性が改善されている。
(1) Silicide crystal (al SOS structure: lattice constant is 5.36 for CoS i 2, N15iz
is 5.41 people, both of which are smaller than Si.9 For example, Co
The lattice mismatch of S i z with sapphire is 4.1%,
The consistency is improved by about 30% compared to 5.6% between Si/sapphire□. As can be seen from the X-ray diffraction pattern in Figure 5↓, Co51z/
The sapphire crystal has a smaller half width than the Si/sapphire crystal and has improved crystallinity.

(blスピネル結晶を用いたSol構造:Si結晶/M
gO・Al2O3結晶の格子不整合はSiの3 格子ト
MgO・Al2O,(7) 2格子トノ間で約+0.8
%であるが、 Co51z結晶/ MgO・Alz(h
結晶の格子不整合は約−0,5%であり、約40%整合
性が向上する。
(Sol structure using bl spinel crystal: Si crystal/M
The lattice mismatch of gO.Al2O3 crystal is approximately +0.8 between the 3 lattice of Si and the 2 lattice of MgO.Al2O, (7).
%, but Co51z crystal/MgO・Alz(h
The crystal lattice mismatch is about -0.5%, and the matching is improved by about 40%.

(2)  シリサイド結晶/Si結晶の多層構造さらに
、格子不整合による結晶欠陥を抑止する方法として、相
似する構造を持つ結晶を交互に成長して超格子構造とす
ることは知られている。
(2) Multilayer structure of silicide crystal/Si crystal Furthermore, as a method of suppressing crystal defects due to lattice mismatch, it is known to alternately grow crystals with similar structures to form a superlattice structure.

本発明は前記成長技術を用いて、絶縁体上に各層の厚さ
が数10〜数100人のシリサイド結晶とSi結晶を交
互に成長し、厚さ0.1〜1μmの多層構造を形成し、
この上にSi素子形成層を成長することにより、それぞ
れの界面で結晶欠陥を横方向に発散させるか、ループ状
に閉じ込めるようにしたものである。
The present invention uses the above-mentioned growth technique to alternately grow silicide crystals and Si crystals, each layer having a thickness of several tens to several hundreds, on an insulator to form a multilayer structure with a thickness of 0.1 to 1 μm. ,
By growing a Si element forming layer on top of this, crystal defects are made to diverge laterally at each interface or are confined in a loop shape.

この場合、 NiSi、とSi、およびCo51zとS
tの格子不整合はそれぞれ約0.4%と1.3%である
In this case, NiSi, and Si, and Co51z and S
The lattice mismatches of t are approximately 0.4% and 1.3%, respectively.

〔実施例〕〔Example〕

第1図は第1の発明の一実施例を説明するバイポーラト
ランジスタの模式断面図である。
FIG. 1 is a schematic cross-sectional view of a bipolar transistor illustrating an embodiment of the first invention.

図において、lはサファイア基板、2′はN15iz、
Co51z等のシリサイド層、3はSi活性層でコレク
タ領域、4はベース領域、5はエミッタ領域、6はコレ
クタコンタクト領域、7は5i02素子分離領域である
In the figure, l is a sapphire substrate, 2' is N15iz,
A silicide layer such as Co51z, 3 is a Si active layer and a collector region, 4 is a base region, 5 is an emitter region, 6 is a collector contact region, and 7 is a 5i02 element isolation region.

製造工程の概略は次のようである。The outline of the manufacturing process is as follows.

前記のシリサイド成長法を用いて。using the silicide growth method described above.

面指数(1012)のサファイア基板上に厚さ約0.7
μmで面指数(100)のCoSi2結晶をエピタキシ
ャル成長する。
Approximately 0.7 thick on a sapphire substrate with a plane index of (1012)
A CoSi2 crystal with a surface index (100) in μm is epitaxially grown.

Co51zのエピタキシャル成長条件は次のようである
The epitaxial growth conditions for Co51z are as follows.

■ 基板:  (fo12)のサファイア基板■ 原料
ガス: 5iC1a、 Heバブル流量(20℃)10
cc /分。
■ Substrate: (FO12) sapphire substrate ■ Raw material gas: 5iC1a, He bubble flow rate (20℃) 10
cc/min.

■ 固体原料: CoC1z、保持温度700℃。■ Solid raw material: CoC1z, holding temperature 700°C.

キャリア(He)流量51/分。Carrier (He) flow rate 51/min.

■ 成長温度:880℃。■ Growth temperature: 880℃.

■ 反応ガス:  Hz/He、混合比20%。■ Reaction gas: Hz/He, mixing ratio 20%.

■ 成長速度:500人/分。■ Growth rate: 500 people/min.

この後は通常の工程によりSi活性層3を成長しく成長
温度900〜1000℃)、素子形成を行う。
Thereafter, the Si active layer 3 is grown by a normal process (at a growth temperature of 900 to 1000 DEG C.), and the device is formed.

