JPS63146447A - Formation of soi structure - Google Patents

Formation of soi structure

Info

Publication number
JPS63146447A
JPS63146447A JP29416686A JP29416686A JPS63146447A JP S63146447 A JPS63146447 A JP S63146447A JP 29416686 A JP29416686 A JP 29416686A JP 29416686 A JP29416686 A JP 29416686A JP S63146447 A JPS63146447 A JP S63146447A
Authority
JP
Japan
Prior art keywords
film
silicon
substrate
silicon film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29416686A
Other languages
Japanese (ja)
Inventor
Hiroshi Hanabusa
寛 花房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29416686A priority Critical patent/JPS63146447A/en
Publication of JPS63146447A publication Critical patent/JPS63146447A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single crystalline silicon film having a thin film thickness and a good crystallizability by a method wherein of single crystalline silicon films formed on a spinel substrate, the interface with the substrate is made of a silicon oxide film. CONSTITUTION:A single crystalline silicon film 2 is grown on a single crystalline magnesia spinel substrate 1. On the silicon film 2, a silicon nitride film 3 is formed by a thermal nitriding reaction. With the substrate 1 temperature being kept at 1050 deg.C, the silicon film 2 is oxidized under a moistened oxygen atmosphere. Then in the interface between the silicon film 2 and the nitride film 3, a silicon oxide film is not formed because the nitride film 3 inhibits the oxygen supply, but oxygen is transported in the substrate 1 and oxidation is performed in the interface between the silicon film 2 and the substrate 1, whereby a silicon oxide film 4 is formed. Accordingly, the silicon film 2 having a good crystallizability and a thin film thickness is obtained.

Description

【発明の詳細な説明】 K)産業上の利用分野 本発明はSUE構造の形成方法に関し、特にマグネシア
スピネル基板上にシリコン薄膜を形成する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION K) Industrial Application Field The present invention relates to a method for forming a SUE structure, and more particularly to a method for forming a silicon thin film on a magnesia spinel substrate.

(口1 従来の技術 単結晶絶縁基板上に単結晶シリコン膜を成長させたもの
はSO5(Silicon On  5apphine
)あるいはSo I (Silicon On  In
sulatiIlgSubstrate)411造と称
され、半導体集積回路における高集積化、高速化、低消
費電力化が図れるものとして知られている。
(1) Conventional technology The one in which a single-crystal silicon film is grown on a single-crystal insulating substrate is SO5 (Silicon On 5apphine).
) or So I (Silicon On In
It is called sulatiIlgSubstrate) 411 and is known as a device that can achieve higher integration, higher speed, and lower power consumption in semiconductor integrated circuits.

単結晶絶縁基板としては、例えばApplied Ph
ysics Letters 36(9)、I May
 1980、第741頁乃至第743頁の「Growt
h of thinsillicon   films
  on  5apphire  and  5pin
elby molecular beam epira
xy J に記載されているように、サファイヤ(A/
xoi)基板やマグネシアスピネル(MgOA720り
基板が用いられる。
As a single crystal insulating substrate, for example, Applied Ph
ysics Letters 36(9), I May
1980, pp. 741-743, “Growt
h of thinsillicon films
on 5apphire and 5pin
elby molecular beam epira
Sapphire (A/
A substrate made of magnesia spinel (MgOA720) is used.

この中で、80’0℃に加熱したスピネル基板上に分子
線エビタ午シャル法にて単結晶シリコン膜を成長させて
いるが、シリコンとスピネルの結晶構 7造の違いによ
り、単結晶シリコン膜はスピネル基板との界面付近にて
多数の欠陥を含みながら粒状に島成長する。このため、
単結晶シリコン膜の表面が平坦となるのに0.5pmの
膜厚が、更番こ半導体デバイスとして良好なホール移動
度を示すのに1゜0μm以上の膜厚が必要である。
In this process, a single-crystal silicon film is grown on a spinel substrate heated to 80'0°C by the molecular beam epitaxial method. grows into granular islands near the interface with the spinel substrate, including many defects. For this reason,
A film thickness of 0.5 pm is necessary for the surface of a single crystal silicon film to be flat, but a film thickness of 1.0 .mu.m or more is required for a semiconductor device to exhibit good hole mobility.

Pj  発明が解決しようとする問題点しかしながら、
単結晶シリコン膜の膜厚が1.0μm以上になると、単
結晶シリコン膜での電気的容量が問題となり、高集積化
、高速化、低消費電力化に悪影響を及ぼして501構造
とする利点を損ねてしまう。また、シリコン膜とスピネ
ル基板の界面準位密度が高いので、半導体デバイスとし
ての特性はシリコン基板のものにくらべて悪かった。
Pj Problems that the invention seeks to solveHowever,
When the thickness of the single-crystal silicon film exceeds 1.0 μm, the electrical capacity of the single-crystal silicon film becomes a problem, which has a negative effect on high integration, high speed, and low power consumption, and the advantages of the 501 structure are lost. You will lose it. Furthermore, since the interface state density between the silicon film and the spinel substrate was high, the characteristics as a semiconductor device were worse than those of the silicon substrate.

