JPS61131525A - Molecular beam epitaxy - Google Patents

Molecular beam epitaxy

Info

Publication number
JPS61131525A
JPS61131525A JP25351484A JP25351484A JPS61131525A JP S61131525 A JPS61131525 A JP S61131525A JP 25351484 A JP25351484 A JP 25351484A JP 25351484 A JP25351484 A JP 25351484A JP S61131525 A JPS61131525 A JP S61131525A
Authority
JP
Japan
Prior art keywords
silicon
film
oxide film
epitaxial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25351484A
Other languages
Japanese (ja)
Other versions
JPH0611026B2 (en
Inventor
Toru Tatsumi
徹 辰巳
Hisaaki Aizaki
尚昭 相崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59253514A priority Critical patent/JPH0611026B2/en
Publication of JPS61131525A publication Critical patent/JPS61131525A/en
Publication of JPH0611026B2 publication Critical patent/JPH0611026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Abstract

PURPOSE:To depress the generation of lattice defects in the neighborhood of the side wall of an insulation film by performing molecular beam epitaxy after forming a well the bottom of which is the surface of the semiconductor and also the upper end portion of which is made of insulating film and constricted to shape an eaves. CONSTITUTION:A silicon oxide film 2 and a silicon nitride film 3 are grown successively on the surface of a silicon wafer substrate 1 and then part of these films 2, 3 are selectively removed to form a well reaching to the substrate. By etching the silicon oxide film 2 which composes the side wall of the wall, a well having a neck constricted by silicon nitride film 3 is formed. An epitaxial layer 4 and a polycrystalline silicon layer 5 are formed in the well and on the nitride film 3 respectively. By oxidizing the wafer thus treated in the steam atmosphere, the open space between the epitaxial region 4 and the oxide film 2 is filled up. This method can reduce the generation of lattice defects down to less than 0.1 per mum of the side wall along the direction parallel to the substrate plane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、分子線エピタキシャル法を用いた半導体の選
択エピタキシャル成長に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to selective epitaxial growth of semiconductors using molecular beam epitaxial method.

(従来技術とその問題点) シリコンのエピタキシャル層は、高品質のシリコン層が
得られることからバイポーラIC(Integrate
d  C1rcuit)及び近年は、MO8IC(Me
tal−Oxide−8emiconductor I
 C)でも用いられている。ICの低消費電力化及び高
周波数化の要求により、素子微細化の必要性が高まって
いる。そうしたバイポーラIC%MO8ICの必要性を
満足するために、素子分離領域の微細化が有効であり、
現在種々の方法が検討されているが、有力な方法として
選択エピタキシャル成長法がある。
(Prior art and its problems) Silicon epitaxial layers are used for bipolar ICs (Integrated ICs) because they provide high-quality silicon layers.
dC1rcuit) and, in recent years, MO8IC (Me
tal-Oxide-8emiconductor I
C) is also used. Due to the demand for lower power consumption and higher frequency of ICs, the need for element miniaturization is increasing. In order to satisfy the needs of such bipolar IC%MO8IC, it is effective to miniaturize the element isolation region.
Various methods are currently being studied, and one of the most promising methods is selective epitaxial growth.

選択エピタキシャル成長法の例を第3図に示す。An example of the selective epitaxial growth method is shown in FIG.

シリコンウェハ13の上に酸化シリコン膜14を1〜2
μmの厚さだけ形成し、反応性イオンエツチングによっ
て部分的にシリコンを露出させたものをエピタキシャル
成長用の基板として用いる。
One to two silicon oxide films 14 are formed on the silicon wafer 13.
A substrate formed to a thickness of .mu.m and with silicon partially exposed by reactive ion etching is used as a substrate for epitaxial growth.

