JPH10206395A - Nondestructive detecting method of eddy current system - Google Patents

Nondestructive detecting method of eddy current system

Info

Publication number
JPH10206395A
JPH10206395A JP1105397A JP1105397A JPH10206395A JP H10206395 A JPH10206395 A JP H10206395A JP 1105397 A JP1105397 A JP 1105397A JP 1105397 A JP1105397 A JP 1105397A JP H10206395 A JPH10206395 A JP H10206395A
Authority
JP
Japan
Prior art keywords
eddy current
frequency side
sample
layer
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1105397A
Other languages
Japanese (ja)
Inventor
Kunihiko Terada
邦彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP1105397A priority Critical patent/JPH10206395A/en
Publication of JPH10206395A publication Critical patent/JPH10206395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive detecting method by which influence of a material lot difference and a heat treatment lot difference is not received in an eddy current system. SOLUTION: In a nondestructive detecting method of an eddy current system to detect a change in an inductance generated in a test coil by its eddy current by guiding an eddy current in a sample by flowing an exciting current to the test coil in a sensor, a frequency of the exciting current is changed, and at least two-time inductance changes on the low frequency side and the high frequency side in a measuring sample are measured, and its measured values are compared with each other, and a change in a metallographic structure generated in the measuring sample is detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、渦電流方式の非破
壊検出方法に関し、より具体的には、焼入れされた鋼
(焼入れ鋼)の切削加工および研削加工において発生す
る加工変質層を検出するための渦電流方式の非破壊検出
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eddy current non-destructive detection method, and more specifically, to a detection of a damaged layer generated in cutting and grinding of hardened steel (hardened steel). For non-destructive detection using eddy current method.

【0002】[0002]

【従来の技術】研削工程や旋削加工においては、その加
工条件によって白層とよばれる再焼入れ層や加工に伴う
熱影響層が生じる場合がある。このような加工変質層
は、厚さが薄い場合には転動寿命や割れ疲労などの機械
部品としての強度特性に悪影響を及ぼさないことが確認
されている。しかし、この加工変質層の厚さが過大にな
った場合には、強度特性に悪影響を及ぼすことが考えら
れるため、加工変質層を精度よく検出する必要がある。
2. Description of the Related Art In a grinding process or a turning process, a re-quenched layer called a white layer or a heat-affected layer accompanying a process may be generated depending on the processing conditions. It has been confirmed that such a work-affected layer does not adversely affect the strength characteristics of a mechanical component such as rolling life and crack fatigue when the thickness is small. However, when the thickness of the work-affected layer is excessively large, the strength characteristics may be adversely affected. Therefore, it is necessary to accurately detect the work-affected layer.

【0003】この加工変質層の従来の検出方式には、切
断しエッチングする方式や単一周波数による試料のイン
ピーダンス変化を求める方式などがあった。
Conventional methods for detecting the affected layer include a method of cutting and etching, and a method of finding a change in impedance of a sample due to a single frequency.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、切断を
行なってエッチングを行なう方式では、製品を破壊しな
ければならず、その上、検査には手間と時間とがかかる
という問題点があった。また単一の周波数による試料の
インピーダンスを求める方式にあっては、非破壊方式で
あり簡便な方式であるものの、所定の単一周波数を用い
ているため、母材の材料と熱処理条件との影響、つまり
材料ロットおよび熱処理ロットの影響を強く受けるた
め、検出精度が十分といえないという問題点があった。
However, in the method of performing etching by cutting, there is a problem that the product must be destroyed, and furthermore, the inspection requires time and effort. The method of obtaining the impedance of a sample at a single frequency is a non-destructive method and a simple method.However, since a predetermined single frequency is used, the effect of the base material and the heat treatment conditions is not In other words, there is a problem that the detection accuracy is not sufficient because of the influence of the material lot and the heat treatment lot.

【0005】それゆえ、本発明の目的は、渦電流方式に
おいて材料ロット差および熱処理ロット差の影響を受け
難い非破壊検出方法を提供することである。
Therefore, an object of the present invention is to provide a non-destructive detection method which is hardly affected by a difference between a material lot and a difference between heat treatment lots in an eddy current method.

