JPH0447263A - Eddy-current flaw detection method for nonmagnetic steel - Google Patents

Eddy-current flaw detection method for nonmagnetic steel

Info

Publication number
JPH0447263A
JPH0447263A JP15616290A JP15616290A JPH0447263A JP H0447263 A JPH0447263 A JP H0447263A JP 15616290 A JP15616290 A JP 15616290A JP 15616290 A JP15616290 A JP 15616290A JP H0447263 A JPH0447263 A JP H0447263A
Authority
JP
Japan
Prior art keywords
flaw
frequency
eddy current
flaw detection
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15616290A
Other languages
Japanese (ja)
Inventor
Masashi Mizuno
正志 水野
Katsuhiro Kojima
小島 勝洋
Fumitaka Yoshimura
文孝 吉村
Osamu Narita
成田 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15616290A priority Critical patent/JPH0447263A/en
Publication of JPH0447263A publication Critical patent/JPH0447263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To enable highly-precise and sure detection of a minute flaw of the surface of a nonmagnetic steel material by making a high-frequency current of a specific frequency approach the surface of the steel material and by detecting the amount of a change in an eddy current generated in the surface of the steel material. CONSTITUTION:When a surface flaw of a peeling material 9 is inspected, an alternating current of an oscillator 1 is made to accord with a frequency of a prescribed value within a range of 1 to 3 MHz and to approach the surface of peeling material 9 to be inspected, so that an eddy current be made to flow. A signal from a probe coil 8 is transmitted to a phase detector 4 through an amplifier 2 and an automatic balancer 3. When the surface of the material to be inspected has no flaw, the signal subjected to phase detection by the phase detector 4 and frequency discrimination by a frequency discriminator 5 and outputted from a flaw level setting unit 7 is very small. When the surface has a minute flaw of about 0.05 to 0.1 mm, however, the eddy current changes conspicuously since the depth of permeation is about the same with the depth of the flaw, and a signal corresponding to the amount of change is outputted from the phase detector 4, wherefrom the flaw is detected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼材表面の疵を検知する渦流探傷方法に関し
、特に非磁性鋼材に割れ、その他の欠陥がある場合、こ
れを検知する渦流探傷方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an eddy current flaw detection method for detecting flaws on the surface of steel materials. Regarding the method.

(従来の技術) 一般に、鋼材表面の疵を検査する方法として、JIS規
格番号GO568に示される渦流探傷方法が知られてい
る。この渦流探傷方法は、交流を流したコイル内に試験
品を入れると、その試験品に不健全部分がある場合、試
験品を流れる渦電流に変化が起こり、コイルのインピー
ダンスまたはコイルに誘起される電圧に変化が生じ、こ
の変化する電気信号の振幅および位相等から不健全部分
の存在とその程度を判断する。
(Prior Art) Generally, as a method for inspecting flaws on the surface of steel materials, an eddy current flaw detection method shown in JIS standard number GO568 is known. In this eddy current flaw detection method, when a test piece is placed inside a coil through which alternating current is passed, if there is an unhealthy part in the test piece, the eddy current flowing through the test piece will change, and the impedance of the coil or the eddy current induced in the coil will change. A change occurs in the voltage, and the presence and extent of an unhealthy portion is determined from the amplitude, phase, etc. of this changing electrical signal.

この場合の交流電流の試験周波数は表皮効果を考慮して
決定される。従来の試験周波数は磁性、非磁性に関係な
(、電流の周波数は35〜512kHzが多く用いられ
る。
The test frequency of the alternating current in this case is determined in consideration of the skin effect. Conventional test frequencies are related to magnetic and non-magnetic properties (current frequencies of 35 to 512 kHz are often used).

(発明が解決しようとする課題) しかしながら、従来の渦流探傷方法により非磁性鋼を検
査する場合、試験周波数の範囲が前述の如(比較的小さ
い周波数領域に設定していたことから、鋼材表面の疵深
さが0.05〜0.1mm程度の微小疵であると、疵を
検知することは困難である。
(Problem to be Solved by the Invention) However, when inspecting non-magnetic steel using the conventional eddy current flaw detection method, the test frequency range is as described above (as it is set in a relatively small frequency range, If the flaw is a minute flaw with a depth of about 0.05 to 0.1 mm, it is difficult to detect the flaw.