場合によっては側壁部を窒化シリコン膜15等でコート
する。そのような基板に、原料ガスとしてS i Ht
 C1tとHCAとを用いエピタキシャル成長を行うと
、酸化シリコン膜上には全くシリコンが堆積せず、シリ
コンが露出していた領域だけにエピタキシャル層が形成
できる。′しかしながら選択エピタキシャル膜には、側
壁付近に積層欠陥を初めとする格子欠陥とファセット1
7が存在する。格子欠陥の多くは第3図に示したように
側壁と基板表面が交わるあたりから発生し、エピタキシ
ャル層の表面まで達する。MOSデバイスでもバイポー
ラデバイスでも深さ方向にp−n接合が存在するが、p
 −n接合をよぎる格子欠陥が多い程接合特性は劣化す
るため格子欠陥は少なければ少ないほど望ましい。一方
ファセットが存在すると、MOSデバイスを作った場合
には、V型の部分の先端に電界が集中するためにゲート
耐圧を低下させまたファセットの部分は別のしきい値を
もったトランジスタとして働くためにサブスレッシェホ
ールド特性を感化させる原因となる。従来法では、格子
欠陥とファセットの両方を抑制することができなかった
In some cases, the side wall portions are coated with a silicon nitride film 15 or the like. On such a substrate, S i Ht is used as a raw material gas.
When epitaxial growth is performed using C1t and HCA, no silicon is deposited on the silicon oxide film, and an epitaxial layer can be formed only in the region where silicon was exposed. 'However, the selective epitaxial film has lattice defects such as stacking faults and facets near the sidewalls.
7 exists. As shown in FIG. 3, most of the lattice defects occur at the intersection of the sidewall and the substrate surface, and reach the surface of the epitaxial layer. A p-n junction exists in the depth direction in both MOS devices and bipolar devices, but the p-n junction exists in the depth direction.
The more lattice defects that cross the -n junction, the worse the junction characteristics will be, so it is desirable to have fewer lattice defects. On the other hand, if a facet exists, when a MOS device is made, the electric field will concentrate at the tip of the V-shaped part, lowering the gate withstand voltage, and the facet part will act as a transistor with a different threshold value. This causes subthreshold characteristics to be affected. Conventional methods have been unable to suppress both lattice defects and facets.

近年、高速素子への応用を目的としてこれまでのシリコ
ン薄膜成長技術に比べ、より低温で成長、      
が行なわれ、従ってオートドーピングがきわめて少なく
、急峻な不純物プロファイルを実現できることを特徴と
する高真空中でのシリコン分子線成長技術が盛んに研究
開発されている。たとえば、アブライドフィジイックス
レターズ1982年41巻752ページ(Appl、 
Phys、 Lett、41 !8) 752 )に掲
載のジエー・シー・ビーン(J、 C,Beari)に
よる報告においては、第4図に示す様にシリコン基板1
8の上に酸化シリコン膜19を2〜3μmの厚さだけ形
成し、反応性イオンエツチングによって部分的にシリコ
ンを露出させ(第4図(a))、その後シリコン分子線
成長法によって酸化シリコン膜上に多結晶シリコン層2
0、シリコン基板露出部にエピタキシャル層21を厚さ
1μm成長させる。(第4図(b))  次に、フッ酸
によるリフトオフ法により酸化シリコン膜19及び、そ
の上の多結晶シリコン層20を除去する。(第4図(C
))以上のような方法を用いることによりて、急峻な側
壁部ときわめて平担な上面部をもりたエピタキシャル成
長領域を得ており、シリコン分子線成長法では、ファセ
ットの発生がないことを示している。
In recent years, with the aim of applying to high-speed devices, silicon thin film growth technology has been developed at lower temperatures than conventional silicon thin film growth techniques.
Therefore, active research and development is being conducted on silicon molecular beam growth technology in high vacuum, which is characterized by extremely little autodoping and the ability to realize a steep impurity profile. For example, Abride Physics Letters 1982, Volume 41, Page 752 (Appl.
Phys, Lett, 41! 8) In a report by GC Bean (J.C. Beari) published in 752), as shown in Fig. 4, a silicon substrate 1
A silicon oxide film 19 is formed on 8 to a thickness of 2 to 3 μm, the silicon is partially exposed by reactive ion etching (FIG. 4(a)), and then the silicon oxide film 19 is formed by silicon molecular beam growth. Polycrystalline silicon layer 2 on top
0. An epitaxial layer 21 is grown to a thickness of 1 μm on the exposed portion of the silicon substrate. (FIG. 4(b)) Next, the silicon oxide film 19 and the polycrystalline silicon layer 20 thereon are removed by a lift-off method using hydrofluoric acid. (Figure 4 (C
)) By using the above method, an epitaxial growth region with steep sidewalls and an extremely flat top surface was obtained, indicating that there are no facets in the silicon molecular beam growth method. .

