JP2018021800A - Grinding burn inspection method for workpiece, and grinding burn inspection device - Google Patents
Grinding burn inspection method for workpiece, and grinding burn inspection device Download PDFInfo
- Publication number
- JP2018021800A JP2018021800A JP2016152189A JP2016152189A JP2018021800A JP 2018021800 A JP2018021800 A JP 2018021800A JP 2016152189 A JP2016152189 A JP 2016152189A JP 2016152189 A JP2016152189 A JP 2016152189A JP 2018021800 A JP2018021800 A JP 2018021800A
- Authority
- JP
- Japan
- Prior art keywords
- output voltage
- workpiece
- grinding burn
- value
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000005284 excitation Effects 0.000 claims abstract description 73
- 238000012545 processing Methods 0.000 claims abstract description 10
- 239000002344 surface layer Substances 0.000 claims description 52
- 230000002093 peripheral effect Effects 0.000 claims description 34
- 238000004364 calculation method Methods 0.000 claims description 32
- 238000003860 storage Methods 0.000 claims description 11
- 230000001066 destructive effect Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 38
- 230000000875 corresponding effect Effects 0.000 description 21
- 239000010410 layer Substances 0.000 description 20
- 238000005259 measurement Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
本発明は、工作物の研削焼け検査方法及び研削焼け検査装置に関する。 The present invention relates to a grinding burn inspection method and a grinding burn inspection apparatus for a workpiece.
従来、研削加工を行なった工作物に対し、研削加工した部位の範囲の一部に研削焼けが発生する局所研削焼けを非破壊検査で検出する技術が、種々開示されている(例えば、特許文献1、2参照)。 Conventionally, various techniques have been disclosed for detecting non-destructive inspection of local grinding burns in which grinding burns occur in a part of the range of the ground parts with respect to a workpiece subjected to grinding processes (for example, Patent Documents). 1 and 2).
しかしながら、近年、上述した局所焼けのみならず、研削した工作物の加工部位の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無についても非破壊検査で検査することが求められている。 However, in recent years, not only the above-mentioned local burn, but also the presence / absence of full-range grinding burn in which grinding burn occurs over the entire range of the processed part of the ground workpiece is required to be inspected by nondestructive inspection. .
本発明は、このような事情に鑑みてなされたものであり、非破壊検査によって、研削加工された工作物の研削加工部位における全範囲研削焼けの検出ができる工作物の研削焼け検査方法及び研削焼け検査装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a grinding burn inspection method and grinding of a workpiece capable of detecting a full-range grinding burn in a grinding portion of a ground workpiece by nondestructive inspection. An object is to provide a burn inspection device.
本発明に係る工作物の研削焼け検査方法は、研削加工された検査対象の工作物の内部に励磁電流により渦電流を発生させ、発生した前記渦電流に応じた出力電圧に基づいて前記検査対象の工作物の加工部位の表層部における研削焼けの有無を判定する。研削焼けの検査方法は、研削焼けを有していない基準工作物の所定の位置の内部に高周波励磁電流により前記渦電流を発生させた場合の第一出力電圧を取得する第一取得工程と、前記基準工作物の前記所定の位置の内部に低周波励磁電流により前記渦電流を発生させた場合の第二出力電圧を取得する第二取得工程と、前記第一出力電圧及び前記第二出力電圧に基づき、前記検査対象の工作物の所定の検査領域の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値を設定する基準値設定工程と、前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流により前記渦電流を発生させた場合の第三出力電圧を取得する第三取得工程と、前記検査対象の工作物の前記所定の検査領域の前記全範囲の内部に前記低周波励磁電流により前記渦電流を発生させた場合の第四出力電圧を取得する第四取得工程と、前記基準値、前記第三出力電圧の平均値及び前記第四出力電圧の平均値に基づき、前記全範囲研削焼けの有無を判定する第一判定工程と、を備える。 In the grinding burn inspection method for a workpiece according to the present invention, an eddy current is generated by an exciting current inside a ground workpiece to be inspected, and the inspection target is based on an output voltage corresponding to the generated eddy current. The presence or absence of grinding burn in the surface layer portion of the processed part of the workpiece is determined. A grinding burn inspection method includes a first acquisition step of obtaining a first output voltage when the eddy current is generated by a high-frequency excitation current inside a predetermined position of a reference workpiece having no grinding burn, A second acquisition step of acquiring a second output voltage when the eddy current is generated by a low-frequency excitation current inside the predetermined position of the reference workpiece; the first output voltage and the second output voltage; A reference value setting step for setting a reference value for determining whether or not the entire range grinding burn occurs over the entire range of the predetermined inspection area of the workpiece to be inspected, and the inspection target A third acquisition step of acquiring a third output voltage when the eddy current is generated by the high-frequency excitation current within the entire range of the predetermined inspection area of the workpiece of the workpiece, and the workpiece of the inspection object All of the predetermined inspection areas A fourth acquisition step of acquiring a fourth output voltage when the eddy current is generated by the low-frequency excitation current in the interior, and the reference value, the average value of the third output voltage, and the fourth output voltage And a first determination step of determining the presence or absence of the entire range grinding burn based on the average value.
このように、高周波励磁電流及び低周波励磁電流により研削焼けのない基準工作物の所定の位置の内部に発生した渦電流に応じ取得した表層部における第一出力電圧、及び表層部より深い位置である深層部における第二出力電圧に基づいて、全範囲研削焼けの有無を判定するための基準値を設定する。また、検査対象である工作物に対しても、基準工作物と同様に、第一出力電圧に対応する第三出力電圧と、第二出力電圧に対応する第四出力電圧を取得する。このとき、第一出力電圧及び第三出力電圧は、工作物の表層部における出力電圧である。このため、第一出力電圧は、母材毎に異なるばらつきによる変動分を含んだ出力電圧となる。 In this way, the first output voltage at the surface layer part acquired according to the eddy current generated in the predetermined position of the reference workpiece without grinding burn due to the high frequency excitation current and the low frequency excitation current, and at a position deeper than the surface layer part. Based on the second output voltage in a certain deep layer portion, a reference value for determining the presence or absence of full-range grinding burn is set. Further, for the workpiece to be inspected, the third output voltage corresponding to the first output voltage and the fourth output voltage corresponding to the second output voltage are acquired as in the reference workpiece. At this time, the first output voltage and the third output voltage are output voltages at the surface layer portion of the workpiece. For this reason, the first output voltage is an output voltage including a variation due to a variation that differs for each base material.
また、第三出力電圧は、表層部に研削焼けが生じている場合、母材毎に異なるばらつきによる変動分と研削焼けによる変動分とを含んだ出力電圧となる。よって、第一出力電圧を基準値として、工作物の全範囲研削焼けの有無を基準値と第三出力電圧との比較によって判定しようとすると、工作物の表層部における母材のばらつきによる変動分と、表層部に生じた研削焼けによる変動分との識別がつけにくく、全範囲研削焼けを精度よく判定することが難しい。 Further, when grinding burn has occurred in the surface layer portion, the third output voltage is an output voltage including a variation due to different variations for each base material and a variation due to grinding burn. Therefore, if the first output voltage is used as a reference value and an attempt is made to determine the presence or absence of grinding burn of the entire range of the workpiece by comparing the reference value with the third output voltage, the variation due to the variation of the base material in the surface layer of the workpiece It is difficult to discriminate from the fluctuation due to the grinding burn generated in the surface layer portion, and it is difficult to accurately determine the entire range grinding burn.
しかし、本発明では、基準値を設定する際、第一出力電圧だけでなく、母材のばらつきによる変動分のみを含む深層部における第二出力電圧も合わせて全範囲研削焼けの有無の判定に用いる。また、基準値と比較するため工作物から取得する出力電圧も、第三出力電圧だけでなく、研削焼けによる影響を受けず母材のばらつきによる変動分のみを含む第四出力電圧も合わせて用いる。従って、基準値は、第一出力電圧及び第二出力電圧に基づいて母材のばらつきによる変動分を相殺した基準値として設定可能である。また、基準値と比較するために工作物から取得する出力電圧も第三出力電圧及び第四出力電圧に基づいて、母材のばらつきによる変動分を相殺した出力電圧とすることが可能である。即ち、母材のばらつきによる変動分を含まない基準値及び出力電圧(第三出力電圧及び第四出力電圧に基づく)に基づいて表層部における全範囲研削焼けの有無を判定するので、母材のばらつきに影響されない精度のよい判定結果が得られる。 However, in the present invention, when setting the reference value, not only the first output voltage but also the second output voltage in the deep layer including only the variation due to the variation of the base material is used to determine the presence or absence of the entire range grinding burn. Use. Also, the output voltage obtained from the workpiece for comparison with the reference value is not only the third output voltage, but also the fourth output voltage that is not affected by grinding burn and includes only the fluctuation due to the variation of the base material. . Therefore, the reference value can be set as a reference value that cancels out the variation due to the variation in the base material based on the first output voltage and the second output voltage. Further, the output voltage acquired from the workpiece for comparison with the reference value can also be set to an output voltage that offsets the variation due to the variation of the base material based on the third output voltage and the fourth output voltage. That is, since the presence or absence of the entire range grinding burn in the surface layer portion is determined based on the reference value and the output voltage (based on the third output voltage and the fourth output voltage) that do not include fluctuation due to variations in the base material, An accurate determination result that is not affected by variations can be obtained.
また、本発明に係る工作物の研削焼け検査装置は、研削加工された検査対象の工作物の内部に励磁電流により渦電流を発生させ、発生した前記渦電流に応じた出力電圧に基づいて前記検査対象の工作物の加工部位の表層部における研削焼けの有無を判定する研削焼け検査装置であって、前記研削焼け検査装置は、センサと、制御部と、を備える。前記センサは、研削焼けを有していない基準工作物の所定の位置の内部に高周波励磁電流、及び低周波励磁電流により前記渦電流を発生させた場合の第一出力電圧及び第二出力電圧を取得するとともに、前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流、及び前記低周波励磁電流により前記渦電流を発生させた場合の第三出力電圧及び第四出力電圧を取得する。 Further, the grinding burn inspection apparatus for a workpiece according to the present invention generates an eddy current by an excitation current inside the ground workpiece to be inspected, and based on the output voltage corresponding to the generated eddy current. A grinding burn inspection device that determines whether or not grinding burn has occurred in a surface layer portion of a processing part of a workpiece to be inspected, and the grinding burn inspection device includes a sensor and a control unit. The sensor outputs a first output voltage and a second output voltage when the eddy current is generated by a high frequency excitation current and a low frequency excitation current inside a predetermined position of a reference workpiece not having grinding burn. And a third output voltage and a fourth output voltage when the eddy current is generated by the high frequency excitation current and the low frequency excitation current within the entire range of the predetermined inspection area of the workpiece to be inspected. Get the output voltage.
前記制御部は、前記センサが取得した前記第一出力電圧及び前記第二出力電圧に基づき、前記検査対象の工作物の所定の検査領域の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値を演算する基準値演算部と、前記センサが取得した前記第三出力電圧及び前記第四出力電圧の各平均値を演算する平均値演算部と、前記演算された前記基準値と前記第三出力電圧及び前記第四出力電圧の前記各平均値とに基づき前記全範囲研削焼けの有無を判定する第一判定部と、を備える。この検査装置によって、上記工作物の研削焼け検査方法と同様、工作物の全範囲研削焼けの有無の判定を精度よく行なうことができる。 The control unit is a full-range grinding burn that generates a grinding burn over the entire range of a predetermined inspection region of the workpiece to be inspected based on the first output voltage and the second output voltage acquired by the sensor. A reference value calculation unit for calculating a reference value for determining the presence or absence of the output, an average value calculation unit for calculating an average value of the third output voltage and the fourth output voltage acquired by the sensor, and the calculation. And a first determination unit that determines the presence or absence of the entire range grinding burn based on the reference value and the average values of the third output voltage and the fourth output voltage. With this inspection device, it is possible to accurately determine the presence or absence of the entire range grinding burn of the workpiece, as in the grinding burn inspection method of the workpiece.