【0006】また本発明の他の目的は、加工変質層の測
定および検出を非破壊、高精度および短時間でできる渦
電流方式の非破壊検出方法を提供することである。
Another object of the present invention is to provide an eddy current type non-destructive detection method capable of non-destructively measuring and detecting a damaged layer in a short time with high accuracy.

【0007】[0007]

【課題を解決するための手段】本発明の渦電流方式の非
破壊検出方法は、試験コイルに励磁電流を流して試料内
に渦電流を誘導し、その渦電流によって試験コイルに生
じるインピーダンスの変化を検出する渦電流方式の非破
壊検出方法であって、励磁電流の周波数を変化させて測
定試料における低周波数側および高周波数側の少なくと
も2回のインピーダンスの変化を測定し、その測定値を
対比することによって測定試料に生じた金属組織の変化
を検出することで行なわれる。
According to the non-destructive detection method of the eddy current method of the present invention, an exciting current is applied to a test coil to induce an eddy current in a sample, and the eddy current causes a change in impedance generated in the test coil. A non-destructive detection method of the eddy current method for detecting the impedance, wherein the frequency of the exciting current is changed to measure at least two impedance changes on the low frequency side and the high frequency side of the measurement sample, and the measured values are compared. This is performed by detecting a change in the metal structure generated in the measurement sample.

【0008】白層・熱影響層などの加工変質層は母材内
部に対する表層の組織変化であるので、内部と表層との
組織差を検出することができれば、材料・熱処理ロット
の影響を受けずに精度よい検出が可能となるはずであ
る。
[0008] Since the affected layers such as the white layer and the heat-affected layer are structural changes in the surface layer with respect to the inside of the base material, if the structural difference between the inside and the surface layer can be detected, the layer is not affected by the material and the heat treatment lot. Highly accurate detection should be possible.

【0009】一方、渦電流には表皮効果があり表層ほど
大きな電流が流れるが、表層と内部との渦電流の発生バ
ランスは試験コイルに流す励磁電流の周波数により変え
ることができる(励磁電流の周波数が高いほど表層に渦
電流が偏る)。ある深さにおける渦電流値が大きいほ
ど、その深さの組織の影響がより大きく試験コイルの出
力値に反映される。これによりコイル周波数を変化させ
て各周波数での渦電流値を測定することで、表層から内
部へ至る各深さ位置での組織を知ることができる。よっ
て、たとえば低周波数側および高周波数側の少なくとも
2つの周波数を用いて測定し、それらの測定値を比較す
ることにより、内部に対する表層の組織変化を検出する
ことができる。このように内部に対する表層の組織変化
を検出することが可能となるため、材料・熱処理ロット
の影響を受けずに精度よく検出することが可能となる。
On the other hand, the eddy current has a skin effect and a larger current flows toward the surface layer. The generation balance of the eddy current between the surface layer and the inside can be changed by the frequency of the exciting current flowing through the test coil (frequency of the exciting current). The higher the value, the more the eddy current is biased toward the surface layer). The greater the eddy current value at a certain depth, the greater the effect of the tissue at that depth is reflected on the output value of the test coil. Thus, by changing the coil frequency and measuring the eddy current value at each frequency, the tissue at each depth position from the surface layer to the inside can be known. Therefore, for example, by measuring using at least two frequencies on the low frequency side and the high frequency side and comparing the measured values, it is possible to detect a change in the structure of the surface layer with respect to the inside. As described above, it is possible to detect a change in the structure of the surface layer with respect to the inside, so that it is possible to accurately detect the change without being affected by the material and the heat treatment lot.

【0010】また、試験コイルを測定試料表面に接触ま
たは接近させるだけで非破壊で検出することができる。
Further, non-destructive detection can be achieved simply by bringing the test coil into contact with or approaching the surface of the measurement sample.