しかし、この場合では、リフトオフ法を用いて多結晶シ
リコンを除去しているために酸化膜も同時に剥離してい
るので素子分雌用の絶縁膜をあとで別に形成しなくては
ならない。また、このような絶縁膜の構造では、(’V
D法によるp、捩エピタキシャル成長法の場合と同様に
絶縁膜側壁近傍ζこ多数の積層欠陥が入るという欠点が
ある。
However, in this case, since the polycrystalline silicon is removed using the lift-off method, the oxide film is also peeled off at the same time, so an insulating film for the female part of the element must be formed separately later. In addition, in such an insulating film structure, ('V
As in the case of the p-screw epitaxial growth method using the D method, there is a drawback that a large number of stacking faults occur near the side walls of the insulating film.

(発明の目的) 本発明の目的は、この様な従来の欠点を除去せしめてシ
リコン分子線成長法において、絶縁膜パターン内にエピ
タキシャル領域を埋めこんだ構造を実現し、しかもエピ
タキシャル領域内の絶縁膜側壁近傍での格子欠陥の発生
を抑制する方法を提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate such conventional drawbacks and realize a structure in which an epitaxial region is buried in an insulating film pattern in silicon molecular beam growth method, and also to realize a structure in which an epitaxial region is buried in an insulating film pattern. The object of the present invention is to provide a method for suppressing the occurrence of lattice defects near the side walls of a film.

(発明の構成) 本発明によれば、表面を部分的に絶縁膜で被覆した単結
晶半導体基板で、半導体表面が露出している領域に向っ
て絶縁膜f111I壁上部からひさし状の絶縁膜をつき
出させた構造をつくった後に分子線エピタキシャル成長
を行なうことを特徴とする分子線エピタキシャル成長法
が実現できる。
(Structure of the Invention) According to the present invention, in a single crystal semiconductor substrate whose surface is partially covered with an insulating film, an eaves-shaped insulating film is formed from the upper part of the wall of the insulating film f111I toward the region where the semiconductor surface is exposed. A molecular beam epitaxial growth method characterized by performing molecular beam epitaxial growth after creating an exposed structure can be realized.

(実施例) 以下図面を用いて詳細に説明する。第1図は本発明の第
一の実施例を説明する概略工程図を示しており、図にお
いて、1は、単結晶(100)シリコン基板、2は酸化
シリコン膜、3は窒化シリコン膜、4はエピタキシャル
領域、5は多結晶層領域をそれぞれ示す。まず、゛シリ
コンウェハー1の表面に熱酸化等の方法で厚さ1〜2μ
mの酸化シリコン膜2を形成し、その上にCVD法など
により窒化シリコン膜3を形成し、続いて当該@2.3
の一部を通常の反応性イオンエツチングによりて選択除
去する。(第1図(a)) 次に緩衝フッ酸等によりて、開口部の側壁の酸化シリコ
ン膜をエツチングする。このとき、窒化シリコン膜3は
影響を受けず、窒化シリコン膜3が開口部領域に向って
ひさし状につき出した構造をつくることができる。(第
1図(b))このときのひさし゛の長さは、200〜5
ooo A:’が好ましい。
(Example) A detailed explanation will be given below using the drawings. FIG. 1 shows a schematic process diagram for explaining the first embodiment of the present invention. In the figure, 1 is a single crystal (100) silicon substrate, 2 is a silicon oxide film, 3 is a silicon nitride film, and 4 is a silicon oxide film. 5 indicates an epitaxial region, and 5 indicates a polycrystalline layer region. First, the surface of the silicon wafer 1 is coated with a thickness of 1 to 2 μm using a method such as thermal oxidation.
m silicon oxide film 2 is formed, a silicon nitride film 3 is formed thereon by CVD method, etc., and then the @2.3
A portion of it is selectively removed by conventional reactive ion etching. (FIG. 1(a)) Next, the silicon oxide film on the side wall of the opening is etched using buffered hydrofluoric acid or the like. At this time, the silicon nitride film 3 is not affected, and a structure can be created in which the silicon nitride film 3 protrudes toward the opening region in the shape of an eave. (Figure 1 (b)) The length of the eaves at this time is 200~5
ooo A:' is preferred.