<1.第一実施形態>
(1−1.研削焼け検査装置の概要)
本発明の第一実施形態に係る工作物の研削焼け検査装置1の概要について説明する。図1に示す研削焼け検査装置1は、工作機械(研削盤)によって外周面が研削加工された工作物2のうち、検査対象の工作物2Bにおける所定の検査領域Ar1の全範囲に亘って、所定量以上の研削焼けである全範囲研削焼けの発生の有無を検査(検出)する装置である。
<1. First embodiment>
(1-1. Outline of grinding burn inspection device)
The outline | summary of the grinding burn inspection apparatus 1 of the workpiece which concerns on 1st embodiment of this invention is demonstrated. The grinding burn inspection apparatus 1 shown in FIG. 1 covers the entire range of a predetermined inspection area Ar1 in the workpiece 2B to be inspected among the workpieces 2 whose outer peripheral surfaces are ground by a machine tool (grinding machine). It is an apparatus that inspects (detects) the occurrence of full-range grinding burn, which is a grinding burn of a predetermined amount or more.
なお、工作物2は、上述した検査対象の工作物2B(以後、工作物2Bとのみ称す)と、工作物2Bの研削加工部位における全範囲研削焼けの有無を判定するための基準値Bを設定するのに用いられる基準値設定用の基準工作物2Aとを含む。なお、所定の検査領域Ar1及び全範囲については、後に詳述する。 The workpiece 2 has the above-described workpiece 2B to be inspected (hereinafter referred to only as the workpiece 2B) and a reference value B for determining the presence or absence of full-range grinding burn in the grinding portion of the workpiece 2B. And a reference workpiece 2A for setting a reference value used for setting. The predetermined inspection area Ar1 and the entire range will be described in detail later.
この研削焼け検査装置1は、渦電流により発生させた磁気を用いた磁気方式の非破壊検査によって工作物2Bの研削焼けを検査する。磁気方式の非破壊検査によって、工作物の研削焼けを検査する場合は、通常、検査装置が、高周波の周波数に設定された励磁電流をセンサの一次コイルに供給し、これによって発生する磁場(磁界)を工作物に印加し、高周波励磁電流の周波数に対応する深さ(表層部)で渦電流を誘導する。 The grinding burn inspection apparatus 1 inspects the grinding burn of the workpiece 2B by a magnetic nondestructive inspection using magnetism generated by eddy current. When inspecting grinding burn of a workpiece by magnetic non-destructive inspection, the inspection device normally supplies an excitation current set to a high frequency to the primary coil of the sensor and generates a magnetic field (magnetic field). ) Is applied to the workpiece, and eddy current is induced at a depth (surface layer portion) corresponding to the frequency of the high-frequency excitation current.
その後、一次コイルと工作物とを相対移動させ、この移動によって変化する渦電流の出力電圧を、センサの二次コイルによって検出し取得する。そして、研削焼けが発生した部位では、研削焼けの発生前と比較して、その値が低下するとされる出力電圧の大きさに基づき、研削焼けの有無が判定される。 Thereafter, the primary coil and the workpiece are relatively moved, and the output voltage of the eddy current that changes due to this movement is detected and acquired by the secondary coil of the sensor. Then, at the portion where the grinding burn has occurred, the presence / absence of the grinding burn is determined based on the magnitude of the output voltage whose value is reduced compared to before the occurrence of the grinding burn.
しかしながら、工作物が「全範囲研削焼け」を有する場合、通常、研削焼け検査装置1で取得される表層部における出力電圧は、工作物が研削焼けを有さない場合と比較して、全範囲に亘ってほぼ一律に減少することがわかっている。このため、例えば、研削焼け(全範囲研削焼け)のない正常な工作物(基準工作物)の表層部における出力電圧を基準値とし、基準値と工作物2Bの表層部の出力電圧とを単純に比較しても、各母材のばらつきによる出力電圧の変動分と、全範囲研削焼けにより全範囲において一律にシフトする出力電圧の変動分との識別が容易ではない。これにより、全範囲研削焼けの有無の判定が困難となる場合がある。以下、上記の事情を踏まえて構成した全範囲研削焼けの有無の判定が可能な工作物の研削焼け検査装置1について詳細に説明する。 However, when the workpiece has “whole range grinding burn”, the output voltage at the surface layer portion obtained by the grinding burn inspection apparatus 1 is usually in the full range compared to the case where the workpiece does not have grinding burn. It has been found that it decreases almost uniformly over the period. For this reason, for example, the output voltage at the surface layer of a normal workpiece (reference workpiece) without grinding burn (whole grinding burn) is used as a reference value, and the reference value and the output voltage at the surface layer of the workpiece 2B are simply Even if compared to the above, it is not easy to distinguish between the variation in the output voltage due to the variation of each base material and the variation in the output voltage that is uniformly shifted in the entire range due to the entire range grinding burn. As a result, it may be difficult to determine whether there is full-range grinding burn. Hereinafter, the grinding burn inspection apparatus 1 for a workpiece capable of determining whether or not there is a full-range grinding burn based on the above circumstances will be described in detail.
なお、本実施形態において、基準工作物2Aは、外周面が研削加工された後において、表層部に研削焼けを有していない正常な工作物である。また、本実施形態において、工作物2は、磁性材料であって浸炭焼き入れした円筒状又は円柱状の部材(例えば、ベアリングの外輪等)を対象とする。ただし、工作物2は、浸炭焼き入れしたものに限らず、ズブ焼入れしたものでもよい。また他の処理が施されたものでもよい。 In the present embodiment, the reference workpiece 2A is a normal workpiece having no grinding burn in the surface layer portion after the outer peripheral surface is ground. In the present embodiment, the workpiece 2 is intended for a cylindrical or columnar member (for example, an outer ring of a bearing) that is a magnetic material and is carburized and quenched. However, the workpiece 2 is not limited to carburizing and quenching, and may be a quenching quenching. Further, other processing may be performed.
(1−2.工作物の研削焼け検査装置の構成)
まず、第一実施形態に係る工作物の研削焼け検査装置1の構成について図1,図2A,図2B,図3を参照して説明する。図1に示すように、研削焼け検査装置1は、磁気センサ10(本発明の「センサ」に相当)と、回転支持部20と、制御装置30(本発明の「制御部」に相当)と、を主体として構成される。
(1-2. Configuration of Workpiece Grinding Burn Inspection Device)
First, the structure of the grinding burn inspection apparatus 1 for a workpiece according to the first embodiment will be described with reference to FIGS. 1, 2A, 2B, and 3. FIG. As shown in FIG. 1, the grinding burn inspection device 1 includes a magnetic sensor 10 (corresponding to “sensor” of the present invention), a rotation support unit 20, and a control device 30 (corresponding to “control unit” of the present invention). , And the main constituent.
磁気センサ10は、センサ本体11と、センサヘッド12と、測定装置13と、タッチセンサ14と、センサ送り機構15とを有する。センサ本体11には、後述する制御装置30の供給部31から、異なる二つの周波数に設定された励磁電流(高周波励磁電流Hi1、及び低周波励磁電流Li1)がそれぞれ交互に供給される。センサ本体11は、センサヘッド12の図略の一次コイルに上記励磁電流を供給する。 The magnetic sensor 10 includes a sensor body 11, a sensor head 12, a measuring device 13, a touch sensor 14, and a sensor feed mechanism 15. Excitation currents (high-frequency excitation current Hi1 and low-frequency excitation current Li1) set at two different frequencies are alternately supplied to the sensor body 11 from a supply unit 31 of the control device 30 described later. The sensor body 11 supplies the excitation current to a primary coil (not shown) of the sensor head 12.
センサヘッド12は、一次コイルに交互に供給された高周波励磁電流Hi1、及び低周波励磁電流Li1によって磁場(磁界)を発生させ、発生した磁場を基準工作物2A、工作物2Bの各外周面の所定の位置P1又は所定の検査領域Ar1の全範囲(外周面の周方向全周)に亘って順次印加し、深さの異なる二箇所の内部に渦電流を誘導する。これにより、センサヘッド12は、基準工作物2A、及び工作物2Bに対し、励磁電流の周波数に応じた浸透深さ(表層部及び深層部)で、第一出力電圧V1,第三出力電圧V3,第二出力電圧V2,及び第四出力電圧V4を取得する。 The sensor head 12 generates a magnetic field (magnetic field) by the high frequency excitation current Hi1 and the low frequency excitation current Li1 alternately supplied to the primary coil, and the generated magnetic field is generated on the outer peripheral surfaces of the reference workpiece 2A and the workpiece 2B. Sequentially applied over the entire range of the predetermined position P1 or the predetermined inspection region Ar1 (the entire circumference in the circumferential direction of the outer peripheral surface), and eddy currents are induced in two locations with different depths. Thereby, the sensor head 12 has the first output voltage V1 and the third output voltage V3 with respect to the reference workpiece 2A and the workpiece 2B at the penetration depth (surface layer portion and deep layer portion) corresponding to the frequency of the excitation current. , Second output voltage V2, and fourth output voltage V4.
第一出力電圧V1は、高周波励磁電流Hi1によって渦電流が基準工作物2Aの表層部で誘導され取得される。また、第三出力電圧V3は、高周波励磁電流Hi1によって渦電流が工作物2Bの表層部で誘導され取得される。また、第二出力電圧V2は、低周波励磁電流Li1によって渦電流が基準工作物2Aの深層部で誘導され取得される。さらに第四出力電圧V4は、低周波励磁電流Li1によって渦電流が工作物2Bの深層部で誘導され取得される。なお、第一出力電圧V1,第三出力電圧V3,第二出力電圧V2,及び第四出力電圧V4は、基準工作物2A及び工作物2Bの状態(変質状態)に伴い、その値が変化する特性を有する。 The first output voltage V1 is acquired by inducing an eddy current at the surface layer portion of the reference workpiece 2A by the high-frequency excitation current Hi1. Further, the third output voltage V3 is obtained by inducing an eddy current in the surface layer portion of the workpiece 2B by the high-frequency excitation current Hi1. Further, the second output voltage V2 is acquired by inducing an eddy current in the deep layer portion of the reference workpiece 2A by the low frequency excitation current Li1. Further, the fourth output voltage V4 is acquired by inducing an eddy current in the deep layer portion of the workpiece 2B by the low frequency excitation current Li1. The values of the first output voltage V1, the third output voltage V3, the second output voltage V2, and the fourth output voltage V4 change according to the state (deformed state) of the reference workpiece 2A and the workpiece 2B. Has characteristics.
つまり、センサヘッド12により高周波励磁電流Hi1による磁場が印加される基準工作物2A又は工作物2Bの外周面における所定の位置P1又は所定の領域Ar1の内部(表層部)では、第一出力電圧V1,又は第三出力電圧V3(波形)がセンサヘッド12の二次コイル(図略)により取得される。なお、基準工作物2A、又は工作物2Bの各外周面における所定の位置P1又は所定の領域Ar1は、図1に示すように、基準工作物2A及び工作物2Bの外周面の幅方向(つまり軸線方向)の中央において、周方向全周(一周)に亘る位置又は領域である。つまり、全範囲とは、基準工作物2A又は工作物2Bの回転位相角度で現すと360°の範囲となる。 That is, at the predetermined position P1 or the predetermined area Ar1 (surface layer portion) on the outer peripheral surface of the reference workpiece 2A or the workpiece 2B to which the magnetic field by the high-frequency excitation current Hi1 is applied by the sensor head 12, the first output voltage V1. Or the third output voltage V3 (waveform) is acquired by the secondary coil (not shown) of the sensor head 12. The predetermined position P1 or the predetermined area Ar1 on each outer peripheral surface of the reference workpiece 2A or the workpiece 2B is, as shown in FIG. 1, the width direction of the outer peripheral surfaces of the reference workpiece 2A and the workpiece 2B (that is, It is a position or region over the entire circumference (one round) in the center in the axial direction). That is, the whole range is a range of 360 ° when expressed by the rotation phase angle of the reference workpiece 2A or the workpiece 2B.