【0011】また、ゼロ模範とゲイン模範とを用いて異
なる検査周波数間(低周波数側および高周波数側)の測
定値の比較を行なうことが望ましい。
It is desirable to compare measured values between different test frequencies (low frequency side and high frequency side) using the zero model and the gain model.

【0012】これにより、たとえば表層から内部まで均
一な組織の試料をゼロ模範とすることができ、この試料
の表層から内部までの各深さ位置ごとの測定値をゼロ点
に合わせ、このゼロ点から測定試料の測定値がどれだけ
ずれるかで測定試料の金属組織の変化を知ることができ
る。
Thus, for example, a sample having a uniform structure from the surface layer to the inside can be set as a zero model. The measured value at each depth position from the surface layer to the inside of the sample is adjusted to the zero point, and the zero point is set. The change of the metal structure of the measurement sample can be known from how much the measured value of the measurement sample deviates from the value.

【0013】また、ゲイン模範についてもこれと同様に
用いることができる。これにより、検査周波数を変える
ことでゼロ点とゲインとが変わっても、検査周波数ごと
にゼロ点とゲインとを調整することができる。
[0013] A gain model can be used in the same manner. Thereby, even if the zero point and the gain are changed by changing the inspection frequency, the zero point and the gain can be adjusted for each inspection frequency.

【0014】また焼入れ鋼を加工したものを測定試料と
し、測定試料の低周波数側測定値と高周波数側測定値と
を対比することで焼入れ鋼の加工において発生する加工
変質層を検出することが望ましい。
Further, it is possible to detect a work-affected layer generated in the processing of the hardened steel by comparing the measured value of the hardened steel with the measured value on the low frequency side and the measured value on the high frequency side of the measured sample. desirable.

【0015】これにより、加工変質層の検出に基づいて
切削などの加工条件を変更することで白層・熱影響層の
発生を最小限にとどめ、強度特性に悪影響が生ずること
を防止することができる。
Thus, by changing the processing conditions such as cutting based on the detection of the damaged layer, it is possible to minimize the generation of the white layer and the heat-affected layer and to prevent the strength characteristics from being adversely affected. it can.

【0016】[0016]

【実施例】以下、本発明の一実施例における渦電流方式
の非破壊検出方法およびその検出結果について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an eddy current non-destructive detection method according to an embodiment of the present invention and a detection result thereof will be described.

【0017】まず本実施例における検出方法は、渦電流
方式で検査周波数を多重に用い、母材(被削面内部)に
対する被削面表層部の組織変化を電圧(誘導起電力)の
変化としてとらえるものである。具体的には、センサ内
の試験コイルに励磁電流を流して試料内に渦電流を誘導
し、その渦電流による反作用として試験コイルに生じる
インピーダンスの変化を電圧(誘導起電力)の変化とし
て検出する方法であって、励磁電流の周波数を変化させ
て低周波数側(被削面内部)および高周波数側(被削面
表層部)の少なくとも2点で測定試料の電圧を測定し、
この電圧の変化から測定試料の組織変化を検出するもの
である。
First, the detection method in this embodiment uses an eddy current method in which inspection frequencies are multiplexed and captures a change in the structure of the surface layer of the work surface relative to the base material (inside the work surface) as a change in the voltage (induced electromotive force). It is. Specifically, an exciting current is caused to flow through a test coil in the sensor to induce an eddy current in the sample, and a change in impedance generated in the test coil as a reaction due to the eddy current is detected as a change in voltage (induced electromotive force). A method comprising: changing a frequency of an exciting current to measure a voltage of a measurement sample at at least two points on a low frequency side (inside of a work surface) and a high frequency side (in a surface layer of a work surface);
The change in the structure of the measurement sample is detected from the change in the voltage.