本発明は斯様な点に鑑みて為されたもので、結晶性が良
く、膜厚0.3μm程度の薄い単結晶シリコン膜をスピ
ネル基板上に形成するものである。
The present invention has been made in view of these points, and is to form a thin single-crystal silicon film with good crystallinity and a thickness of about 0.3 μm on a spinel substrate.

に)問題点を解決するための手段 本発明は、マグネシアスピネル基板上に単結晶シリコン
膜を形成する工程と、該単結晶シリコン膜上にシリコン
窒化膜を形成する工程と、前記マグネシアスピネル基板
との界面側で前記単結晶シリコン膜を酸化してシリコン
酸化膜を形成する工程とを含んでなるSOI構造の形成
方法である。
B) Means for Solving the Problems The present invention comprises a step of forming a single crystal silicon film on a magnesia spinel substrate, a step of forming a silicon nitride film on the single crystal silicon film, and a step of forming a silicon nitride film on the magnesia spinel substrate. This method of forming an SOI structure includes the step of oxidizing the single crystal silicon film on the interface side to form a silicon oxide film.

匝1作 用 スピネル基板上に形成した単結晶シリコン膜のうち、基
板との界面側をシリコン酸化膜とすることで、結晶性の
良い膜厚の薄い単結晶シリコン膜が得られる。
By forming a silicon oxide film on the interface side with the substrate of a single crystal silicon film formed on a spinel substrate, a thin single crystal silicon film with good crystallinity can be obtained.

(へ)実施例 第1図A乃至りに本発明一実施例の概略工程図を示す。(f) Example FIGS. 1A to 1A show schematic process diagrams of an embodiment of the present invention.

まず、厚さ200μm程度の単結晶マグネシアスピネル
(MgOklx00基板(1)の鏡面研磨した(100
)面上に、単結晶シリコン膜+2++AI厚1μm、エ
ピタキシャル成長させる(%1図A)。
First, a single crystal magnesia spinel (MgOklx00 substrate (1) with a thickness of about 200 μm was mirror-polished (100 μm).
) A single crystal silicon film +2++AI with a thickness of 1 μm is epitaxially grown on the surface (%1 Figure A).

このエピタキシャル成長とは、基板温度800℃でのシ
リコン分子線エピタキシャル成長法や基板温度1000
℃でSiH4ガスを用いたCVD法等の技術により為さ
れる。
This epitaxial growth refers to the silicon molecular beam epitaxial growth method at a substrate temperature of 800°C or the silicon molecular beam epitaxial growth method at a substrate temperature of 1000°C.
This is done by a technique such as a CVD method using SiH4 gas at .degree.

次に、成長させた単結晶シリコン膜(2)上に、基板温
度を1050℃としてNHsガスを用い、直接熱窒化反
応によりシリコン窒化膜(3)を20OA形成する(第
1図B)。
Next, on the grown single crystal silicon film (2), a silicon nitride film (3) of 20 OA is formed by direct thermal nitridation using NHs gas at a substrate temperature of 1050° C. (FIG. 1B).

そして、基板温度を1050℃に保持した状態で、加湿
した酸素雰囲気下にして、単結晶シリコン膜(2)を酸
化する。この時、単結晶シリコン膜(21のシリコン窒
化膜(3)との界面では、シリコン窒化膜(3)が酸素
の供給を阻むためシリコン酸化膜は形成されないが、ス
ピネル基板は1の中で酸素の輸送が行われて、単結晶シ
リコン膜+21のスピネル基板(1)との界面では酸化
が行われ、シリコン酸化膜(4)が形成される。即ち、
スピネル基板(1)との界面付近の欠陥が多く結晶性の
良くない単結晶シリコン膜は酸化され、絶縁膜となって
しまう。
Then, the single crystal silicon film (2) is oxidized in a humidified oxygen atmosphere while maintaining the substrate temperature at 1050°C. At this time, a silicon oxide film is not formed at the interface with the silicon nitride film (3) of the single crystal silicon film (21) because the silicon nitride film (3) blocks the supply of oxygen. is transported, oxidation occurs at the interface of the single crystal silicon film +21 with the spinel substrate (1), and a silicon oxide film (4) is formed. That is,
A single crystal silicon film with many defects and poor crystallinity near the interface with the spinel substrate (1) is oxidized and becomes an insulating film.

こうして、シリコン酸化膜(4)を膜厚1,4Pm形成
すると、単結晶シリコン膜(2)は結晶性の良い上層側
で膜厚0.6μmの薄膜となる(第1図C)。
When the silicon oxide film (4) is formed in this way to a thickness of 1.4 Pm, the single crystal silicon film (2) becomes a thin film with a thickness of 0.6 μm on the upper layer side with good crystallinity (FIG. 1C).

而して、結晶性の良好な膜厚の薄いシリコン膜をもつS
OI構造が形成できる。シリコン窒化膜1ゴ (31CF 4ガスを用いたドライエツチングで除去す
れば、単結晶シリコン膜(2)は露出される(第1図D
)。
Therefore, S with a thin silicon film with good crystallinity
An OI structure can be formed. If the silicon nitride film (1) is removed by dry etching using 31CF4 gas, the single crystal silicon film (2) will be exposed (Fig. 1D).
).