ただし、この態様には限らず、基準工作物2A又は工作物2Bの、所定の位置P1又は所定の検査領域Ar1は、外周面の幅方向における中央ではなく、幅方向における中央以外の何れかの位置における周方向全周であってもよい。また、基準工作物2Aの所定の位置P1は、外周面の周方向における全周でなくてもよく、周方向における一部であってもよい。さらには、基準工作物2Aの所定の位置P1は、外周面の一点であってもよい。 However, the present invention is not limited to this, and the predetermined position P1 or the predetermined inspection area Ar1 of the reference workpiece 2A or the workpiece 2B is not the center in the width direction of the outer peripheral surface, but any one other than the center in the width direction. It may be the entire circumference in the circumferential direction at the position. Further, the predetermined position P1 of the reference workpiece 2A may not be the entire circumference in the circumferential direction of the outer peripheral surface, but may be a part in the circumferential direction. Furthermore, the predetermined position P1 of the reference workpiece 2A may be one point on the outer peripheral surface.
また、センサヘッド12により低周波励磁電流Li1による磁場(磁界)が印加される基準工作物2A、及び工作物2Bの外周面における所定の位置P1又は所定の検査領域Ar1の内部(深層部)では、第二出力電圧V2(波形),又は第四出力電圧(波形)がセンサヘッド12の二次コイル(図略)により取得される。 Further, in the reference workpiece 2A to which the magnetic field (magnetic field) by the low-frequency excitation current Li1 is applied by the sensor head 12, and in the predetermined position P1 on the outer peripheral surface of the workpiece 2B or inside the predetermined inspection area Ar1 (deep layer portion). The second output voltage V2 (waveform) or the fourth output voltage (waveform) is acquired by the secondary coil (not shown) of the sensor head 12.
なお、センサヘッド12が検出し取得する第一出力電圧V1〜第四出力電圧V4は、センサヘッド12が表層部及び深層部にそれぞれ渦電流を誘導した状態で、基準工作物2A及び工作物2Bと、センサヘッド12(センサ本体11)とを相対移動させた場合に渦電流に生じる誘導起電力の出力電圧である。 The first output voltage V1 to the fourth output voltage V4 detected and acquired by the sensor head 12 are the reference workpiece 2A and the workpiece 2B with the sensor head 12 inducing eddy currents in the surface layer portion and the deep layer portion, respectively. And the output voltage of the induced electromotive force generated in the eddy current when the sensor head 12 (sensor body 11) is relatively moved.
図1に示すように、測定装置13は、センサヘッド12が検出した第一出力電圧V1〜第四出力電圧V4をセンサ本体11から信号線を介して受信する。そして、測定装置13は、この第一出力電圧V1〜第四出力電圧V4を磁気センサ10の検出値として、後述する制御装置30の第一取得部32に出力する。 As shown in FIG. 1, the measuring device 13 receives the first output voltage V <b> 1 to the fourth output voltage V <b> 4 detected by the sensor head 12 from the sensor main body 11 via the signal line. And the measuring apparatus 13 outputs this 1st output voltage V1-4th output voltage V4 to the 1st acquisition part 32 of the control apparatus 30 mentioned later as a detected value of the magnetic sensor 10. FIG.
タッチセンサ14は、センサ本体11の内部において、センサヘッド12の基端部に設けられた接触式のセンサである。このタッチセンサ14は、センサヘッド12を工作物2に所定の付勢力(押圧力)によって付勢するばね14aを有する。ばね14aにより、センサヘッド12は、工作物2と常に接触した状態となる。そして、タッチセンサ14は、ばね14aの伸縮状態に基づいて、センサヘッド12が工作物2に対して接触又は非接触の何れの状態にあるかを検出する。タッチセンサ14は、検出したセンサヘッド12の先端部の接触情報を制御装置30に出力する(図略)。 The touch sensor 14 is a contact-type sensor provided at the base end portion of the sensor head 12 inside the sensor body 11. The touch sensor 14 includes a spring 14a that urges the sensor head 12 to the workpiece 2 with a predetermined urging force (pressing force). The sensor head 12 is always in contact with the workpiece 2 by the spring 14a. The touch sensor 14 detects whether the sensor head 12 is in contact or non-contact with the workpiece 2 based on the expansion / contraction state of the spring 14a. The touch sensor 14 outputs the detected contact information of the tip of the sensor head 12 to the control device 30 (not shown).
センサ送り機構15は、センサ本体11の後方部(センサ本体11に対して工作物2と反対側)に設けられ、センサ本体11を工作物2の軸方向に移動可能に保持する。このセンサ送り機構15は、例えば、ボールねじとサーボモータ、又は、油圧機構等により構成される。また、センサ送り機構15は、工作物2とセンサ本体11との距離を変動させるように、工作物2に対してセンサ本体11を相対移動させる移動手段である。 The sensor feed mechanism 15 is provided in the rear part of the sensor body 11 (on the side opposite to the workpiece 2 with respect to the sensor body 11), and holds the sensor body 11 so as to be movable in the axial direction of the workpiece 2. The sensor feed mechanism 15 is constituted by, for example, a ball screw and a servo motor or a hydraulic mechanism. The sensor feed mechanism 15 is a moving unit that moves the sensor body 11 relative to the workpiece 2 so as to vary the distance between the workpiece 2 and the sensor body 11.
そして、センサ送り機構15は、センサ本体11を保持する保持部の移動方向位置(工作物2における径方向位置)を、図示しないサーボモータから検出する。位置センサ15aは、サーボモータから検出したセンサ本体11の位置情報を制御装置30へ出力する。これにより、制御装置30は、タッチセンサ14によるセンサヘッド12の接触情報及びセンサ送り機構15によるセンサ本体11の位置情報に基づいて、センサヘッド12の検査表面に対する離間距離(クリアランス)を検知する。 Then, the sensor feed mechanism 15 detects a movement direction position (a radial direction position in the workpiece 2) of the holding portion that holds the sensor body 11 from a servo motor (not shown). The position sensor 15 a outputs position information of the sensor body 11 detected from the servo motor to the control device 30. Thereby, the control device 30 detects the separation distance (clearance) of the sensor head 12 from the inspection surface based on the contact information of the sensor head 12 by the touch sensor 14 and the position information of the sensor main body 11 by the sensor feed mechanism 15.
回転支持部20は、駆動輪21と、調整車22を有し、工作物2を回転可能に支持する。駆動輪21は、工作物2の外周面と接触し、図示しないモータにより回転駆動することで工作物2を回転させる。また、駆動輪21は、図示しないモータの回転位置を検出するエンコーダ21aを有する。 The rotation support unit 20 includes drive wheels 21 and an adjustment wheel 22 and supports the workpiece 2 to be rotatable. The drive wheel 21 contacts the outer peripheral surface of the workpiece 2 and rotates the workpiece 2 by being driven to rotate by a motor (not shown). The drive wheel 21 has an encoder 21a that detects the rotational position of a motor (not shown).
エンコーダ21aは、検出したモータの回転位置情報を制御装置30へ出力する。これにより、制御装置30は、初期情報である工作物2の直径や周長などを含む形状情報及びモータの回転位置情報に基づいて、センサヘッド12の工作物2に対する周方向位相(回転位相)を検知する。調整車22は、駆動輪21と共に工作物2を支持し、工作物2の外周面との摩擦力により従動回転する。 The encoder 21 a outputs the detected rotational position information of the motor to the control device 30. As a result, the control device 30 determines the circumferential phase (rotation phase) of the sensor head 12 with respect to the workpiece 2 based on the shape information including the diameter and circumference of the workpiece 2 as the initial information and the rotational position information of the motor. Is detected. The adjustment wheel 22 supports the workpiece 2 together with the drive wheels 21 and is driven to rotate by a frictional force with the outer peripheral surface of the workpiece 2.
制御装置30(制御部)は、図1に示すように、供給部31と、第一取得部32と、基準値演算部33と、第二取得部34と、平均値演算部35と、第一判定部36とを備える。 As shown in FIG. 1, the control device 30 (control unit) includes a supply unit 31, a first acquisition unit 32, a reference value calculation unit 33, a second acquisition unit 34, an average value calculation unit 35, And a determination unit 36.
供給部31は、測定装置13を介してセンサ本体11と連結され、高周波励磁電流Hi1、及び低周波励磁電流Li1をセンサ本体11にそれぞれ供給する。高周波励磁電流Hi1は、基準工作物2A,及び工作物2Bの表層部を浸透深さとする周波数帯に含まれる周波数の励磁電流である。この周波数は、100kHzより高く1.0MHzより低い範囲に設定され、本実施形態では250kHzに設定される。工作物2において、表層部は、工作物2の外周面に研削加工を行なうことによって、研削焼けが生じうる範囲の深さである。 The supply unit 31 is connected to the sensor main body 11 via the measuring device 13 and supplies the high frequency excitation current Hi1 and the low frequency excitation current Li1 to the sensor main body 11, respectively. The high-frequency excitation current Hi1 is an excitation current having a frequency included in a frequency band in which the surface layer portions of the reference workpiece 2A and the workpiece 2B have a penetration depth. This frequency is set to a range higher than 100 kHz and lower than 1.0 MHz, and is set to 250 kHz in the present embodiment. In the workpiece 2, the surface layer portion has a depth in a range where grinding burn can occur by grinding the outer peripheral surface of the workpiece 2.
また、低周波励磁電流Li1は、表層部の下方の深層部を浸透深さとする周波数帯に含まれる周波数の励磁電流である。この周波数は、100kHzより低く0.1kHzより高い範囲に設定され、本実施形態では500Hzに設定される。深層部は、工作物2の外周面に研削加工を行なっても、研削焼けが生じない範囲の深さである。つまり、深層部は、主に母材の特性のみを有している。 Further, the low frequency excitation current Li1 is an excitation current having a frequency included in a frequency band in which a deep layer portion below the surface layer portion has a penetration depth. This frequency is set to a range lower than 100 kHz and higher than 0.1 kHz, and is set to 500 Hz in the present embodiment. The deep layer portion has a depth that does not cause grinding burn even when grinding is performed on the outer peripheral surface of the workpiece 2. That is, the deep layer portion mainly has only the characteristics of the base material.
第一取得部32は、測定装置13と接続される。第一取得部32は、研削焼けを有さない複数(例えば5個)の正常な基準工作物2Aの表層部における第一出力電圧V1及び深層部における第二出力電圧V2を取得する。基準工作物2Aから、第一出力電圧V1及び第二出力電圧V2を取得する方法については、上述したとおりである。第一取得部32は、基準値演算部33と接続され、取得した第一出力電圧V1及び第二出力電圧V2を基準値演算部33に出力する。なお、このとき、第一出力電圧V1及び第二出力電圧V2を取得する基準工作物2Aの個数は、一個でもよいが、その数は多いほど好ましい。 The first acquisition unit 32 is connected to the measurement device 13. The first acquisition unit 32 acquires the first output voltage V1 in the surface layer portion and the second output voltage V2 in the deep layer portion of a plurality of (for example, five) normal reference workpieces 2A that do not have grinding burn. The method for obtaining the first output voltage V1 and the second output voltage V2 from the reference workpiece 2A is as described above. The first acquisition unit 32 is connected to the reference value calculation unit 33 and outputs the acquired first output voltage V <b> 1 and second output voltage V <b> 2 to the reference value calculation unit 33. At this time, the number of reference workpieces 2A from which the first output voltage V1 and the second output voltage V2 are acquired may be one, but the larger the number, the better.