【0018】また、検査周波数を変えて検査を行なう場
合には、周波数ごとに信号のゼロ点とゲインとが変わる
ため補正が必要となる。今回は、ゼロ模範とゲイン模範
との2種類を用意し、各測定においてゼロ模範での誘導
起電力が0Vとなるようにゼロ点を合わせ、ゲイン模範
での誘導起電力を−3(V)となるようにゲインを合わ
せ測定値を求めた。
Further, when the inspection is performed by changing the inspection frequency, correction is required because the zero point and the gain of the signal change for each frequency. This time, two types, a zero model and a gain model, are prepared, and the zero point is adjusted so that the induced electromotive force in the zero model is 0 V in each measurement, and the induced electromotive force in the gain model is -3 (V). The measured value was obtained by adjusting the gain so that

【0019】つまりゼロ模範となる試料の検査周波数ご
との各測定値をゼロ点に合わせて、それに対して他の試
料の測定値がどのように変化するかで他の試料の組織変
化を調べた。またゲイン模範についてもゼロ模範と同様
にしてゲインを合わせることができる。なお今回の測定
においては、表層から内部まで均一な組織を有する標準
的な試料をゼロ模範とし、絶対値が最も大きい誘導起電
力を有する試料をゲイン模範とした。具体的には負の最
大誘導起電力を−3(V)となるようにゲインを合わせ
測定値を求めた。
That is, each measured value for each test frequency of a sample serving as a zero model was adjusted to a zero point, and the change in the measured value of the other sample with respect to the zero point was examined for the structural change of the other sample. . The gain can be adjusted for the gain model in the same manner as the zero model. In this measurement, a standard sample having a uniform structure from the surface layer to the inside was set as a zero model, and a sample having an induced electromotive force having the largest absolute value was set as a gain model. Specifically, the measured value was obtained by adjusting the gain so that the negative maximum induced electromotive force was -3 (V).

【0020】本実施例における検出方法では、検査周波
数を連続的に変えることができるが、ここでは100k
Hz、250kHz、1MHz、2MHz、3MHz、
6MHzと代表的な周波数を用いた。そのときの浸透深
さを以下の表1に示す。
In the detection method according to the present embodiment, the inspection frequency can be continuously changed.
Hz, 250 kHz, 1 MHz, 2 MHz, 3 MHz,
A typical frequency of 6 MHz was used. The penetration depth at that time is shown in Table 1 below.

【0021】この浸透深さは、センサ内の試験コイルが
試料内部に作る磁界が、表面での磁界の約37%となる
深さを意味し、渦流探傷試験によって検出できる深さを
示す目安として用いられる。ただし、下表の浸透深さδ
は、炭素鋼の一般的値であり、SUJ2に対しては参考
値である。
The penetration depth means the depth at which the magnetic field created inside the sample by the test coil in the sensor is about 37% of the magnetic field on the surface, and is a measure of the depth that can be detected by the eddy current test. Used. However, the penetration depth δ in the table below
Is a general value for carbon steel and a reference value for SUJ2.

【0022】[0022]

【表1】 [Table 1]

【0023】上述の本実施例の検出方法を用いて、SU
J2焼入れ品とS53C高周波焼入れ品とに対して測定
を行なった。その結果をSUJ2焼入れ品については図
1に、S53C高周波焼入れ品については図2に示す。
Using the detection method of this embodiment described above, SU
The measurement was performed on the J2 quenched product and the S53C induction hardened product. The results are shown in FIG. 1 for the SUJ2 quenched product and in FIG. 2 for the S53C induction hardened product.

【0024】図1を参照して、SUJ2焼入れ品の6個
の試料(1−1〜1−6)について切削を行なった後に
上記の測定を行なった。ここで各試料1−1〜1−6
は、各々、加工条件や材料のロットを変えたものであ
る。
Referring to FIG. 1, the above measurement was performed after cutting six samples (1-1 to 1-6) of the SUJ2 quenched product. Here, each sample 1-1 to 1-6
Are obtained by changing processing conditions and material lots.