特に、棒鋼等で表面切削した非磁性鋼のビーリング材を
検査する場合、検出した渦電流の変化量が微小疵による
ものなのか、あるいは切削跡の凹凸条痕によるものなの
かを区別しに(く検出精度が低いものであった。
In particular, when inspecting non-magnetic steel bearing material whose surface has been cut with bar steel, etc., it is difficult to distinguish whether the detected change in eddy current is due to minute flaws or uneven striations from cutting marks. (The detection accuracy was low.

本発明はこのような問題点を解決するためになされたも
ので、非磁性鋼材の表面の微小疵を高い精度で確実に検
知する非磁性鋼の渦流探傷方法を提供することを目的と
する。
The present invention has been made to solve these problems, and an object of the present invention is to provide an eddy current flaw detection method for non-magnetic steel that reliably detects minute flaws on the surface of non-magnetic steel with high accuracy.

(課題を解決するための手段) 本発明の非磁性鋼の渦流探傷方法は、非磁性鋼の鋼材表
面の微小疵を探傷するに際し、鋼材の表面に周波数1〜
3MHzの高周波電流を近接することにより、鋼材表面
に発生する渦電流の変化量を検出して鋼材の欠陥を検知
することを特徴とする。
(Means for Solving the Problems) The eddy current flaw detection method for non-magnetic steel of the present invention applies a frequency of 1 to
It is characterized by detecting defects in the steel material by detecting the amount of change in eddy current generated on the surface of the steel material by applying a 3 MHz high frequency current nearby.

高周波電流の周波数を1〜3MHzの範囲としたのは、
I M Hz未満であると、非磁性鋼の微小疵を精度よ
く検出されにくいためで、3MHzを超えても、探傷度
(疵信号S/ノイズ信号N)の検出値が向上するもので
ないためである。
The reason why the frequency of the high-frequency current is set in the range of 1 to 3 MHz is because
This is because if it is less than I MHz, it will be difficult to accurately detect minute flaws in non-magnetic steel, and even if it exceeds 3 MHz, the detection value of the flaw detection level (flaw signal S/noise signal N) will not improve. be.

(作用) 本発明の非磁性鋼の渦流探傷方法によると、渦流探傷に
用いる交流電流の周波数を1〜3MHzにした場合、鋼
材表面の表皮効果による渦電流の変化が鋼材表面の微小
疵の有無によって顕著に現われる。
(Function) According to the eddy current flaw detection method for non-magnetic steel of the present invention, when the frequency of the alternating current used for eddy current flaw detection is set to 1 to 3 MHz, changes in eddy current due to the skin effect on the surface of the steel material determine the presence or absence of micro-flaws on the surface of the steel material. This is noticeable.

したがって、非磁性鋼の鋼材表面に、0.05〜0.1
mm程度の深さの微小疵が形成されている場合、表皮効
果のため鋼材表面に発生する渦電流は、その浸透深さが
微小疵の深さと同程度となり、疵の有無によって渦電流
が顕著に変化する。
Therefore, on the surface of non-magnetic steel, 0.05 to 0.1
When micro-flaws with a depth of about mm are formed, the penetration depth of eddy currents generated on the surface of the steel material due to the skin effect is approximately the same as the depth of the micro-flaws, and the eddy current becomes noticeable depending on the presence or absence of flaws. Changes to

このため、探傷度(疵信号S/ノイズ信号N)が従来に
比べ約2倍高く確実に微小疵を検知することができる。
Therefore, the degree of flaw detection (flaw signal S/noise signal N) is approximately twice as high as that of the conventional method, and minute flaws can be detected reliably.

(実施例) 以下、本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

本実施例では、試験品に非磁性鋼からなるビーリング材
を用い、その表面の微小疵を検査する。
In this example, a beading material made of non-magnetic steel is used as a test piece, and the surface thereof is inspected for micro-flaws.

このビーリング材は、棒鋼により表面切削され、表面の
切削跡には微小な凹凸が形成されている。
The surface of this beer ring material is cut with a bar steel, and minute irregularities are formed in the cutting marks on the surface.