ひさしの長さが5ooor以上になると後に示すような
熱酸化による表面の平担化ができにくくなる。またシリ
コン分子線は基板に対して完全に垂直に入射するとは限
らないのでひさしの長さが200に以下になると側壁酸
化膜位置まで入射シリコン原子が到達し格子欠陥が発生
する可能性が大きくなる。本実施例ではひさしの長さは
20001とした。
When the length of the eaves is 500 or more, it becomes difficult to flatten the surface by thermal oxidation as shown later. In addition, silicon molecular beams do not always enter the substrate perfectly perpendicularly, so if the length of the eaves becomes less than 200 mm, there is a greater possibility that the incident silicon atoms will reach the sidewall oxide film position and cause lattice defects. . In this example, the length of the eaves was set to 20001 mm.

次に、シリコン分子線成長法により、成長温度650℃
、成長速度10i/Sで開口部にエピタキシャル層4を
、窒化膜3上に多結晶シリコン層5を形成する。(第1
図(C))このとき、エピタキシャル層4は、酸化膜2
と接触しない。次に、Dashエツチングによって、多
結晶層5を除去し、熱リン酸等によって窒化膜3を除去
する。(第1図(d))このとき、エピタキシャル領域
4と酸化膜2の間には、間隙が残っている。このウェハ
ーを水蒸気雰囲気中で900℃、約50分の酸化を行な
うと、エピタキシャル領域4と酸化膜2の間の空間を埋
めることができる。(第1図(e))かかる方法を用い
ることにより、格子欠陥を側壁1μm(至)板面に平行
な方向)轟り0.1個以下に押えることができる。一方
、かかるひさし状構造をつくらなかった場合には、欠陥
密度は、側壁の長さ1μm当り8〜10個と多くなり明
らかに接合耐圧に影響を与える種結晶性が劣化する。し
かも、かかる方法では、シリコン分子線成長法を用いて
いるためにCVD法の場合のようなファセットの発生が
ないという特長を有している。
Next, using the silicon molecular beam growth method, the growth temperature was 650°C.
, an epitaxial layer 4 is formed in the opening and a polycrystalline silicon layer 5 is formed on the nitride film 3 at a growth rate of 10 i/s. (1st
Figure (C)) At this time, the epitaxial layer 4 is formed by the oxide film 2.
Do not come into contact with. Next, the polycrystalline layer 5 is removed by dash etching, and the nitride film 3 is removed by hot phosphoric acid or the like. (FIG. 1(d)) At this time, a gap remains between the epitaxial region 4 and the oxide film 2. By oxidizing this wafer at 900° C. for about 50 minutes in a steam atmosphere, the space between epitaxial region 4 and oxide film 2 can be filled. (FIG. 1(e)) By using such a method, it is possible to suppress the number of lattice defects to 0.1 or less on the side wall (up to 1 μm in the direction parallel to the plate surface). On the other hand, when such an eave-like structure is not formed, the defect density increases to 8 to 10 defects per 1 μm of the side wall length, and the seed crystallinity, which affects the junction breakdown voltage, clearly deteriorates. Moreover, since this method uses silicon molecular beam growth, it has the advantage that facets do not occur as in the case of the CVD method.