基準値演算部33は、センサヘッド12(磁気センサ10)が取得した第一出力電圧V1(図2A参照)及び第二出力電圧V2(図2B参照)に基づき、検査対象の工作物2Bの所定の検査領域Ar1(図1参照)の全範囲(外周面の周方向全周)に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値Bmを演算する。 The reference value calculation unit 33 determines the predetermined workpiece 2B to be inspected based on the first output voltage V1 (see FIG. 2A) and the second output voltage V2 (see FIG. 2B) acquired by the sensor head 12 (magnetic sensor 10). A reference value Bm is calculated for determining whether or not there is a full range grinding burn that causes grinding burn over the entire range of the inspection area Ar1 (see FIG. 1).
基準値演算部33は、基準値Bmを設定する基になる基準値Bを、下記式(1)に基づき演算する。
[数1] B=Av1−Av2・・・(1)
Av1:第一出力電圧V1の平均値
Av2:第二出力電圧V2の平均値
The reference value calculation unit 33 calculates a reference value B that is a basis for setting the reference value Bm based on the following equation (1).
[Equation 1] B = Av1-Av2 (1)
Av1: Average value of the first output voltage V1 Av2: Average value of the second output voltage V2
このとき、基準値Bは、各基準工作物2A毎に、それぞれ各第一出力電圧V1の平均値Av1から各第二出力電圧V2の平均値Av2を減算して求める。本実施形態においては、通常、第一出力電圧V1の平均値Av1は、第二出力電圧V2の平均値Av2よりも大きい。このため、式(1)によって、基準値Bは、基準値として適する正の値で得られる。また、第一出力電圧V1の平均値Av1から各第二出力電圧V2の平均値Av2を減算することで、第一出力電圧V1及び第二出力電圧V2にともに含まれる母材のばらつきによる変動分が相殺される。 At this time, the reference value B is obtained by subtracting the average value Av2 of each second output voltage V2 from the average value Av1 of each first output voltage V1 for each reference workpiece 2A. In the present embodiment, normally, the average value Av1 of the first output voltage V1 is larger than the average value Av2 of the second output voltage V2. For this reason, the reference value B is obtained as a positive value suitable as the reference value by the expression (1). Further, by subtracting the average value Av2 of each second output voltage V2 from the average value Av1 of the first output voltage V1, a variation due to variations in the base material included in both the first output voltage V1 and the second output voltage V2 is obtained. Is offset.
そして、本実施形態においては、このように演算した複数の基準値Bのうち最大の基準値Bを基準値Bmとして設定する。ただし、この態様には限らず、基準値Bmは、演算した複数の基準値Bのばらつき(σ)を求めたうえで、3σ、若しくは4σ等に相当する出力電圧としてもよい。そして、設定された基準値Bmは、第一判定部36に出力され記憶される。 In the present embodiment, the maximum reference value B among the plurality of reference values B calculated in this way is set as the reference value Bm. However, the present invention is not limited to this mode, and the reference value Bm may be an output voltage corresponding to 3σ, 4σ, or the like after obtaining the variation (σ) of the plurality of calculated reference values B. The set reference value Bm is output to the first determination unit 36 and stored.
なお、上記態様に限らず、基準値Bは、各基準工作物2A毎に、それぞれ各第一出力電圧V1の平均値Av1の絶対値|Av1|から各第二出力電圧V2の平均値Av2の絶対値|Av2|を減算して求めてもよい。これによっても、基準値Bは、基準値として適する正の値で得られる。 In addition, the reference value B is not limited to the above-described aspect, and the reference value B is an absolute value | Av1 | of the average value Av1 of each first output voltage V1 to an average value Av2 of each second output voltage V2 for each reference workpiece 2A The absolute value | Av2 | may be subtracted. Also by this, the reference value B is obtained as a positive value suitable as the reference value.
第二取得部34は、測定装置13と接続される。第二取得部34は、センサヘッド12(磁気センサ10)が取得した工作物2Bの表層部における第三出力電圧V3、及び深層部における第四出力電圧V4を測定装置13から取得する。工作物2Bから第三出力電圧V3及び第四出力電圧V4を取得する方法については、上述したとおりである。また、第二取得部34は、平均値演算部35に接続される。そして、取得した第三出力電圧V3、及び第四出力電圧V4を平均値演算部35に出力する。 The second acquisition unit 34 is connected to the measurement device 13. The second acquisition unit 34 acquires from the measurement device 13 the third output voltage V3 in the surface layer portion of the workpiece 2B acquired by the sensor head 12 (magnetic sensor 10) and the fourth output voltage V4 in the deep layer portion. The method for obtaining the third output voltage V3 and the fourth output voltage V4 from the workpiece 2B is as described above. The second acquisition unit 34 is connected to the average value calculation unit 35. Then, the acquired third output voltage V3 and fourth output voltage V4 are output to the average value calculator 35.
平均値演算部35は、第三出力電圧V3及び第四出力電圧V4の全範囲(工作物2Bの外周面全周)に亘る各平均値Av3、Av4を演算する。なお、各平均値Av3、Av4は、どのような計算方法により求めてもよい。 The average value calculator 35 calculates the average values Av3 and Av4 over the entire range of the third output voltage V3 and the fourth output voltage V4 (the entire outer peripheral surface of the workpiece 2B). The average values Av3 and Av4 may be obtained by any calculation method.
第一判定部36は、演算された基準値Bmと、第三出力電圧V3及び第四出力電圧V4の各平均値Av3,Av4と、に基づき全範囲研削焼けの有無を判定する。具体的には、基準値Bmと、第三出力電圧V3の平均値Av3の絶対値|Av3|から第四出力電圧V4の平均値Av4の絶対値|Av4|を減算した差分と、の大小によって全範囲研削焼けの有無を判定する。つまり、下記式(2)を満たしたときに工作物2Bには全範囲研削焼けがあると判定される。 The first determination unit 36 determines the presence or absence of full-range grinding burn based on the calculated reference value Bm and the average values Av3 and Av4 of the third output voltage V3 and the fourth output voltage V4. Specifically, depending on the magnitude of the reference value Bm and the difference obtained by subtracting the absolute value | Av4 | of the average value Av4 of the fourth output voltage V4 from the absolute value | Av3 | of the average value Av3 of the third output voltage V3. Determine if there is grinding burn on the entire area. That is, when the following formula (2) is satisfied, it is determined that the workpiece 2B has full-range grinding burn.
[数2] Bm<|Av3|−|Av4|・・・(2)
Bm:基準値
Av3:第三出力電圧V3の平均値
Av4:第四出力電圧V4の平均値
[Expression 2] Bm <| Av3 |-| Av4 | (2)
Bm: Reference value Av3: Average value of the third output voltage V3 Av4: Average value of the fourth output voltage V4
なお、表層部に研削焼けが生じている場合、第三出力電圧V3は低下する傾向にあり、値として負となる場合がある。このため、上記式(2)では、第三出力電圧V3及び第四出力電圧V4の平均値を共に絶対値とすることで、差分を正側の数値にし、基準値Bmとの比較を成立させる。 In addition, when grinding burn has arisen in the surface layer part, the 3rd output voltage V3 tends to fall, and it may become a negative value. For this reason, in the above equation (2), the average value of the third output voltage V3 and the fourth output voltage V4 are both absolute values, thereby making the difference a positive value and establishing a comparison with the reference value Bm. .
また、第三出力電圧V3の平均値Av3の絶対値|Av3|から第四出力電圧V4の平均値Av4の絶対値|Av4|を減算することで、第三出力電圧V3及び第四出力電圧V4にともに含まれる母材のばらつきによる変動分が相殺される。 Further, the third output voltage V3 and the fourth output voltage V4 are obtained by subtracting the absolute value | Av4 | of the average value Av4 of the fourth output voltage V4 from the absolute value | Av3 | of the average value Av3 of the third output voltage V3. The variation due to the variation of the base material included in the
また、上記態様に限らず、基準値Bmと比較する第三出力電圧V3及び第四出力電圧V4の各平均値Av3,Av4の間の差分は、|Av4−Av3|によって求めてもよい。また、工作物2Bの各回転位相において、それぞれ対応する第三出力電圧V3及び第四出力電圧V4の各出力電圧値v3、v4に対し、|v4−v3|の平均値を演算して、基準値Bmと比較してもよい。さらには、各出力電圧値v3、v4に対し、(v4−v3)の平均値を演算して、基準値Bmと比較してもよい。いずれにおいても相応の効果が期待できる。 The difference between the average values Av3 and Av4 of the third output voltage V3 and the fourth output voltage V4 to be compared with the reference value Bm is not limited to the above aspect, and may be obtained by | Av4-Av3 |. Also, in each rotational phase of the workpiece 2B, an average value of | v4-v3 | is calculated for each output voltage value v3, v4 of the corresponding third output voltage V3 and fourth output voltage V4 to obtain a reference You may compare with value Bm. Further, an average value of (v4-v3) may be calculated for each output voltage value v3, v4 and compared with the reference value Bm. In any case, a corresponding effect can be expected.
(1−3.工作物の全範囲研削焼けの検査方法)
次に、工作物の全範囲研削焼けの検査方法について図3のフローチャートに基づき説明する。第一実施形態に係る研削焼け検査装置1を用いた研削焼け検査方法は、研削加工された検査対象の工作物2Bにおける所定の検査領域Ar1の全範囲に亘って所定量以上の研削焼けである全範囲研削焼けが発生したか否かを検査する。なお、以下の検査を行なうに当たって、制御装置30は、回転支持部20を制御し、基準工作物2A、及び工作物2Bを所定の回転数で回転させる。
(1-3. Inspection method for grinding burn of the entire range of the workpiece)
Next, an inspection method for the entire range grinding burn of the workpiece will be described based on the flowchart of FIG. The grinding burn inspection method using the grinding burn inspection apparatus 1 according to the first embodiment is grinding burn of a predetermined amount or more over the entire range of the predetermined inspection area Ar1 in the workpiece 2B to be inspected that has been ground. Inspect whether full-range grinding burn has occurred. In performing the following inspection, the control device 30 controls the rotation support unit 20 to rotate the reference workpiece 2A and the workpiece 2B at a predetermined number of rotations.
工程S10(第一取得工程)では、第一出力電圧V1を取得する。このため、まず、制御装置30が供給部31を制御し、センサヘッド12に高周波励磁電流Hi1を供給する。これにより、センサヘッド12は、基準工作物2Aの外周面の所定に位置P1の一部に磁場を印加し、基準工作物2Aの表層部(内部)に渦電流を誘導する。なお、このとき、センサヘッド12は、研削焼けを有していない正常な基準工作物2Aの外周面の所定の位置P1に接触している。 In step S10 (first acquisition step), the first output voltage V1 is acquired. Therefore, first, the control device 30 controls the supply unit 31 to supply the high frequency excitation current Hi1 to the sensor head 12. Thereby, the sensor head 12 applies a magnetic field to a predetermined part of the position P1 on the outer peripheral surface of the reference workpiece 2A, and induces an eddy current in the surface layer (inside) of the reference workpiece 2A. At this time, the sensor head 12 is in contact with a predetermined position P1 on the outer peripheral surface of a normal reference workpiece 2A that does not have grinding burn.