第2図は501構造におけるシリコン膜の膜厚とホール
電子移動度の関係図で、実線は本発明方法によるもの、
破線は従来の方法によるものである。@2図かられかる
ように、例えばシリコン膜厚が0.5μmの場合、従来
の方法によるSOI構造においてホール電子移動度は1
50d/V・Sであるのに対し、本発明方法によるもの
では750cj/V・Sと大幅に電気的特性の向上がさ
れる。
FIG. 2 is a diagram showing the relationship between the silicon film thickness and the hole electron mobility in the 501 structure, where the solid lines are those obtained by the method of the present invention;
The dashed line is from the conventional method. As can be seen from Figure @2, for example, when the silicon film thickness is 0.5 μm, the hole electron mobility is 1 in the conventional SOI structure.
The electrical characteristics were significantly improved to 750 cj/V·S compared to 50 d/V·S by the method of the present invention.

(ト1 発明の効果 本発明は以上の説明から明らかな如く、スピネル基板上
に形成した単結晶シリコン膜のうち、結晶性の悪いスピ
ネル基板との界面側を酸化してシリコン酸化膜としてし
まうので、結晶性が良好な、膜厚の薄いシリコン膜をも
つSOI構造が形成される。そして電気的特性の向上も
図れ、半導体装置に好適な基板の提供がされる。
(G1) Effects of the Invention As is clear from the above description, the present invention oxidizes the interface side with the spinel substrate, which has poor crystallinity, of the single crystal silicon film formed on the spinel substrate to form a silicon oxide film. , an SOI structure having a thin silicon film with good crystallinity is formed.The electrical characteristics can also be improved, and a substrate suitable for semiconductor devices can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至りは本発明方法の概略工程図、第2図はS
O1構造におけるシリコン膜の膜厚とホール電子移動度
の関係を示す図である。 (1し・マグネシアスピネル基板、(2)・・・単結晶
シリコン膜、(31・・・シリコン窒化膜、(4)・・
・シリコン酸化膜。
Figures 1A to 1A are schematic process diagrams of the method of the present invention, and Figure 2 is S
FIG. 3 is a diagram showing the relationship between the film thickness of a silicon film and hole electron mobility in an O1 structure. (1) Magnesia spinel substrate, (2)... single crystal silicon film, (31... silicon nitride film, (4)...
・Silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] (1)マグネシアスピネル基板上に単結晶シリコン膜を
形成する工程と、該単結晶シリコン膜上にシリコン窒化
膜を形成する工程と前記マグネシアスピネル基板との界
面側で前記単結晶シリコン膜を酸化してシリコン酸化膜
を形成する工程とを含んでなることを特徴とするSOI
構造の形成方法。
(1) Forming a single crystal silicon film on a magnesia spinel substrate, forming a silicon nitride film on the single crystal silicon film, and oxidizing the single crystal silicon film on the interface side with the magnesia spinel substrate. a step of forming a silicon oxide film using
How the structure is formed.
JP29416686A 1986-12-10 1986-12-10 Formation of soi structure Pending JPS63146447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29416686A JPS63146447A (en) 1986-12-10 1986-12-10 Formation of soi structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29416686A JPS63146447A (en) 1986-12-10 1986-12-10 Formation of soi structure

Publications (1)

Publication Number Publication Date
JPS63146447A true JPS63146447A (en) 1988-06-18

Family

ID=17804166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29416686A Pending JPS63146447A (en) 1986-12-10 1986-12-10 Formation of soi structure

Country Status (1)

Country Link
JP (1) JPS63146447A (en)

Similar Documents

Publication Publication Date Title
PT515181E (en) METHOD OF PREPARATION OF SEMICONDUCTOR COMPONENTS
JPS6175540A (en) Making of integrated circuit
US5258322A (en) Method of producing semiconductor substrate
JPH02191320A (en) Crystal product and its manufacture
US5341000A (en) Thin silicon carbide layer on an insulating layer
JPS63146447A (en) Formation of soi structure
JP2801704B2 (en) Semiconductor substrate manufacturing method
JP2690412B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
JPS6315442A (en) Semiconductor substrate
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JPS62176145A (en) Manufacture of semiconductor substrate
JPS6163015A (en) Manufacture of seed structure for soi
JP2596605B2 (en) Method for manufacturing SOI substrate
JPH049760B2 (en)
JPS63137412A (en) Manufacture of semiconductor substrate
JPH03292723A (en) Manufacture of silicon singe crystal thin film
JPH0258248A (en) Manufacture of semiconductor device
JPH0454966B2 (en)
JPS5931068A (en) Manufacture of semiconductor integrated circuit device
JPH0195513A (en) Manufacture of semiconductor crystal film
JPS63260014A (en) Method of forming silicon carbide single crystal thin film
JPH01181512A (en) Vapor growth of single crystal silicon
JPS6136380B2 (en)
JPS62296436A (en) Manufacture of semiconductor device
JPS61131525A (en) Molecular beam epitaxy