第2図は第1の発明の他の実施例を説明するバイポーラ
トランジスタの模式断面図である。
FIG. 2 is a schematic cross-sectional view of a bipolar transistor illustrating another embodiment of the first invention.

図において、11はSi基板、11′はN15iz、C
o51z等の基板側シリサイド層、12は5i02層、
13はMg0−Al2O3層、2′はN15iz、C0
5iz等の活性層側シリサイド層でコレクタ引き出し層
、3はSi活性層でコレクタ領域、4はベース領域、5
はエミッタ領域、6はコレクタコンタクj−領域、7は
5iO1素子分離領域である。
In the figure, 11 is a Si substrate, 11' is N15iz, C
Substrate side silicide layer such as o51z, 12 is 5i02 layer,
13 is Mg0-Al2O3 layer, 2' is N15iz, C0
A silicide layer on the active layer side such as 5iz is a collector extraction layer, 3 is a Si active layer and is a collector region, 4 is a base region, 5
is an emitter region, 6 is a collector contact j-region, and 7 is a 5iO1 element isolation region.

製造工程の概略は次のようである。The outline of the manufacturing process is as follows.

■ Si基板上にCo51z fill ’をエピタキ
シャル成長。(反応ガスはSiCl2−CoCIz−H
z/lle系、成長温度800〜1000℃) ■ 本発明者が既、に開発した絶縁物気相エピタキシャ
ル成長法を用いて、厚さ0.2μmのMgO・AlzO
:+ 7113のエピタキシャル成長。
■ Epitaxial growth of Co51z fill' on Si substrate. (The reaction gas is SiCl2-CoCIz-H
(z/lle system, growth temperature 800 to 1000°C) ■ MgO/AlzO with a thickness of 0.2 μm was grown using the insulator vapor phase epitaxial growth method that the present inventor had already developed.
:+ Epitaxial growth of 7113.

(反応ガスはMgCl z−AICh−C(h−Hz系
、成長温度900〜1000℃) ■ ウェット酸化(酸化温度1000℃)。
(The reaction gas is MgCl z-AICh-C (h-Hz system, growth temperature 900 to 1000°C). ■ Wet oxidation (oxidation temperature 1000°C).

MgO・Al2O3層13を通して、下層のCoC1,
層11′の一部を酸化することにより厚さ約1μmのS
iO□層12全12する。
Through the MgO・Al2O3 layer 13, the lower layer CoC1,
By oxidizing a part of the layer 11', a layer of S with a thickness of about 1 μm is formed.
iO□ layer 12 total 12.

この層は、ウェハの反りを緩和し、高耐圧化がはかれる
役目を持つ。
This layer has the role of reducing warping of the wafer and increasing the withstand voltage.

■ 活性層側シリサイド層(コレクタ引き出し層)とし
て厚さ0.7μmのCo51z層2′を成長。
■ A Co51z layer 2' with a thickness of 0.7 μm was grown as a silicide layer on the active layer side (collector extraction layer).

(成長温度8OO〜1000℃) この後は通常の工程によりSi活性層3を成長し。(Growth temperature 8OO~1000℃) After this, a Si active layer 3 is grown using a normal process.

素子形成を行う、。Perform element formation.

第3図は第2の発明の一実施例を説明するバイポーラト
ランジスタの模式断面図である。
FIG. 3 is a schematic cross-sectional view of a bipolar transistor illustrating an embodiment of the second invention.

図において、1はサファイア基板、2は多層構造でコレ
クタ引き出し層、 2AはのN15iz、Co51z等
のシリサイド層、 2BはSi層、3はSi活性層でコ
レクタ領域、4はベース領域、5はエミッタ領域。
In the figure, 1 is a sapphire substrate, 2 is a multilayered collector extraction layer, 2A is a silicide layer such as N15iz, Co51z, etc., 2B is a Si layer, 3 is a Si active layer and is a collector region, 4 is a base region, and 5 is an emitter. region.

6はコレクタコンタクト領域、7は5in2素子分離領
域である。
6 is a collector contact region, and 7 is a 5in2 element isolation region.

第4図は第2の発明の他の実施例を説明するバ・イポー
ラトランジスタの模式断面図である。
FIG. 4 is a schematic cross-sectional view of a bipolar transistor illustrating another embodiment of the second invention.