探傷装置は、第2図に示すように、ビーリング材9の表
面にプローブコイル8を近接し、このコイルは中心線を
試験品の表面にほぼ垂直にして近接する。第2図示矢印
方向に回転するプローブコイル8は、ビーリング材9の
軸中心の周りに回転しつつビーリング材表面に渦電流を
流すようになっている。
As shown in FIG. 2, the flaw detection apparatus places a probe coil 8 close to the surface of the beading material 9, with the center line of the coil being approximately perpendicular to the surface of the test piece. The probe coil 8, which rotates in the direction of the second arrow shown in the figure, is adapted to flow an eddy current to the surface of the bearing material 9 while rotating around the axial center of the bearing material 9.

プローブコイル8が接続される探傷回路には、4 M 
Hzまでの周波数の交流電流をプローブコイル8に流す
ことが可能な発振器1が設けられ、ピーリング材表面の
渦電流信号を受ける増幅器2、自動平衡器3、位相検波
器4、周波数弁別器5、感度調節器6、および疵レベル
設定器7がこの順に接続されている。
The flaw detection circuit to which the probe coil 8 is connected includes a 4M
An oscillator 1 capable of passing an alternating current with a frequency up to Hz through a probe coil 8 is provided, an amplifier 2 that receives an eddy current signal on the surface of the peeling material, an automatic balancer 3, a phase detector 4, a frequency discriminator 5, A sensitivity adjuster 6 and a flaw level setter 7 are connected in this order.

ビーリング材9から検出される渦電流の出力信号は、ま
ず増幅器2に送られ増幅され、増幅された出力信号が自
動平衡器3に送られる。自動平衡器3は、周囲の温度等
の緩やかな変化による影響を抑制し、平衡状態を保つた
め、増幅器2の出力信号を検出し、該信号から変動分を
除去した信号を位相検波器4に出力する。位相検波器4
は、自動平衡器3から送られた入力信号を前記発振器l
によって移相器10から出力された移相制御信号により
位相調整し、疵信号以外の雑音を抑制する。
The output signal of the eddy current detected from the bearing material 9 is first sent to the amplifier 2 and amplified, and the amplified output signal is sent to the automatic balancer 3. The automatic balancer 3 detects the output signal of the amplifier 2 and sends a signal obtained by removing fluctuations from the signal to the phase detector 4 in order to suppress the influence of gradual changes in the ambient temperature and maintain a balanced state. Output. Phase detector 4
converts the input signal sent from the automatic balancer 3 to the oscillator l.
The phase is adjusted by the phase shift control signal outputted from the phase shifter 10, and noise other than the flaw signal is suppressed.

さらに検波器4から送られる信号を受ける周波数弁別器
5は、周波数弁別を行い、所定の疵信号以外の雑音を抑
制する。また周波数弁別器5の出力信号は感度調節器6
を経て疵レベル設定器7に出力され、疵信号が予め設定
された値以上の疵信号の場合は、図示しない警報器が作
動するようになっている。
Furthermore, a frequency discriminator 5 receiving the signal sent from the detector 4 performs frequency discrimination and suppresses noise other than the predetermined flaw signal. In addition, the output signal of the frequency discriminator 5 is transmitted to the sensitivity adjuster 6.
If the flaw signal exceeds a preset value, an alarm (not shown) is activated.

ビーリング材9の表面疵の検査をする場合、発振器1の
交流電流を1〜3MHzの範囲で所定の値の周波数に合
わせ、検査すべきビーリング材9の表面に交流電流を近
接し渦電流を流す。
When inspecting the surface of the bearing material 9, the alternating current of the oscillator 1 is adjusted to a predetermined frequency in the range of 1 to 3 MHz, and the alternating current is brought close to the surface of the bearing material 9 to be inspected to generate eddy currents. flow.

表面に欠陥のない場合、プローブコイル8からの信号は
増幅器2、自動平衡器3を経て位相検波器4に伝えられ
るが、この位相検波器4での位相検波を行うことと、次
の周波数弁別器5により周波数弁別されることにより疵
レベル設定器7に出力される信号はごく小さいものとな
る。しかし、表面に0.05〜0.1mm程度の微小疵
がある場合には、浸透深さが疵の深さと同程度となるた
め、渦電流が顕著に変化し、その変化量に応じた信号が
位相検波器4から出力され疵が検知される。
If there are no defects on the surface, the signal from the probe coil 8 is transmitted to the phase detector 4 via the amplifier 2 and the automatic balancer 3. As a result of the frequency discrimination performed by the device 5, the signal output to the flaw level setting device 7 becomes extremely small. However, if there is a microscopic flaw of about 0.05 to 0.1 mm on the surface, the penetration depth will be about the same as the depth of the flaw, so the eddy current will change significantly, and the signal will change depending on the amount of change. is output from the phase detector 4, and a flaw is detected.