【0025】また各試料について被削面の断面組織を観
察したところ、試料1−1および1−2の表層には白層
が生じており、また試料1−3および1−4には表層に
熱影響層が生じていた。また試料1−5および1−6に
は白層などの加工変質層は生じていなかった。ここで試
料1−1と1−2および1−5と1−6は、それぞれ材
料ロットの異なる材料を同じ条件で加工を行ない比較を
行なったものである。
When the cross-sectional structure of the cut surface of each sample was observed, a white layer was formed on the surface of Samples 1-1 and 1-2, and a heat layer was formed on the surface of Samples 1-3 and 1-4. An influence layer had been created. Further, in Samples 1-5 and 1-6, no process-affected layer such as a white layer was formed. Here, the samples 1-1 and 1-2 and the samples 1-5 and 1-6 are obtained by processing different materials in different material lots under the same conditions and comparing them.

【0026】この断面組織と図1との結果より、白層お
よび熱影響層、つまり加工変質層が表層に生じた試料
(1−1〜1−4)では、低検査周波数側(たとえば2
50kHz)の電圧値は0に近くなっているが、高検査
周波数側(たとえば3MHz、6MHz)の電圧値は低
検査周波数側の電圧値よりも高くなっていることがわか
る。またその加工変質層の厚さが大きいほど、高検査周
波数側の電圧値が低検査周波数側の電圧値よりも高くな
っていた。
From the cross-sectional structure and the results shown in FIG. 1, in the samples (1-1 to 1-4) in which the white layer and the heat-affected layer, that is, the work-affected layer were formed on the surface layer, the low test frequency side (for example,
It can be seen that the voltage value at 50 kHz) is close to 0, but the voltage value at the high test frequency side (for example, 3 MHz, 6 MHz) is higher than the voltage value at the low test frequency side. Also, as the thickness of the affected layer increased, the voltage value on the high inspection frequency side became higher than the voltage value on the low inspection frequency side.

【0027】一方、加工変質層のない試料(1−5およ
び1−6)では、高検査周波数側および低検査周波数側
の双方の電圧値はほぼ0となり、高検査周波数側と低検
査周波数側とで電圧値に差がほとんどないことがわか
る。また、この方法によれば、ロット差については考慮
する必要がないこともわかる。
On the other hand, in the samples (1-5 and 1-6) having no work-affected layer, the voltage values on both the high inspection frequency side and the low inspection frequency side are almost 0, and the high inspection frequency side and the low inspection frequency side It can be seen that there is almost no difference in the voltage values between and. In addition, according to this method, it is understood that it is not necessary to consider a lot difference.

【0028】次に図2を参照して、S53C高周波焼入
れ品の5つの試料(2−1〜2−5)について切削を行
なった後、上記の測定を行なった。ここで各試料2−1
〜2−5には、各々、異なる条件で加工が施されてい
る。
Referring to FIG. 2, five samples (2-1 to 2-5) of the S53C induction hardened product were cut, and then the above measurement was performed. Here, each sample 2-1
2-5 are each processed under different conditions.

【0029】また各試料について被削面の断面組織を観
察したところ、試料2−1の表層には非常に薄い熱影響
層が生じており、また試料2−2および2−3の表層に
は白層が生じていた。また試料2−4および2−5の表
層には加工変質層は生じていなかった。
When the cross-sectional structure of the cut surface of each sample was observed, a very thin heat-affected layer was formed on the surface layer of sample 2-1 and white layers were formed on the surface layers of samples 2-2 and 2-3. A layer had formed. In addition, no work-affected layer was formed on the surface layers of Samples 2-4 and 2-5.

【0030】この断面組織と図2との結果より、SUJ
2の場合と同様に、白層・熱影響層がある場合には、高
検査周波数側の電圧値が低検査周波数側の電圧値に比べ
て+側に高くなり、白層・熱影響層がないか、または非
常に軽微な場合には、逆に−側に下がっている。
From the results of this cross-sectional structure and FIG. 2, SUJ
As in the case of 2, when there is a white layer / heat-affected layer, the voltage value on the high test frequency side is higher on the + side than the voltage value on the low test frequency side, and the white layer / heat-affected layer is If it is not present or very slight, it has fallen to the negative side.