そして、基準工作物2Aとセンサヘッド12とが相対移動することにより、表層部に第一出力電圧V1が生じ、センサヘッド12は、生じた第一出力電圧V1を取得する。このとき、正常な基準工作物2Aの第一出力電圧V1は、表層部における母材のばらつきによる変動分を含んだ出力電圧である。取得された第一出力電圧V1は、センサ本体11を介して測定装置13に入力される。その後、取得された第一出力電圧V1は測定装置13から制御装置30の第一取得部32に出力され、第一取得部32で記憶される。 Then, when the reference workpiece 2A and the sensor head 12 are relatively moved, the first output voltage V1 is generated in the surface layer portion, and the sensor head 12 acquires the generated first output voltage V1. At this time, the first output voltage V1 of the normal reference workpiece 2A is an output voltage including a variation due to variations in the base material in the surface layer portion. The acquired first output voltage V <b> 1 is input to the measurement device 13 via the sensor body 11. Thereafter, the acquired first output voltage V <b> 1 is output from the measurement device 13 to the first acquisition unit 32 of the control device 30 and stored in the first acquisition unit 32.
次に、工程S20(第二取得工程)では、第一取得工程S10において、所定の位置P1の一部で第一出力電圧V1の取得が完了した直後に、制御装置30が供給部31を制御し、センサヘッド12に低周波励磁電流Li1を供給する。これにより、センサヘッド12は、基準工作物2Aに磁場を印加し、基準工作物2Aの深層部(内部)に渦電流を誘導する。 Next, in step S20 (second acquisition step), in the first acquisition step S10, the control device 30 controls the supply unit 31 immediately after acquisition of the first output voltage V1 is completed at a part of the predetermined position P1. The low frequency excitation current Li1 is supplied to the sensor head 12. Thereby, the sensor head 12 applies a magnetic field to the reference workpiece 2A, and induces an eddy current in the deep layer portion (inside) of the reference workpiece 2A.
そして、基準工作物2Aとセンサヘッド12とが相対移動することにより、深層部に第二出力電圧V2が生じ、センサヘッド12は、生じた第二出力電圧V2を取得する。このとき、正常な基準工作物2Aの第二出力電圧V2は、第一出力電圧V1と同様、深層部における母材のばらつきによる変動分を含んだ出力電圧である。取得された第二出力電圧V2は、センサ本体11を介して測定装置13に入力される。その後、取得された第二出力電圧V2は測定装置13から制御装置30の第一取得部32に出力され、第一取得部32で記憶される。なお、上記において、工程S10(第一取得工程)及び工程S20(第二取得工程)は、その処理順序を逆にしてもよい。 Then, relative movement between the reference workpiece 2A and the sensor head 12 generates a second output voltage V2 in the deep layer, and the sensor head 12 acquires the generated second output voltage V2. At this time, like the first output voltage V1, the second output voltage V2 of the normal reference workpiece 2A is an output voltage including a variation due to variations in the base material in the deep layer portion. The acquired second output voltage V <b> 2 is input to the measurement device 13 via the sensor body 11. Thereafter, the acquired second output voltage V <b> 2 is output from the measurement device 13 to the first acquisition unit 32 of the control device 30 and stored in the first acquisition unit 32. In addition, in the above, you may reverse the process order of process S10 (1st acquisition process) and process S20 (2nd acquisition process).
工程S30(第一確認工程)では、工程S10及び工程S20における第一出力電圧V1及び第二出力電圧V2の取得が、予め設定した基準工作物2Aの外周面の所定の位置P1の全範囲に亘って終了したか否かが確認される。なお、本実施形態では、全範囲とは、基準工作物2Aの外周面の周方向一周(360度)であるものとする。 In step S30 (first confirmation step), the acquisition of the first output voltage V1 and the second output voltage V2 in step S10 and step S20 is within the predetermined range P1 of the predetermined outer peripheral surface of the reference workpiece 2A. It is confirmed whether or not the process has been completed. In the present embodiment, it is assumed that the entire range is one round (360 degrees) in the circumferential direction of the outer peripheral surface of the reference workpiece 2A.
第一出力電圧V1及び第二出力電圧V2の取得が、外周面の全範囲に亘って行われていれば、次に工程S40の処理を行なう。全範囲に亘って行われていなければ、全範囲に亘って行われたことが工程S30で確認できるまで、S10〜S30の処理を繰り返し行なう。 If acquisition of the 1st output voltage V1 and the 2nd output voltage V2 is performed over the whole range of an outer peripheral surface, processing of process S40 will be performed next. If not performed over the entire range, the processes of S10 to S30 are repeated until it is confirmed in step S30 that the entire range has been performed.
工程S40(第二確認工程)では、第一出力電圧V1及び第二出力電圧V2の取得が完了した基準工作物2Aの個数の確認が行なわれる。第一出力電圧V1及び第二出力電圧V2の取得が完了した基準工作物2Aの個数が、予め設定した数(例えば5個)に到達していれば、次に工程S50の処理を行なう。予め設定した数に到達していなければ、完了した基準工作物2Aの個数が、予め設定した数に到達するまで、S10〜S40の処理を繰り返し行なう。なお、第一出力電圧V1、及び第二出力電圧V2を取得する基準工作物2Aの個数は、任意に設定すればよい。基準工作物2Aの個数が多いほど、後に設定する基準値Bに対する信頼性は向上するが、測定にコストがかかるので、実施者が各自で設定すればよい。 In step S40 (second confirmation step), the number of reference workpieces 2A for which acquisition of the first output voltage V1 and the second output voltage V2 has been completed is confirmed. If the number of reference workpieces 2A for which acquisition of the first output voltage V1 and the second output voltage V2 has been completed has reached a preset number (for example, five), the process of step S50 is performed next. If the preset number has not been reached, the processes of S10 to S40 are repeated until the number of completed reference workpieces 2A reaches the preset number. In addition, what is necessary is just to set arbitrarily the number of the reference | standard workpieces 2A which acquire 1st output voltage V1 and 2nd output voltage V2. As the number of the reference workpieces 2A increases, the reliability with respect to the reference value B set later increases, but the measurement costs more, so the practitioner may set it himself.
なお、上記において、基準工作物2Aが実際に研削焼けのない正常な工作物であるか否かの判断は、工程S10から工程S40において第一出力電圧V1及び第二出力電圧V2を取得したのち、対応する各基準工作物2Aに対して、例えばエッチングによる破壊検査を行ない確認すればよい。そして、実際に研削焼けがなかった工作物のみを基準工作物2Aとし、これに対応する第一出力電圧V1及び第二出力電圧V2を基準工作物2Aの出力電圧として使用すればよい。なお、上記態様には限らず、工程S10(第一取得工程)及び工程S20(第二取得工程)の処理を行なう前に、正常品であることの確認検査を行ない、正常品と確認された工作物を基準工作物2Aとして準備しておいてもよい。 In the above description, whether or not the reference workpiece 2A is actually a normal workpiece without grinding burn is obtained after acquiring the first output voltage V1 and the second output voltage V2 in steps S10 to S40. The corresponding reference workpiece 2A may be confirmed by performing a destructive inspection by etching, for example. Then, it is only necessary to use only the workpiece that has not actually been burned as the reference workpiece 2A, and use the first output voltage V1 and the second output voltage V2 corresponding thereto as the output voltage of the reference workpiece 2A. In addition, it is not restricted to the said aspect, Before performing the process of process S10 (1st acquisition process) and process S20 (2nd acquisition process), the confirmation test | inspection that it is a normal product was performed, and it was confirmed as a normal product A workpiece may be prepared as the reference workpiece 2A.
工程S50(基準値設定工程)では、基準値演算部33によって基準値Bmが演算され設定される。基準値Bmは、検査対象の工作物2Bの所定の検査領域Ar1の全範囲に亘る全範囲研削焼けの有無を判定するための基準値である。詳細には、まず、第一取得部32が記憶する複数の基準工作物2Aの各第一出力電圧V1及び各第二出力電圧V2のそれぞれの平均値Av1,Av2を求める。そして、各基準工作物2A毎における第一出力電圧V1の平均値Av1及び各第二出力電圧V2の平均値Av2の差分である基準値Bを上記式(1)に基づいて算出する。 In step S50 (reference value setting step), the reference value calculation unit 33 calculates and sets the reference value Bm. The reference value Bm is a reference value for determining the presence / absence of the entire range grinding burn over the entire range of the predetermined inspection area Ar1 of the workpiece 2B to be inspected. Specifically, first, average values Av1 and Av2 of the first output voltage V1 and the second output voltage V2 of the plurality of reference workpieces 2A stored in the first acquisition unit 32 are obtained. Then, a reference value B, which is the difference between the average value Av1 of the first output voltage V1 and the average value Av2 of each second output voltage V2 for each reference workpiece 2A, is calculated based on the above equation (1).
このようにして得られた各平均値Av1,Av2の差分(基準値B)は、正常な基準工作物2Aの第一出力電圧V1及び第二出力電圧V2に基づくものであり、母材のばらつき分が相殺されて除去された出力電圧となっている。そして、得られた複数の差分(基準値B)のうち、最大の差分を本実施形態で使用する基準値Bmとする。基準値Bmは、制御装置30の第一判定部36に出力される。上記工程S10−工程S50は、第一出力電圧V1及び第二出力電圧V2に基づいて基準値Bmを設定するための工程である。 The difference (reference value B) between the average values Av1 and Av2 obtained in this way is based on the first output voltage V1 and the second output voltage V2 of the normal reference workpiece 2A, and variations in the base material. The output voltage is eliminated by canceling the minutes. And let the largest difference be the reference value Bm used by this embodiment among a plurality of obtained differences (reference value B). The reference value Bm is output to the first determination unit 36 of the control device 30. Steps S10 to S50 are steps for setting the reference value Bm based on the first output voltage V1 and the second output voltage V2.
次に、工程S60(第三取得工程)では、第三出力電圧V3を取得する。このため、工程S10と同様、制御装置30が供給部31を制御し、センサヘッド12に高周波励磁電流Hi1を供給する。これにより、センサヘッド12は、工作物2Bの外周面の所定の検査領域Ar1の一部に磁場を印加し、工作物2Bの表層部(内部)に渦電流を誘導する。 Next, in step S60 (third acquisition step), the third output voltage V3 is acquired. For this reason, as in step S <b> 10, the control device 30 controls the supply unit 31 to supply the high-frequency excitation current Hi <b> 1 to the sensor head 12. Thereby, the sensor head 12 applies a magnetic field to a part of the predetermined inspection area Ar1 on the outer peripheral surface of the workpiece 2B, and induces an eddy current in the surface layer portion (inside) of the workpiece 2B.
そして、工作物2Bとセンサヘッド12とが相対移動することにより、表層部に第三出力電圧V3が生じ、センサヘッド12は、生じた第三出力電圧V3を取得する。このとき、工作物2Bの第三出力電圧V3は、工作物2Bの表層部における母材のばらつきによる変動分のみ、若しくは母材のばらつきによる変動分及び研削焼けによる変動分を含んだ出力電圧である。取得された第三出力電圧V3は、センサ本体11を介して測定装置13に入力される。センサヘッド12に取得された第三出力電圧V3は測定装置13を介して制御装置30の第二取得部34に出力され、第二取得部34で記憶される。 Then, the workpiece 2B and the sensor head 12 move relative to each other to generate a third output voltage V3 on the surface layer portion, and the sensor head 12 acquires the generated third output voltage V3. At this time, the third output voltage V3 of the workpiece 2B is an output voltage including only the variation due to the variation of the base material in the surface layer portion of the workpiece 2B, or the variation due to the variation of the base material and the variation due to grinding burn. is there. The acquired third output voltage V3 is input to the measuring device 13 via the sensor body 11. The third output voltage V3 acquired by the sensor head 12 is output to the second acquisition unit 34 of the control device 30 via the measurement device 13 and stored in the second acquisition unit 34.