また、微小疵による信号は、ビーリング材の表面切削跡
の微小な凹凸による信号と確実に区別することができる
In addition, signals due to minute flaws can be reliably distinguished from signals due to minute irregularities on the surface cutting marks of the beading material.

次に、深さ0.07mmおよび0.1mmに形成された
微小疵をもつビーリング材について、1〜3 M Hz
の周波数とこの範囲外の周波数を用いて疵を検査した場
合の検出精度を比較するため、周波数による探傷度の変
化を試験した。試験した周波数は、1〜3MHzの範囲
の周波数としてIMHz、2 M Hzおよび3MHz
、1MHz未満の周波数として200KHzおよび51
2KHz、ならびに3 M Hzを超える周波数として
4MHzを用いた。
Next, for the beading material with micro flaws formed at a depth of 0.07 mm and 0.1 mm, the frequency of 1 to 3 MHz was
In order to compare the detection accuracy when inspecting flaws using a frequency outside this range and a frequency outside this range, we tested the change in the degree of flaw detection depending on the frequency. The frequencies tested were IMHz, 2 MHz and 3 MHz as frequencies in the range of 1-3 MHz.
, 200KHz and 51 as frequencies below 1MHz
4 MHz was used as the frequency above 2 KHz and 3 MHz.

試験の結果、第1図に示すように、疵深さ0゜1mmの
疵では、IMHzのとき探傷度が高い値を示し、また0
、07mmでは3MHzで最も高い探傷度の値を示した
。これによりこのビーリング材の0.1および0.07
mmの疵には、それぞれI M Hzおよび3MHzの
周波数の交流を用いれば精度よく疵を検知することがで
きることが判る。
As a result of the test, as shown in Figure 1, flaws with a depth of 0°1 mm showed a high flaw detection degree at IMHz, and
, 07mm showed the highest flaw detection value at 3MHz. This results in 0.1 and 0.07 of this beering material.
It can be seen that flaws of 1 mm in diameter can be detected accurately by using alternating currents with frequencies of I MHz and 3 MHz, respectively.

本実施例では、ビーリング材の表面に渦電流を流すため
にプローブコイルを用いたが、検査する非磁性鋼材が鋼
管、棒鋼、線材などの場合は、鋼材をコイル内に貫通さ
せて鋼材表面に渦電流を流す貫通コイルを用いてもよい
。また、パイプ内部、孔内部などを検査する場合には、
内挿コイルを用いてもよい。さらに本発明の非磁性鋼の
渦流探傷方法は、膜厚測定、形状寸法測定などに応用す
ることも可能である。
In this example, a probe coil was used to apply an eddy current to the surface of the bearing material. However, when the non-magnetic steel material to be inspected is a steel pipe, steel bar, wire rod, etc., the steel material is passed through the coil and the surface of the steel material is A through coil may be used to flow an eddy current. In addition, when inspecting the inside of a pipe or hole,
An interpolation coil may also be used. Furthermore, the eddy current flaw detection method for non-magnetic steel of the present invention can also be applied to film thickness measurement, shape and dimension measurement, etc.

本発明が適用される非磁性鋼は、オーステナイト系ステ
ンレス鋼の18−12.18−8.16−14の各ニッ
ケルークロム鋼および高マンガン鋼等に限定されるもの
でないことはもちろんである。
It goes without saying that the non-magnetic steel to which the present invention is applied is not limited to austenitic stainless steels such as 18-12.18-8.16-14 nickel-chromium steel and high manganese steel.