この例では、基板に(100)面を用いたために絶縁膜
3上の多結晶層6をDashエッチで除去したが、基板
に(111)面を用いた場合lこは、ヒドラジンにより
てエツチングすることによって、多結晶層とエピタキシ
ャル層のエツチングの選択性をさらに向上させることが
できる。
In this example, since the (100) plane was used as the substrate, the polycrystalline layer 6 on the insulating film 3 was removed by Dash etching, but when the (111) plane was used as the substrate, etching with hydrazine was performed. By this, the etching selectivity of the polycrystalline layer and the epitaxial layer can be further improved.

第2図は、本発明の第二の実施例を説明する概略工程図
を示しており、図において6は、単結晶(100)シリ
コン基板、7.9は、酸化シリコン膜、8.10は窒化
シリコン膜、12はエピタキシャル領域、11は多結晶
層領域をそれぞれ示す。
FIG. 2 shows a schematic process diagram for explaining the second embodiment of the present invention. In the figure, 6 is a single crystal (100) silicon substrate, 7.9 is a silicon oxide film, and 8.10 is a silicon oxide film. In the silicon nitride film, 12 is an epitaxial region, and 11 is a polycrystalline layer region.

まず、シリコンウェハーの表面に熱酸化等の方法で厚さ
1μmの酸化シリコン膜7を形成し、その上にCVD法
等により窒化シリコン膜8を形成し次いでスパッタリン
グ法等により、厚さ3〜4μmの酸化シリコン膜9を形
成し、さらに、CVD法等により窒化シリコン膜10を
形成し、続いて当該膜7,8,9.10の一部を通常の
反応性イオンエツチングによって選択除去する。(第2
図(a))次に、緩衝フッ酸等によって、開口部の側壁
の酸化シリコン嗅をエツチングする。このとき、窒化シ
リコン膜8.10は影響を受けず、窒化シリコン膜8,
10が開口部領域に向ってひさし状につき出した構造を
つくることができる。(第2図(C))本実施例ではひ
さしの長さは2000A’とした。次に、シリコン分子
線成長法により、成長温度650℃、成長速度1or/
sで開口部にエピタキシャル層12を、窒化シリコン膜
10上に多結晶シリコン層11を形成する。(第2 i
図(c) )このとき、エピタキシャル7d12は、酸
化シリコン膜7と接触しない。本実施例では、エピタキ
シャル層の厚ざを1μmとした。次に、緩衝フッ酸によ
ってエツチングすることによって、酸比シリコン膜9の
リフトオフによって、多結晶シリコン膜11及び窒化シ
リコン膜10を除去する。このとき、第1の実施例と同
様にエピタキシャル層12が、窒化シリコン膜8のひさ
し部分に接しているため、緩衝フッ酸は、エピタキシャ
ル層12と酸化シリコン膜7との間隙に侵入せず、酸化
シリコン膜7は、影響を受けない。次に熱リン酸等によ
って、窒化シリコン膜8を除去する。(第2図(d))
このウェハーを水蒸気雰囲気中で900℃約50分の酸
化を行なうと、エピタキシャル領域12と酸化シリコン
膜7の間の空間を埋めることができる。(第2図(e)
)かかる方法を用いることにより、エピタキシャル層1
2にまりたく影響を与えることなく、多結晶膜11を除
去することができる。
First, a silicon oxide film 7 with a thickness of 1 μm is formed on the surface of a silicon wafer by a method such as thermal oxidation, and a silicon nitride film 8 is formed thereon with a thickness of 3 to 4 μm by a method such as a CVD method. A silicon oxide film 9 is formed, and a silicon nitride film 10 is further formed by CVD or the like, and then parts of the films 7, 8, 9, and 10 are selectively removed by ordinary reactive ion etching. (Second
Figure (a)) Next, the silicon oxide on the side wall of the opening is etched using buffered hydrofluoric acid or the like. At this time, the silicon nitride films 8 and 10 are not affected, and the silicon nitride films 8 and 10 are not affected.
It is possible to create a structure in which 10 protrudes like a canopy toward the opening area. (FIG. 2(C)) In this example, the length of the eaves was 2000 A'. Next, using the silicon molecular beam growth method, the growth temperature was 650°C and the growth rate was 1 or/min.
s, an epitaxial layer 12 is formed in the opening, and a polycrystalline silicon layer 11 is formed on the silicon nitride film 10. (Second i
(FIG. (c)) At this time, the epitaxial layer 7d12 does not contact the silicon oxide film 7. In this example, the thickness of the epitaxial layer was 1 μm. Next, polycrystalline silicon film 11 and silicon nitride film 10 are removed by lifting off acid-ratio silicon film 9 by etching with buffered hydrofluoric acid. At this time, as in the first embodiment, the epitaxial layer 12 is in contact with the eaves of the silicon nitride film 8, so the buffered hydrofluoric acid does not enter the gap between the epitaxial layer 12 and the silicon oxide film 7. Silicon oxide film 7 is not affected. Next, the silicon nitride film 8 is removed using hot phosphoric acid or the like. (Figure 2(d))
When this wafer is oxidized at 900° C. for about 50 minutes in a steam atmosphere, the space between the epitaxial region 12 and the silicon oxide film 7 can be filled. (Figure 2(e)
) By using such a method, the epitaxial layer 1
The polycrystalline film 11 can be removed without adversely affecting the structure.