図において、11はSi基板、12はSiO□層、13
はMg0−Al2O3層、2は多層構造でコレクタ引き
出し層、 2AはN15iz、Co51z等のシリサイ
ド層、 2BはSi層、3はSi活性層でコレクタ領域
、4はベース領域、5はエミッタ領域、6はコレクタコ
ンタクト領域、7は5i02素子分離領域である。
In the figure, 11 is a Si substrate, 12 is a SiO□ layer, and 13 is a SiO□ layer.
is a Mg0-Al2O3 layer, 2 is a multilayered collector extraction layer, 2A is a silicide layer such as N15iz, Co51z, etc., 2B is a Si layer, 3 is a Si active layer and is a collector region, 4 is a base region, 5 is an emitter region, 6 7 is a collector contact region, and 7 is a 5i02 element isolation region.

第3図、第4図のシリサイド/Si多層構造は作用の欄
で説明した諸元を用いる。
The silicide/Si multilayer structure shown in FIGS. 3 and 4 uses the specifications explained in the section of operation.

第1図〜第4図のシリサイド層、またはシリサイド/S
i多層構造は低抵抗(抵抗率ρ= 2X10−5Ωcm
)であり、厚さ0.1〜1μmの薄膜で十分コレクタ抵
抗を下げることができる。
Silicide layer or silicide/S in Figures 1 to 4
i Multilayer structure has low resistance (resistivity ρ = 2X10-5Ωcm
), and a thin film with a thickness of 0.1 to 1 μm can sufficiently lower the collector resistance.

このように、基板と活性層間にシリサイド層。In this way, a silicide layer between the substrate and the active layer.

またはシリサイド/Si多層構造の導入により、その上
のSi活性層は薄膜で高品位の結晶を得ることができる
ため、微小な素子間分離が可能となり。
Alternatively, by introducing a silicide/Si multilayer structure, the Si active layer thereon can be formed into a thin film with high quality crystals, making it possible to achieve minute isolation between elements.

素子寸法を大幅に小さくでき、高集積化、高速化が達成
できる。
The device dimensions can be significantly reduced, and higher integration and higher speeds can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、 SOI構造にお
いて、絶縁基体とSi活性層との格子不整合に起因する
結晶欠陥の発生を抑止し、 Si活性層は薄膜で高品位
の結晶を得ることができ、デバイスの高集積化、高速化
が達成できる。
As explained above, according to the present invention, it is possible to suppress the occurrence of crystal defects due to lattice mismatch between an insulating substrate and a Si active layer in an SOI structure, and to obtain high-quality crystals in a thin Si active layer. This makes it possible to achieve higher integration and higher speed devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の一実施例を説明するバイポーラト
ランジスタの模式断面図。 第2図は第1の発明の他の実施例を説明するバイポーラ
トランジスタの模式断面図。 第3図は第2の発明の一実施例を説明するバイポーラト
ランジスタの模式断面図。 第4図は第2の発明の他の実施例を説明するバイポーラ
トランジスタの模式断面図。 第5図(11,(21はSi/サファイア結晶とCo5
1z/サフアイア結晶のX線回折パターンである。 図において。 1はサファイア基板。 2は多層構造でコレクタ引き出し層。 2八はN15iz、Co51z等のシリサイド層。 2BはSil’i1 2′はN15iz、Co51z等のシリサイド層。 3はSi活性層でコレクタ領域。 4はベース令頁域。 5はエミッタ領域。 6はコレクタコンタクト領域。 7はSiO□素子分離領域。 11はSi基)反。 11’はN15iz、CoSi2等の基板側シリサイド
層。 12はSiO□層。 ’     13は?IgO・へ1203層である。
FIG. 1 is a schematic cross-sectional view of a bipolar transistor illustrating an embodiment of the first invention. FIG. 2 is a schematic cross-sectional view of a bipolar transistor explaining another embodiment of the first invention. FIG. 3 is a schematic cross-sectional view of a bipolar transistor illustrating an embodiment of the second invention. FIG. 4 is a schematic cross-sectional view of a bipolar transistor explaining another embodiment of the second invention. Figure 5 (11, (21 is Si/sapphire crystal and Co5
1z/X-ray diffraction pattern of sapphire crystal. In fig. 1 is a sapphire substrate. 2 has a multi-layer structure with a collector pull-out layer. 28 is a silicide layer such as N15iz or Co51z. 2B is Sil'i1, and 2' is a silicide layer such as N15iz or Co51z. 3 is a Si active layer and a collector region. 4 is the base page area. 5 is the emitter area. 6 is a collector contact area. 7 is a SiO□ element isolation region. 11 is a Si group). 11' is a substrate side silicide layer such as N15iz or CoSi2. 12 is a SiO□ layer. 'What about 13? There are 1203 layers of IgO.