工程S70(第四取得工程)では、工程S60において、工作物2Bの外周面の所定の検査領域Ar1の一部で第三出力電圧V3の取得が完了した直後に、制御装置30が供給部31を制御し、センサヘッド12に低周波励磁電流Li1を供給する。これにより、センサヘッド12が、工作物2Bの検査領域Ar1に磁場を印加し、工作物2Bの深層部(内部)に渦電流を誘導する。 In step S70 (fourth acquisition step), immediately after the acquisition of the third output voltage V3 is completed in a part of the predetermined inspection area Ar1 on the outer peripheral surface of the workpiece 2B in step S60, the control device 30 supplies the supply unit 31. And the low-frequency excitation current Li1 is supplied to the sensor head 12. Thereby, the sensor head 12 applies a magnetic field to the inspection area Ar1 of the workpiece 2B, and induces an eddy current in the deep layer portion (inside) of the workpiece 2B.
そして、工作物2Bとセンサヘッド12とが相対移動することにより、深層部に第四出力電圧V4が生じ、センサヘッド12が、生じた第四出力電圧V4を取得する。このとき、第四出力電圧V4は、工作物2Bの深層部における母材のばらつきによる変動分のみを含んだ出力電圧である。取得された第四出力電圧V4は、センサ本体11を介して測定装置13に入力される。その後、取得された第四出力電圧V4は測定装置13から制御装置30の第二取得部34に出力され、第二取得部34で記憶される。なお、上記において、工程S60(第三取得工程)及び工程S70(第四取得工程)は、その処理順序を逆にしてもよい。 Then, when the workpiece 2B and the sensor head 12 are relatively moved, the fourth output voltage V4 is generated in the deep layer portion, and the sensor head 12 acquires the generated fourth output voltage V4. At this time, the fourth output voltage V4 is an output voltage including only a variation due to variations in the base material in the deep layer portion of the workpiece 2B. The acquired fourth output voltage V4 is input to the measurement device 13 via the sensor body 11. Thereafter, the acquired fourth output voltage V4 is output from the measurement device 13 to the second acquisition unit 34 of the control device 30 and stored in the second acquisition unit 34. In addition, in the above, you may reverse the process order of process S60 (3rd acquisition process) and process S70 (4th acquisition process).
工程S80(第三確認工程)では、工程S30と同様、第三取得工程S60及び第四取得工程S70における第三出力電圧V3、及び第四出力電圧V4の取得が、予め設定した工作物2Bの外周面の所定の検査領域Ar1の全範囲に亘って終了したか否かが確認される。なお、本実施形態では、全範囲とは、工作物2Bの外周面の周方向一周(360度)である。 In step S80 (third confirmation step), as in step S30, acquisition of the third output voltage V3 and the fourth output voltage V4 in the third acquisition step S60 and the fourth acquisition step S70 is performed on the preset workpiece 2B. It is confirmed whether the process has been completed over the entire range of the predetermined inspection area Ar1 on the outer peripheral surface. In the present embodiment, the entire range is one round (360 degrees) in the circumferential direction of the outer peripheral surface of the workpiece 2B.
第三出力電圧V3及び第四出力電圧V4の取得が、外周面の周方向全周に亘って行われていれば、次に工程S90の処理を行なう。第三出力電圧V3及び第四出力電圧V4の取得が、外周面の周方向全周に亘って行われていなければ、工程S80で周方向全周に亘って行われたことが確認できるまで、S60〜S80の処理を繰り返し行なう。 If acquisition of the 3rd output voltage V3 and the 4th output voltage V4 is performed over the perimeter of the peripheral direction of an outer peripheral surface, processing of process S90 will be performed next. Unless the acquisition of the third output voltage V3 and the fourth output voltage V4 is performed over the entire circumference in the circumferential direction of the outer peripheral surface, it can be confirmed that it has been performed over the entire circumference in the step S80. The processes of S60 to S80 are repeated.
工程S90(平均値演算工程)では、平均値演算部35が、第二取得部34から第三出力電圧V3及び第四出力電圧V4を取得し、第三出力電圧V3及び第四出力電圧V4の全範囲(外周面全周)に亘る各平均値Av3、Av4を演算する。このように、上記工程S60〜工程S90は、第三出力電圧V3及び第四出力電圧V4の各平均値Av3,Av4を得るための工程である。 In step S90 (average value calculation step), the average value calculation unit 35 acquires the third output voltage V3 and the fourth output voltage V4 from the second acquisition unit 34, and calculates the third output voltage V3 and the fourth output voltage V4. The average values Av3 and Av4 over the entire range (the entire outer periphery) are calculated. As described above, the steps S60 to S90 are steps for obtaining the average values Av3 and Av4 of the third output voltage V3 and the fourth output voltage V4.
次に、工程S100(第一判定工程)では、第一判定部36が、基準値Bmと、各平均値Av3,Av4とに基づき全範囲研削焼けの有無を判定する。具体的には、基準値Bmと、平均値Av3及び平均値Av4の差分と、の大小によって判定する。つまり、上記式(2)を満たしたときに、工作物2Bに全範囲研削焼けがあると判定される(工程S102)。上記式(2)を満たさない場合は、工作物2Bには全範囲研削焼けがないと判定される(工程S104)。 Next, in step S100 (first determination step), the first determination unit 36 determines the presence or absence of full-range grinding burn based on the reference value Bm and the average values Av3 and Av4. Specifically, the determination is made based on the magnitude of the reference value Bm and the difference between the average value Av3 and the average value Av4. That is, when the above formula (2) is satisfied, it is determined that the workpiece 2B has a full-range grinding burn (step S102). When the above formula (2) is not satisfied, it is determined that the workpiece 2B does not have the entire range grinding burn (step S104).
このとき、基準値Bmは、上述したように、母材のばらつきによる変動分が除去されたデータとなっている。また、(|Av3|−|Av4|)についても、基準値Bmと同様の理由によって母材のばらつきによる変動分が除去されている。即ち、母材のばらつきによる変動分が除去された「基準値Bm」及び「|Av3|−|Av4|」に基づき判定を行なうので、平均値Av3が有する全範囲研削焼による変動分が良好に抽出でき、精度よく全範囲研削焼の有無の判定が行なえる。 At this time, as described above, the reference value Bm is data from which fluctuations due to variations in the base material are removed. For (| Av3 | − | Av4 |), the variation due to the variation of the base material is removed for the same reason as the reference value Bm. That is, since the determination is made based on the “reference value Bm” and “| Av3 | − | Av4 |” from which the variation due to the variation of the base material is removed, the variation due to the entire range grinding and burning that the average value Av3 has is excellent. It can be extracted and the presence / absence of grinding / burning of the entire range can be accurately determined.
そして、工程S100,S102,S104において、1個の工作物2Bの全範囲研削焼けの有無が判定されると、次の工作物2Bに対して全範囲研削焼けの有無の検査が開始される。この場合、工作物2Bに対する処理は工程S60(第三取得工程)から開始すればよい。そして、検査が必要な全ての工作物2Bの検査が終了するまで、S10〜S104までの工程(処理)が繰り返し実施される。このように、工程S100,S102,S104は、基準値Bと、各平均値Av3,Av4とに基づいて全範囲研削焼けの判定を行なう工程である。 When it is determined in steps S100, S102, and S104 whether or not the entire range grinding burn of one workpiece 2B is determined, the next workpiece 2B is inspected for the presence of full range grinding burn. In this case, the process for the workpiece 2B may be started from step S60 (third acquisition step). And the process (process) from S10 to S104 is repeatedly carried out until the inspection of all the workpieces 2B requiring the inspection is completed. As described above, steps S100, S102, and S104 are steps for determining the entire range grinding burn based on the reference value B and the average values Av3 and Av4.
なお、上記実施形態においては、工程S10−工程S50によって、基準値を設定したがこの態様には限らない。基準値Bmは、どのようにして設定してもよい。例えば、事前に別の場所で設定し、その設定値を使用してもよい。 In the above embodiment, the reference value is set in steps S10 to S50. However, the present invention is not limited to this mode. The reference value Bm may be set in any way. For example, it may be set in advance in another place and the set value may be used.
<2.第二実施形態>
(2−1.研削焼け検査装置の概要)
次に、第二実施形態について図4−図8に基づき説明する。第二実施形態の研削焼け検査装置100は、上記の第一実施形態に対し、さらに工作物2Bの外周面における全範囲のうちの一部に研削焼けが生じる局所研削焼けの検出も精度よく行なうことが可能な検査装置である。このため、研削焼け検査装置100は、第一実施形態の研削焼け検査装置1に対して、局所研削焼けを検出する構成が追加されており、その他については、研削焼け検査装置1と同様である。よって、変更部のみ説明し、他の同様部分についての詳細な説明は省略する。また、同様の構成については、同じ符号を付して説明する場合がある。
<2. Second embodiment>
(2-1. Outline of grinding burn inspection device)
Next, a second embodiment will be described with reference to FIGS. The grinding burn inspection apparatus 100 according to the second embodiment also accurately detects local grinding burns in which grinding burns occur in a part of the entire range of the outer peripheral surface of the workpiece 2B as compared with the first embodiment. It is an inspection device that can be used. For this reason, the grinding burn inspection apparatus 100 is added with a configuration for detecting local grinding burn with respect to the grinding burn inspection apparatus 1 of the first embodiment, and is otherwise the same as the grinding burn inspection apparatus 1. . Therefore, only the changing part will be described, and detailed description of other similar parts will be omitted. Moreover, about the same structure, the same code | symbol may be attached | subjected and demonstrated.
なお、局所研削焼けを検出する場合、高周波励磁電流Hi1のみを使用して検査を行なう。このため、第一実施形態の研削焼け検査装置1のように、高周波励磁電流Hi1、及び低周波励磁電流Li1を使用して全範囲研削焼けを検出する場合よりも簡易である。また、低周波励磁電流Li1を使用し全範囲研削焼けを検出する研削焼け検査装置1よりも、高速で局所研削焼けの検出ができる。このため、第二実施形態では、検査を効率的に行なうため、工作物2Bの局所研削焼けを全数検査したのち、局所研削焼けがなかった良品のみに対して全範囲研削焼けの検出を行なう。 When detecting local grinding burn, the inspection is performed using only the high-frequency excitation current Hi1. For this reason, it is simpler than the case where the full range grinding burn is detected using the high frequency excitation current Hi1 and the low frequency excitation current Li1 as in the grinding burn inspection device 1 of the first embodiment. Further, the local grinding burn can be detected at a higher speed than the grinding burn inspection apparatus 1 that uses the low-frequency excitation current Li1 to detect the entire range grinding burn. For this reason, in the second embodiment, in order to efficiently perform the inspection, after all the local grinding burns of the workpiece 2B are inspected, the entire range grinding burn is detected only for non-defective products that did not have the local grinding burn.