(発明の効果) 以上説明したように、本発明の非磁性鋼の渦流探傷方法
によれば、1〜3 M Hzの高周波数の交流電流を用
いて鋼材の表面を検査するので、非磁性鋼の深さ0.0
5〜0.1mm程度の微小疵を高い精度で確実に検知す
ることができ、被切削材についても切削跡の凹凸条痕と
表面疵とを区別して検知することができるという効果が
ある。
(Effects of the Invention) As explained above, according to the eddy current flaw detection method for non-magnetic steel of the present invention, the surface of the steel material is inspected using a high-frequency alternating current of 1 to 3 MHz. depth 0.0
It is possible to reliably detect minute flaws of about 5 to 0.1 mm with high precision, and it is also effective in being able to distinguish between uneven streaks of cutting marks and surface flaws on the material to be cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は探傷周波数と探傷度の関係を表わす特性図、第
2図は本発明の実施例の探傷回路を示す概略構成図であ
る。 9 ・・・ビーリング材(非磁性鋼)
FIG. 1 is a characteristic diagram showing the relationship between flaw detection frequency and flaw detection degree, and FIG. 2 is a schematic configuration diagram showing a flaw detection circuit according to an embodiment of the present invention. 9...Beering material (non-magnetic steel)

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性鋼の鋼材表面の微小疵を探傷するに際し、
鋼材の表面に周波数1〜3MHzの高周波電流を近接す
ることにより、鋼材表面に発生する渦電流の変化量を検
出して鋼材の欠陥を検知することを特徴とする非磁性鋼
の渦流探傷方法。
(1) When detecting micro-flaws on the surface of non-magnetic steel,
An eddy current flaw detection method for non-magnetic steel, characterized in that defects in the steel are detected by detecting the amount of change in eddy current generated on the surface of the steel by applying a high frequency current with a frequency of 1 to 3 MHz to the surface of the steel.
JP15616290A 1990-06-14 1990-06-14 Eddy-current flaw detection method for nonmagnetic steel Pending JPH0447263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15616290A JPH0447263A (en) 1990-06-14 1990-06-14 Eddy-current flaw detection method for nonmagnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15616290A JPH0447263A (en) 1990-06-14 1990-06-14 Eddy-current flaw detection method for nonmagnetic steel

Publications (1)

Publication Number Publication Date
JPH0447263A true JPH0447263A (en) 1992-02-17

Family

ID=15621707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15616290A Pending JPH0447263A (en) 1990-06-14 1990-06-14 Eddy-current flaw detection method for nonmagnetic steel

Country Status (1)

Country Link
JP (1) JPH0447263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099411A1 (en) * 2011-12-26 2013-07-04 新東工業株式会社 Shot processing method and shot processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099411A1 (en) * 2011-12-26 2013-07-04 新東工業株式会社 Shot processing method and shot processing device
JPWO2013099411A1 (en) * 2011-12-26 2015-04-30 新東工業株式会社 Shot processing method and shot processing apparatus
US9149908B2 (en) 2011-12-26 2015-10-06 Sintokogio, Ltd. Shot processing method and shot processing device

Similar Documents

Publication Publication Date Title
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
US3611120A (en) Eddy current testing systems with means to compensate for probe to workpiece spacing
JP4247723B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
US3588682A (en) System for inspecting a welded seam with means for generating a signal which is a function of the welding temperature
US5473247A (en) Apparatus for discriminating defects in top and bottom surfaces of objects
JPH04230846A (en) Method and apparatus for inspecting metal tube using eddy current
US3582772A (en) Method of calibrating eddy current flaw detection equipment utilizing attachable slugs to simulate flaws
JPS6314905B2 (en)
JP3266899B2 (en) Method and apparatus for flaw detection of magnetic metal body
JPH0447263A (en) Eddy-current flaw detection method for nonmagnetic steel
Hoshikawa et al. A new eddy current surface probe without lift-off noise
JPH0628690Y2 (en) Metal plate defect detector
JP2798199B2 (en) Noise Removal Method in Eddy Current Testing
JP2000227422A (en) Eddy current examination
JPS61126461A (en) Inspecting method of wire
JPS60125560A (en) Method for inspecting metal surface
JPH0125019B2 (en)
JPH10206395A (en) Nondestructive detecting method of eddy current system
JPS6128938B2 (en)
JPS612065A (en) Flaw detector using eddy current
JPH03105245A (en) Remote field type probe for eddy current flaw detection
JP2000275219A (en) Leakage flux flaw detecting method
JP2003294707A (en) Defect inspection device
RU2161795C2 (en) Method of testing quality of welds of thin-walled metal parts and device for its embodiment
JPH01248050A (en) Leakage flux flaw detector