【0031】図1および図2の検査結果より、加工変質
層の有無や厚さの程度に応じて、高検査周波数側の電圧
値が変化していることがわかる。つまり本実施例の検出
方法を用いれば、低検査周波数数側の電圧値を基準とし
て高検査周波数側の電圧値の変化を読取ることにより、
表層の加工変質層の有無や厚さを知ることができる。
From the inspection results shown in FIGS. 1 and 2, it can be seen that the voltage value on the high inspection frequency side changes depending on the presence or absence of the work-affected layer and the degree of the thickness. That is, if the detection method of the present embodiment is used, by reading the change in the voltage value on the high test frequency side with reference to the voltage value on the low test frequency side,
It is possible to know the presence and thickness of the work-affected layer on the surface.

【0032】このことを利用すれば、多重周波数方式で
の渦電流方式を用いることにより、加工を受けた表面を
渦電流センサで検査することのみで、焼入れ鋼の切削加
工および研削加工で最表面に発生する加工変質層の程度
を、非破壊で実用上十分な程度に知ることができる。
By utilizing this fact, by using the eddy current method of the multi-frequency method, the surface processed by the eddy current sensor can be inspected only by the eddy current sensor. The extent of the work-affected layer that occurs in a non-destructive manner can be known to a non-destructive and practically sufficient extent.

【0033】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiment disclosed this time is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0034】[0034]

【発明の効果】以上の説明から、本発明の渦電流方式の
非破壊検出方法によれば、母材の材料ロットや熱処理ロ
ットの差による影響を受けることなく、切削加工または
研削加工によって生じた最表面の加工変質層の有無やそ
の程度を非破壊で精度よく検出することが可能になっ
た。
As described above, according to the non-destructive detection method of the eddy current method of the present invention, the non-destructive detection method of the present invention is not affected by the difference between the material lot of the base material and the heat treatment lot, and is produced by cutting or grinding. It has become possible to detect the presence and degree of the affected layer on the outermost surface accurately and nondestructively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SUJ2焼入れ品を切削した試料について本発
明の一実施例における非破壊検出方法で検出した渦流探
傷装置による浸透深さと電圧との関係を示すグラフであ
る。
FIG. 1 is a graph showing a relationship between a penetration depth and a voltage by an eddy current flaw detector detected by a nondestructive detection method according to one embodiment of the present invention for a sample obtained by cutting a SUJ2 quenched product.

【図2】S53C高周波焼入れ品を切削した試料につい
て本発明の一実施例における非破壊検出方法で検出した
渦流探傷装置による浸透深さと電圧との関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a penetration depth and a voltage by an eddy current flaw detector detected by a nondestructive detection method according to one embodiment of the present invention for a sample obtained by cutting an S53C induction hardened product.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試験コイルに励磁電流を流して試料内に
渦電流を誘導し、その渦電流によって試験コイルに生じ
るインピーダンスの変化を検出する渦電流方式の非破壊
検出方法であって、 前記励磁電流の周波数を変化させて測定試料における低
周波数側および高周波数側の少なくとも2回のインピー
ダンスの変化を測定し、その測定値を対比することによ
って前記測定試料に生じた金属組織の変化を検出する、
渦電流方式の非破壊検出方法。
1. An eddy current non-destructive detection method for inducing an eddy current in a sample by flowing an exciting current through a test coil and detecting a change in impedance generated in the test coil due to the eddy current. At least two changes in impedance on the low frequency side and high frequency side of the measurement sample are measured by changing the frequency of the current, and a change in the metal structure generated in the measurement sample is detected by comparing the measured values. ,
Eddy current non-destructive detection method.
【請求項2】 ゼロ模範とゲイン模範とを用いて前記低
周波数側および高周波数側の前記測定値の比較を行な
う、請求項1に記載の渦電流方式の非破壊検出方法。
2. The non-destructive eddy current detection method according to claim 1, wherein the measured values on the low frequency side and the high frequency side are compared using a zero model and a gain model.
【請求項3】 焼入れ鋼を加工したものを前記測定試料
とし、前記測定試料の前記低周波数側測定値と前記高周
波数側測定値とを対比することで前記焼入れ鋼の加工に
おいて発生する加工変質層を検出する、渦電流方式の非
破壊検出方法。
3. A processed material obtained by processing the hardened steel as the measurement sample, and comparing the measured value on the low frequency side and the measured value on the high frequency side of the measured sample to cause processing deterioration occurring in the processing of the hardened steel. Eddy current non-destructive detection method that detects layers.
JP1105397A 1997-01-24 1997-01-24 Nondestructive detecting method of eddy current system Pending JPH10206395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1105397A JPH10206395A (en) 1997-01-24 1997-01-24 Nondestructive detecting method of eddy current system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1105397A JPH10206395A (en) 1997-01-24 1997-01-24 Nondestructive detecting method of eddy current system