局所研削焼けがなかった良品のみに対して全範囲研削焼けの検出を行なう理由は、「局所研削焼け無し」と判定された工作物2Bの中には、全範囲研削焼けが生じているために、局所研削焼けと判定されなかったものも含まれている場合があるためである。つまり、工作物2Bに全範囲研削焼けが生じている場合には、第五出力電圧V5に対し周波数解析(高速フーリエ変換(FFT))して周波数毎の出力値を演算すると、出力値は正常品と同等の結果となる場合があるためである。また、局所研削焼けを検出する場合、工作物は、研削焼けのない正常な基準工作物2Aを使用する必要はない。この点においても、局所研削焼けは、短時間で検査可能となる。 The reason why the full-range grinding burn is detected only for a good product that has not been subjected to local grinding burn is because there is full-range grinding burn in the workpiece 2B determined as “no local grinding burn”. This is because there are cases in which local grinding burn is not determined. In other words, when the entire range grinding burn has occurred in the workpiece 2B, if the output value for each frequency is calculated by performing frequency analysis (Fast Fourier Transform (FFT)) on the fifth output voltage V5, the output value is normal. This is because the result may be the same as the product. Further, when detecting local grinding burn, it is not necessary for the workpiece to use a normal reference workpiece 2A having no grinding burn. Also in this respect, local grinding burn can be inspected in a short time.
一般的に、工作物2に研削焼けがあると、第一実施形態で説明したように出力電圧(誘導起電力)は低下する。しかし、出力電圧は、前述したように母材のばらつきによっても低下する。発明者は、高周波励磁電流Hi1により渦電流を誘導し得られる出力電圧を周波数解析して振幅レベル(本発明の「出力値」に相当)を求めることで工作物2の研削焼けと母材のばらつきを切り分けられることを見出した。そこで、研削焼け検査装置100で検出される出力電圧を周波数解析して求めた振幅レベルに基づいて工作物2の局所研削焼けを検査することにした。 Generally, when there is grinding burn on the workpiece 2, the output voltage (induced electromotive force) decreases as described in the first embodiment. However, as described above, the output voltage also decreases due to variations in the base material. The inventor calculates the amplitude level (corresponding to the “output value” of the present invention) by analyzing the frequency of the output voltage obtained by inducing eddy current by the high-frequency excitation current Hi 1, and grinding the workpiece 2 and the base material. We found that the variation can be isolated. Therefore, the local grinding burn of the workpiece 2 is inspected based on the amplitude level obtained by frequency analysis of the output voltage detected by the grinding burn inspection apparatus 100.
(2−2.研削焼け検査装置の詳細)
研削焼け検査装置100は、制御装置30が供給部31を制御し、磁気センサ10(センサに相当)のセンサヘッド12に高周波励磁電流Hi1を供給する。そして、センサヘッド12は、検査対象の工作物2Bの所定の検査領域Ar1の全範囲(外周面の周方向全周)に順次磁場を印加し、工作物2Bの表層部(内部)に渦電流を誘導する。なお、このときセンサヘッド12は、工作物2Bの外周面に接触していなくてもよいし、接触していてもよい。
(2-2. Details of grinding burn inspection device)
In the grinding burn inspection device 100, the control device 30 controls the supply unit 31, and supplies the high-frequency excitation current Hi1 to the sensor head 12 of the magnetic sensor 10 (corresponding to a sensor). The sensor head 12 sequentially applies a magnetic field to the entire range of the predetermined inspection area Ar1 of the workpiece 2B to be inspected (the entire circumference in the circumferential direction of the outer peripheral surface), and an eddy current is applied to the surface layer (inside) of the workpiece 2B. To induce. At this time, the sensor head 12 may or may not be in contact with the outer peripheral surface of the workpiece 2B.
そして、工作物2Bとセンサヘッド12とが相対移動することにより、表層部に第五出力電圧V5が生じ、センサヘッド12は、生じた第五出力電圧V5を取得する。取得された第五出力電圧V5は、センサ本体11を介して測定装置13に入力され、その後、測定装置13から制御装置30の第一取得部32に出力され、第一取得部32で記憶される。なお、第五出力電圧V5は、第一実施形態における第三出力電圧V3と同じものである。 Then, the relative movement between the workpiece 2B and the sensor head 12 generates a fifth output voltage V5 on the surface layer portion, and the sensor head 12 acquires the generated fifth output voltage V5. The acquired fifth output voltage V5 is input to the measurement device 13 via the sensor body 11, and then output from the measurement device 13 to the first acquisition unit 32 of the control device 30 and stored in the first acquisition unit 32. The The fifth output voltage V5 is the same as the third output voltage V3 in the first embodiment.
図4に示すように、制御部30は、出力値演算部37と、記憶部38と、第二判定部39と、をさらに備える。出力値演算部37は、第一取得部32及び第二判定部39に接続される。出力値演算部37は、磁気センサ10が取得した第五出力電圧V5の波形を第一取得部32から取得し、周波数解析して周波数毎の振幅レベル(出力値)を演算する。また、出力値演算部37は、演算した振幅レベル(出力値)を第二判定部39に出力する。 As shown in FIG. 4, the control unit 30 further includes an output value calculation unit 37, a storage unit 38, and a second determination unit 39. The output value calculation unit 37 is connected to the first acquisition unit 32 and the second determination unit 39. The output value calculation unit 37 acquires the waveform of the fifth output voltage V5 acquired by the magnetic sensor 10 from the first acquisition unit 32, performs frequency analysis, and calculates an amplitude level (output value) for each frequency. The output value calculation unit 37 outputs the calculated amplitude level (output value) to the second determination unit 39.
記憶部38は、第二判定部39に接続される。記憶部38は、工作物2Bの局所焼けの有無を判定するための振幅レベル(出力値)の閾値を記憶する。なお、閾値は予め正常品を評価して設定し記憶部38に記憶させておけばよい。閾値の設定の方法は、まず、第五出力電圧V5の波形を周波数解析(高速フーリエ変換(FFT))して周波数毎の振幅レベル(出力値)を求める。そして、この処理を複数の工作物2Bに対して行ない、取得した複数の周波数毎の振幅レベル(出力値)のうち最大値を閾値とする(図5参照)。 The storage unit 38 is connected to the second determination unit 39. The storage unit 38 stores a threshold value of an amplitude level (output value) for determining whether or not the workpiece 2B is locally burned. The threshold value may be set by evaluating a normal product in advance and stored in the storage unit 38. As a method for setting the threshold, first, the waveform of the fifth output voltage V5 is subjected to frequency analysis (Fast Fourier Transform (FFT)) to obtain an amplitude level (output value) for each frequency. Then, this processing is performed on the plurality of workpieces 2B, and the maximum value among the acquired amplitude levels (output values) for the plurality of frequencies is set as a threshold (see FIG. 5).
第二判定部39は、出力値演算部37で求めた周波数毎の振幅レベル(出力値)のうち周波数F1(図5、図8参照)以上で、且つ記憶部38から読み出した閾値を超えた場合に、検査対象の工作物2Bの表層部における所定の検査領域Ar1の全範囲のうちの一部に所定量以上の研削焼けが発生する局所研削焼けがあると判定する。 The second determination unit 39 is equal to or higher than the frequency F1 (see FIGS. 5 and 8) of the amplitude level (output value) for each frequency obtained by the output value calculation unit 37, and exceeds the threshold value read from the storage unit 38. In this case, it is determined that there is a local grinding burn in which a grinding burn of a predetermined amount or more occurs in a part of the entire range of the predetermined inspection area Ar1 in the surface layer portion of the workpiece 2B to be inspected.
(2−3.局所研削焼け検査方法)
前述したように、第二実施形態では、はじめに全ての検査対象の工作物2Bに対して局所焼けに対する検査を実施する。そして、その後、第一実施形態の全範囲研削焼けの検査を行なう。全範囲研削焼けについては第一実施形態と同様であるので、説明を省略する。研削焼け検査装置100による局所研削焼けの検査方法を図6のフローチャートを参照して説明する。
(2-3. Local grinding burn inspection method)
As described above, in the second embodiment, all the workpieces 2B to be inspected are first inspected for local burn. Thereafter, the entire range grinding burn of the first embodiment is inspected. Since full-range grinding burn is the same as that of the first embodiment, description thereof is omitted. An inspection method for local grinding burn by the grinding burn inspection apparatus 100 will be described with reference to the flowchart of FIG.
工程S110(第五取得工程)では、第五出力電圧V5を検出し取得する。取得方法は上記で説明したとおりであり、第三出力電圧V3の取得方法と同様である。このとき、第五出力電圧V5は、工作物2Bの表層部における母材のばらつきによる変動分のみ、若しくは、母材のばらつきによる変動分及び研削焼けによる変動分を含んだ出力電圧である。 In step S110 (fifth acquisition step), the fifth output voltage V5 is detected and acquired. The acquisition method is as described above, and is the same as the acquisition method of the third output voltage V3. At this time, the fifth output voltage V5 is an output voltage including only a variation due to the variation of the base material in the surface layer portion of the workpiece 2B, or a variation due to the variation of the base material and a variation due to grinding burn.
取得された第五出力電圧V5は、センサ本体11を介して測定装置13に入力される。その後、取得された第五出力電圧V5は、測定装置13から制御装置30の第一取得部32に出力され、第一取得部32で記憶される。 The acquired fifth output voltage V5 is input to the measuring device 13 via the sensor body 11. Thereafter, the acquired fifth output voltage V <b> 5 is output from the measurement device 13 to the first acquisition unit 32 of the control device 30 and stored in the first acquisition unit 32.
工程S120(演算工程)では、図7に示す第五出力電圧V5の波形を周波数解析(高速フーリエ変換(FFT))して周波数毎の出力値を演算する。図7の一点鎖線で示す第五出力電圧V5の波形のうち、値が低下している部分B11,B12,B13が母材のばらつきによる変動分を示し、第五出力電圧V5の値が低下している部分A11,A12,A13,A14が、研削焼けによる変動分を示す。このように、第五出力電圧V5の波形には、母材のばらつきによる変動分と研削焼けによる変動分が含まれるので、第五出力電圧V5の波形のみでは母材のばらつきによる反応と研削焼けによる反応を区別することが困難である。 In step S120 (calculation step), the waveform of the fifth output voltage V5 shown in FIG. 7 is subjected to frequency analysis (Fast Fourier Transform (FFT)) to calculate an output value for each frequency. Of the waveform of the fifth output voltage V5 indicated by the one-dot chain line in FIG. 7, portions B11, B12, and B13 whose values are decreasing show fluctuations due to variations in the base material, and the value of the fifth output voltage V5 decreases. The portions A11, A12, A13, and A14 that are present indicate fluctuations due to grinding burn. As described above, the waveform of the fifth output voltage V5 includes the variation due to the variation of the base material and the variation due to the grinding burn. Therefore, the reaction due to the variation of the base material and the grinding burn only with the waveform of the fifth output voltage V5. It is difficult to distinguish the reaction due to.
図8は、図7に示す第五出力電圧V5(誘導起電力)を高速フーリエ変換して求めた工作物2Bの周波数毎の振幅レベル(出力値)である。そして、制御装置30は、1Hz以上の周波数領域において振幅レベルと閾値とを比較する。 FIG. 8 shows the amplitude level (output value) for each frequency of the workpiece 2B obtained by fast Fourier transform of the fifth output voltage V5 (induced electromotive force) shown in FIG. And the control apparatus 30 compares an amplitude level and a threshold value in the frequency area | region of 1 Hz or more.
工程S130(第二判定工程)では、周波数毎の振幅レベル(出力値)が予め設定した閾値を超えている場合、工程S140において、工作物2Bは、表層部における所定の検査領域Ar1の全範囲(外周面全周)のうちの一部に所定量以上の局所研削焼けを有すると判定する。また、振幅レベルが閾値を超えていない場合、工程S150において、局所研削焼け無し、と判定する。 In step S130 (second determination step), when the amplitude level (output value) for each frequency exceeds a preset threshold value, in step S140, the workpiece 2B has the entire range of the predetermined inspection area Ar1 in the surface layer portion. It is determined that a part of (the entire outer peripheral surface) has a local grinding burn of a predetermined amount or more. If the amplitude level does not exceed the threshold value, it is determined in step S150 that there is no local grinding burn.