(発明の効果) 本発明を用いることによって、シリコン分子線成長法に
おいて、絶縁膜パターン内にエピタキシャル領域を埋め
こんだ構造を実現できしかも、エピタキシャル領域内の
絶縁膜側壁近傍での格子欠陥の発生を抑制することがで
きた。
(Effects of the Invention) By using the present invention, a structure in which an epitaxial region is buried in an insulating film pattern can be realized in silicon molecular beam growth method, and lattice defects occur near the side walls of the insulating film in the epitaxial region. was able to suppress it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(e)及び、第2図(、)〜(e)は、
本発明の一実施例を説明するための模式的断面図で、第
3図は従来用いられている選択エピタキシャル法を説明
するための断面概略図を示す。第4図(a)〜(c)は
、現在までに報告された、シリコン分子線成長法をもち
いたパターンエピタキシャル成長を説明するための断面
概略図を示す。 図に於いて、 1・・・シリコン基板、   2・・・酸化シリコン膜
。 訃・・9化シリコン膜、  4・・エピタキシャル層、
5・・・多結晶層、     6・・・シリコン基板、
7・・・酸化シリコン膜、  8・・窒化シリコン膜、
9・・・酸化シリコン膜、 10・・窒化シリコン膜、
11・・・多結晶シリコン膜、12・・・エピタキシャ
ル膜、13・・・シリコン基板、  14・・・酸化シ
リコン膜、1        15・・・窒化シリコン
膜、 16・・・エピタキシャル膜、1       
17・・・ファセット、18・・シリコン基板、19・
・酸化シリコン膜、 20・・・多結晶膜、オ 1 図 ;?2図  。 71−3  図
Figure 1 (,) to (e) and Figure 2 (,) to (e) are
FIG. 3 is a schematic cross-sectional view for explaining an embodiment of the present invention, and FIG. 3 is a schematic cross-sectional view for explaining a conventionally used selective epitaxial method. FIGS. 4(a) to 4(c) show schematic cross-sectional views for explaining pattern epitaxial growth using the silicon molecular beam growth method reported to date. In the figure, 1... silicon substrate, 2... silicon oxide film. 5.Silicon 9ide film, 4.Epitaxial layer,
5... Polycrystalline layer, 6... Silicon substrate,
7...Silicon oxide film, 8...Silicon nitride film,
9...Silicon oxide film, 10...Silicon nitride film,
11... Polycrystalline silicon film, 12... Epitaxial film, 13... Silicon substrate, 14... Silicon oxide film, 1 15... Silicon nitride film, 16... Epitaxial film, 1
17...Facet, 18...Silicon substrate, 19.
・Silicon oxide film, 20... Polycrystalline film, O 1 Figure;? Figure 2. 71-3 Figure