Claims (6)

【特許請求の範囲】[Claims] (1)素子形成層と絶縁基体と、それらの間に挿入され
たシリサイド層とを有することを特徴とする半導体装置
(1) A semiconductor device comprising an element formation layer, an insulating substrate, and a silicide layer inserted between them.
(2)素子形成層と絶縁基体と、それらの間に交互に積
層された、各1層以上のシリサイド層とシリコン層から
なる多層構造とを有することを特徴とする半導体装置。
(2) A semiconductor device characterized by having a multilayer structure consisting of an element forming layer, an insulating substrate, and one or more silicide layers and silicon layers alternately stacked between them.
(3)前記の絶縁基体はサファイア基板、もしくは半導
体基板上に形成されたマグネシャスピネル(MgO・A
l_2O_3)結晶であり、前記シリサイド層はNiS
i_2、もしくはCoSi_2であることを特徴とする
特許請求の範囲第1項記載の半導体装置。
(3) The insulating substrate is a sapphire substrate or a magnetic spinel (MgO・A) formed on a semiconductor substrate.
l_2O_3) crystal, and the silicide layer is NiS
The semiconductor device according to claim 1, characterized in that the semiconductor device is i_2 or CoSi_2.
(4)前記シリサイド層がコレクタ引き出し層であるこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
(4) The semiconductor device according to claim 1, wherein the silicide layer is a collector extraction layer.
(5)前記の絶縁基体はサファイア基板、もしくは半導
体基板上に形成されたマグネシャスピネル(MgO・A
l_2O_3)結晶であり、前記シリサイド層はNiS
i_2、もしくはCoSi_2であることを特徴とする
特許請求の範囲第2項記載の半導体装置。
(5) The insulating substrate is a sapphire substrate or a magnetic spinel (MgO・A) formed on a semiconductor substrate.
l_2O_3) crystal, and the silicide layer is NiS
The semiconductor device according to claim 2, characterized in that the semiconductor device is i_2 or CoSi_2.
(6)前記多層構造がコレクタ引き出し層であることを
特徴とする特許請求の範囲第2項記載の半導体装置。
(6) The semiconductor device according to claim 2, wherein the multilayer structure is a collector extraction layer.
JP30530287A 1987-12-02 1987-12-02 Semiconductor device Pending JPH01146361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30530287A JPH01146361A (en) 1987-12-02 1987-12-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30530287A JPH01146361A (en) 1987-12-02 1987-12-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01146361A true JPH01146361A (en) 1989-06-08

Family

ID=17943465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30530287A Pending JPH01146361A (en) 1987-12-02 1987-12-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01146361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1794806A2 (en) * 2004-09-21 2007-06-13 International Business Machines Corporation METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
US8169749B2 (en) 2007-05-22 2012-05-01 Hitachi Global Storage Technologies, Netherlands B.V. Post-assembly head/disk offset adjuster

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1794806A2 (en) * 2004-09-21 2007-06-13 International Business Machines Corporation METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
EP1794806A4 (en) * 2004-09-21 2011-06-29 Ibm METHOD OF COLLECTOR FORMATION IN BiCMOS TECHNOLOGY
US8169749B2 (en) 2007-05-22 2012-05-01 Hitachi Global Storage Technologies, Netherlands B.V. Post-assembly head/disk offset adjuster

Similar Documents

Publication Publication Date Title
JP5463040B2 (en) Fabricating a semiconductor on the insulating layer, comprising locally enriching Ge
JP2679639B2 (en) Semiconductor device and manufacturing method thereof
JPH06507274A (en) Metastable oxides and nitrides of group 15 alloys, nitrides of group 15 elements, and semiconductor devices formed from them
JP2746225B2 (en) Semiconductor device and manufacturing method thereof
JP2006524426A (en) Method and layer structure for producing strained layers on a substrate
JPH03132055A (en) Semiconductor substrate and its manufacture
JPH01146361A (en) Semiconductor device
JP2801704B2 (en) Semiconductor substrate manufacturing method
JPS5860556A (en) Preparation of semiconductor device
JPS62202559A (en) Semiconductor device and its manufacture
JPS5828731B2 (en) All silicon materials available.
JP3465765B2 (en) Method for manufacturing semiconductor substrate for IGBT
JP2006080486A (en) Forming method of epitaxial film, thin film forming method using the same and manufacturing method of semiconductor device
JPH03292723A (en) Manufacture of silicon singe crystal thin film
JPS6115372A (en) Semiconductor device and manufacture thereof
JPS63302524A (en) Manufacture of semiconductor device
JPH0344937A (en) Bipolar transistor and manufacture thereof
CN114038790A (en) Device manufacturing method for protecting semiconductor device channel
JP4149966B2 (en) Semiconductor substrate and semiconductor substrate manufacturing method
JPS5833702B2 (en) Manufacturing method of semiconductor substrate
JPS5818939A (en) Manufacture of single crystal silicon thin film
JPS60144953A (en) Semiconductor wafer
JPS61155289A (en) Preparation of compound semiconductor single crystal
JPS59186366A (en) Semiconductor device and manufacture thereof
JPS59127841A (en) Manufacture of semiconductor device