Publications (1)

Publication Number Publication Date
JPH10206395A true JPH10206395A (en) 1998-08-07

Family

ID=11767290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105397A Pending JPH10206395A (en) 1997-01-24 1997-01-24 Nondestructive detecting method of eddy current system

Country Status (1)

Country Link
JP (1) JPH10206395A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2004198246A (en) * 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
JP2011013147A (en) * 2009-07-03 2011-01-20 Jtekt Corp Affected layer detector
JP2011106932A (en) * 2009-11-16 2011-06-02 Jtekt Corp Apparatus and method for detecting process-modified layer
JP2018021800A (en) * 2016-08-02 2018-02-08 株式会社ジェイテクト Grinding burn inspection method for workpiece, and grinding burn inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131287A (en) * 1998-10-23 2000-05-12 Japan Science & Technology Corp Method and device for detecting flaw using magnetic measurement
JP2004198246A (en) * 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2007510916A (en) * 2003-11-10 2007-04-26 フラウンホファー ゲセルシャフトツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. A method for quantitative determination of the width of the soft zone region of partially cured workpieces.
JP2011013147A (en) * 2009-07-03 2011-01-20 Jtekt Corp Affected layer detector
JP2011106932A (en) * 2009-11-16 2011-06-02 Jtekt Corp Apparatus and method for detecting process-modified layer
JP2018021800A (en) * 2016-08-02 2018-02-08 株式会社ジェイテクト Grinding burn inspection method for workpiece, and grinding burn inspection device

Similar Documents

Publication Publication Date Title
JP4998820B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
JP4998821B2 (en) Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method
EP2360467A1 (en) Barkhausen noise inspection apparatus and inspection method
US20060202687A1 (en) Inspection of non-planar parts using multifrequency eddy current with phase analysis
US4207519A (en) Method and apparatus for detecting defects in workpieces using a core-type magnet with magneto-sensitive detectors
CN103076390A (en) Positioning method and device applied to eddy current flaw detection, and eddy current flaw detector
JP2009036682A (en) Eddy current sensor, and device and method for inspecting depth of hardened layer
JPH10206395A (en) Nondestructive detecting method of eddy current system
JP2013224916A (en) Grinding burn determination device and grinding burn determination method
JPH04221757A (en) Defect detecting device
JP2009031224A (en) Eddy current sensor, quench depth inspection apparatus, and quench depth inspection method
JPH0641938B2 (en) Nondestructive measurement method for zirconium alloy materials
JP6601599B1 (en) Rolling part inspection method and rolling part inspection apparatus
JPH0628690Y2 (en) Metal plate defect detector
JP2000227422A (en) Eddy current examination
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
JPS6332142B2 (en)
Cuffe et al. Eddy current measurement of case hardened depth of steel components
US11125723B2 (en) Eddy current testing for measuring residual stress around cold-worked holes
JP2003315173A (en) Method for detecting residual stress in workpiece with eddy current tester using eddy current
Fukuoka et al. Flaw detection for microcrack in spring steel and estimation of crack shape with eddy current testing
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
Rifai et al. Fuzzy logic error compensation scheme for eddy current testing measurement on mild steel superficial crack
Mohd et al. The Effect of Gain and Frequency on Eddy Current Testing for Copper Material Defect Inspection
JP5747666B2 (en) Detection method of overheat in hardened steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040820

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A131 Notification of reasons for refusal

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913