Claims (1)

【特許請求の範囲】[Claims]  単結晶半導体基板表面に第1の絶縁膜のパターンとそ
の上にひさし状に端部がつき出た第2の絶縁膜パターン
とが積層された構造を少なくとも一層形成し、次に基板
表面に半導体膜を分子線エピタキシャル成長させること
を特徴とする分子線エピタキシャル成長法。
A structure in which a first insulating film pattern and a second insulating film pattern having an end protruding in the shape of a canopy are laminated at least one layer is formed on the surface of the single crystal semiconductor substrate, and then a semiconductor layer is formed on the surface of the substrate. A molecular beam epitaxial growth method characterized by growing a film by molecular beam epitaxial growth.
JP59253514A 1984-11-30 1984-11-30 Molecular beam epitaxy growth method Expired - Lifetime JPH0611026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253514A JPH0611026B2 (en) 1984-11-30 1984-11-30 Molecular beam epitaxy growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253514A JPH0611026B2 (en) 1984-11-30 1984-11-30 Molecular beam epitaxy growth method

Publications (2)

Publication Number Publication Date
JPS61131525A true JPS61131525A (en) 1986-06-19
JPH0611026B2 JPH0611026B2 (en) 1994-02-09

Family

ID=17252430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253514A Expired - Lifetime JPH0611026B2 (en) 1984-11-30 1984-11-30 Molecular beam epitaxy growth method

Country Status (1)

Country Link
JP (1) JPH0611026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514619A (en) * 1993-03-19 1996-05-07 Matsushita Electric Industrial Co., Ltd. Method of producing a laser device
CN103632940A (en) * 2012-08-23 2014-03-12 中芯国际集成电路制造(上海)有限公司 Manufacturing method for semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421283A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Manufacture for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421283A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Manufacture for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514619A (en) * 1993-03-19 1996-05-07 Matsushita Electric Industrial Co., Ltd. Method of producing a laser device
CN103632940A (en) * 2012-08-23 2014-03-12 中芯国际集成电路制造(上海)有限公司 Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JPH0611026B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US4500388A (en) Method for forming monocrystalline semiconductor film on insulating film
JP2914213B2 (en) Semiconductor device and manufacturing method thereof
JP2679639B2 (en) Semiconductor device and manufacturing method thereof
EP0073509B1 (en) Semiconductor integrated circuit device
JPH05235312A (en) Semiconductor substrate and its manufacture
JPH0582439A (en) Manufacture of semiconductor device with grown layer on insulating layer and mos semiconductor device
KR20140125376A (en) Semiconductor device and method for manufacturing same
JPH05175216A (en) Hetero junction bipolar transistor and its manufacture
US5258322A (en) Method of producing semiconductor substrate
JP3024584B2 (en) Method for manufacturing semiconductor device
JPH09283440A (en) Method for forming selective epitaxial film
WO2004077509A2 (en) SHALLOW TRENCH ISOLATION STRUCTURE FOR STRAINED Si ON SiGe
JPH05217893A (en) Manufacture of semiconductor substrate
CN109817514A (en) The formed method of semiconductor on insulator substrate
JPH05206422A (en) Semiconductor device and its manufacture
JP2989051B2 (en) Silicon carbide bipolar semiconductor device and method of manufacturing the same
JPS61131525A (en) Molecular beam epitaxy
JPH05304202A (en) Fabrication of semiconductor device
US20230010039A1 (en) Semiconductor Structure
JP2715665B2 (en) Semiconductor device
JPS60144949A (en) Manufacture of semiconductor device
JP3088032B2 (en) Semiconductor device
JPS58121642A (en) Manufacture of semiconductor device
WO2007116238A1 (en) METHOD OF MANUFACTURING A GaN MOSFET
JP3098811B2 (en) Insulated gate field effect transistor and semiconductor device using the same