ただし、前述したように、工程S150において、「局所研削焼け無し」と判定された工作物2Bの中には、全範囲研削焼けが生じているものも含まれている場合がある。つまり、工作物2Bに全範囲研削焼けが生じている場合には、第五出力電圧V5に対し周波数解析(高速フーリエ変換(FFT))して周波数毎の出力値を演算すると、出力値は正常品と同等の結果となる場合がある。 However, as described above, in the step S150, the workpiece 2B determined as “no local grinding burn” may include a workpiece having the entire range grinding burn. In other words, when the entire range grinding burn has occurred in the workpiece 2B, if the output value for each frequency is calculated by performing frequency analysis (Fast Fourier Transform (FFT)) on the fifth output voltage V5, the output value is normal. The result may be equivalent to the product.
そこで、工作物2Bの局所研削焼けの検査が全数個完了したのち、工程S150で局所研削焼けがなく良品とされた工作物2Bのみに対して、第一実施形態において説明した全範囲研削焼けの検査を行なう。これにより、局所研削焼け及び全範囲研削焼けが全てもれなく検出できる。このように、研削焼け検査装置100は、工程S110〜工程S150の処理によって、工作物2Bに対する局所研削焼けが短時間で検出できる。 Therefore, after all the inspections of the local grinding burn of the workpiece 2B are completed, only the workpiece 2B which has been determined to be a good product without the local grinding burn in step S150 is subjected to the full-range grinding burn described in the first embodiment. Perform an inspection. Thereby, all the local grinding burns and all-range grinding burns can be detected. As described above, the grinding burn inspection apparatus 100 can detect the local grinding burn on the workpiece 2B in a short time by the processes of steps S110 to S150.
<3.その他>
なお、上記第一、第二実施形態によれば、工作物2は円筒状又は円柱状の部材であるとしたが、これには限らず、センサヘッド12によって、出力電圧を取得して研削焼けの検査ができればどのような形状で形成されていてもよい。例えば、工作物2は平面状の部材であってもよい。また、波状の表面を有する部材であってもよい。これらによっても、上記実施形態と同様の効果が得られる。
<3. Other>
In addition, according to said 1st, 2nd embodiment, although the workpiece 2 was a cylindrical or column-shaped member, it is not restricted to this, An output voltage is acquired by the sensor head 12, and grinding burning is carried out. As long as the inspection can be performed, it may be formed in any shape. For example, the workpiece 2 may be a planar member. Moreover, the member which has a wavy surface may be sufficient. Also by these, the same effect as the above-mentioned embodiment is acquired.
また、上記第一実施形態によれば、センサヘッド12は、工作物2と常に接触した状態で出力電圧を取得するものとして説明した。しかし、この態様には限らない。センサヘッド12は、工作物2と非接触の状態で出力電圧を取得するタイプのものでもよい。これによっても相応の効果は得られる。 Moreover, according to said 1st embodiment, the sensor head 12 demonstrated as what acquires an output voltage in the state which always contacted the workpiece 2. FIG. However, it is not limited to this aspect. The sensor head 12 may be of a type that acquires an output voltage in a non-contact state with the workpiece 2. This also provides a reasonable effect.
また、上記第二実施形態の研削焼け検査方法においては、局所研削焼けの検査が完了したのち、全範囲研削焼けの検査を行なうものとして説明した。これは、局所研削焼けの方が、全範囲研削焼けに比べて発生しやすいため、局所研削焼けの検査を先に行なうことで、効率よく異常品の抽出ができるためである。ただし、加工条件等の諸条件によっては、全範囲研削焼けのほうが局所研削焼けよりも発生しやすくなる場合もある。このような場合には、全範囲研削焼けの検査を、局所研削焼けの検査に先んじて行ってもよい。つまり、先に全範囲研削焼けの検査を行なったのち、良品と判定された工作物2Bに対して局所研削焼けの検査を行なってもよい。 In the grinding burn inspection method of the second embodiment, it has been described that the inspection of the entire range grinding burn is performed after the inspection of the local grinding burn is completed. This is because local grinding burns are more likely to occur than full-range grinding burns, so that abnormal products can be efficiently extracted by inspecting local grinding burns first. However, depending on various conditions such as processing conditions, the full-range grinding burn may be more likely to occur than the local grinding burn. In such a case, the full-range grinding burn inspection may be performed prior to the local grinding burn inspection. In other words, after the entire range grinding burn inspection is performed first, the local grinding burn inspection may be performed on the workpiece 2B determined to be non-defective.
また、上記第二実施形態の研削焼け検査方法においては、局所研削焼けの検査を行う際、閾値は別の場所で設定し、設定した値を記憶部38に記憶させて検査を行なうものとした。しかし、この態様には限らない。閾値は、研削焼け検査方法の工程の中で設定してもよい。 Further, in the grinding burn inspection method of the second embodiment, when performing the local grinding burn inspection, the threshold value is set in another place, and the set value is stored in the storage unit 38 for inspection. . However, it is not limited to this aspect. The threshold value may be set in the process of the grinding burn inspection method.
<4.実施形態による効果>
上記実施形態によれば、研削焼けの検査方法は、研削加工された検査対象の工作物2Bの内部に励磁電流により渦電流を発生させ、発生した渦電流に応じた出力電圧に基づいて検査対象の工作物の加工部位の表層部における研削焼けの有無を判定する。研削焼けを有していない基準工作物2Aの所定の位置の内部に高周波励磁電流Hi1により渦電流を発生させた場合の第一出力電圧V1を取得する第一取得工程S10と、基準工作物2Aの所定の位置P1の内部に低周波励磁電流Li1により渦電流を発生させた場合の第二出力電圧V2を取得する第二取得工程S20と、第一出力電圧V1及び第二出力電圧V2に基づき、検査対象の工作物2Bの所定の検査領域Ar1の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値Bmを設定する基準値設定工程S50と、検査対象の工作物2Bの所定の検査領域Ar1の全範囲の内部に高周波励磁電流Hi1により渦電流を発生させた場合の第三出力電圧V3を取得する第三取得工程S60と、検査対象の工作物2Bの所定の検査領域Ar1の全範囲の内部に低周波励磁電流Li1により渦電流を発生させた場合の第四出力電圧V4を取得する第四取得工程S70と、基準値Bm、第三出力電圧V3の平均値Av3及び第四出力電圧V4の平均値Av3に基づき、全範囲研削焼けの有無を判定する第一判定工程S100と、を備える。
<4. Effects according to the embodiment>
According to the above-described embodiment, the grinding burn inspection method generates an eddy current by an exciting current in the ground workpiece 2B to be inspected, and inspects the inspection object based on the output voltage corresponding to the generated eddy current. The presence or absence of grinding burn in the surface layer portion of the processed part of the workpiece is determined. A first acquisition step S10 for acquiring a first output voltage V1 when an eddy current is generated by a high-frequency excitation current Hi1 inside a predetermined position of the reference workpiece 2A that does not have grinding burn, and a reference workpiece 2A The second acquisition step S20 for acquiring the second output voltage V2 when the eddy current is generated by the low frequency excitation current Li1 in the predetermined position P1, and the first output voltage V1 and the second output voltage V2. A reference value setting step S50 for setting a reference value Bm for determining whether or not the entire range of grinding burn is generated over the entire range of the predetermined inspection area Ar1 of the workpiece 2B to be inspected, and the inspection target A third acquisition step S60 for acquiring a third output voltage V3 when an eddy current is generated by the high-frequency excitation current Hi1 within the entire range of the predetermined inspection area Ar1 of the workpiece 2B, and the workpiece 2 to be inspected A fourth acquisition step S70 for acquiring the fourth output voltage V4 when the eddy current is generated by the low frequency excitation current Li1 within the entire range of the predetermined inspection area Ar1, the reference value Bm, and the third output voltage V3. First determination step S100 for determining the presence or absence of the entire range grinding burn based on the average value Av3 and the average value Av3 of the fourth output voltage V4.
このように、高周波励磁電流Hi1及び低周波励磁電流Li1により、研削焼けのない基準工作物2Aの所定の位置P1の内部(表層部)に発生した渦電流に応じ取得した表層部における第一出力電圧V1、及び表層部より深い位置である深層部における第二出力電圧V2に基づいて、全範囲研削焼けの有無を判定するための基準値Bmを設定する。また、検査対象である工作物2Bに対しても、基準工作物2Aと同様に、第一出力電圧V1に対応する第三出力電圧V3と、第二出力電圧V2に対応する第四出力電圧V4を取得する。このとき、第一出力電圧V1及び第三出力電圧V3は、工作物の表層部における出力電圧である。 As described above, the first output in the surface layer portion obtained according to the eddy current generated in the predetermined position P1 (surface layer portion) of the reference workpiece 2A without grinding burn by the high frequency excitation current Hi1 and the low frequency excitation current Li1. Based on the voltage V1 and the second output voltage V2 in the deep layer portion that is deeper than the surface layer portion, a reference value Bm for determining the presence or absence of full-range grinding burn is set. Further, for the workpiece 2B to be inspected, the third output voltage V3 corresponding to the first output voltage V1 and the fourth output voltage V4 corresponding to the second output voltage V2 are the same as the reference workpiece 2A. To get. At this time, the first output voltage V1 and the third output voltage V3 are output voltages at the surface layer portion of the workpiece.
このため、第一出力電圧V1は、母材毎に異なるばらつきによる変動分を含んだ出力電圧となる。また、第三出力電圧V3は、表層部に研削焼けが生じている場合、母材毎に異なるばらつきによる変動分と研削焼けによる変動分とを含んだ出力電圧となる。よって、第一出力電圧V1を基準値として、工作物2Bの全範囲研削焼けの有無を基準値と第三出力電圧V3との比較によって判定しようとすると、工作物2Bの表層部における母材のばらつきによる変動分と、表層部に生じた研削焼けによる変動分との識別がつけにくく、全範囲研削焼けを精度よく判定することが難しい。 For this reason, the first output voltage V1 is an output voltage including a variation due to variations that differ for each base material. The third output voltage V <b> 3 is an output voltage including a variation due to variation different for each base material and a variation due to grinding burn when grinding burn occurs in the surface layer portion. Therefore, when the first output voltage V1 is used as a reference value and an attempt is made to determine whether or not the entire range of the workpiece 2B is burned by grinding by comparing the reference value with the third output voltage V3, the base material of the surface layer of the workpiece 2B It is difficult to distinguish between the fluctuation due to variation and the fluctuation due to grinding burn generated in the surface layer portion, and it is difficult to accurately determine the entire range grinding burn.
しかし、本発明では、基準値を設定する際、第一出力電圧V1だけでなく、母材のばらつきによる変動分のみを含む深層部における第二出力電圧V2も合わせて全範囲研削焼けの有無の判定に用いる。また、基準値Bmと比較するため工作物2Bから取得する出力電圧も、第三出力電圧V3だけでなく、研削焼けによる影響を受けず母材のばらつきによる変動分のみを含む第四出力電圧V4も合わせて用いる。 However, in the present invention, when setting the reference value, not only the first output voltage V1 but also the second output voltage V2 in the deep layer portion including only the variation due to the variation in the base material is used to determine whether or not the entire range is ground and burned. Used for judgment. Further, the output voltage acquired from the workpiece 2B for comparison with the reference value Bm is not only the third output voltage V3 but also the fourth output voltage V4 that is not affected by grinding burn and includes only the variation due to the variation of the base material. Also used together.
従って、基準値Bmは、第一出力電圧V1及び第二出力電圧V2に基づいて母材のばらつきによる変動分を相殺した基準値Bmとして設定可能である。また、基準値Bmと比較するために検査対象の工作物2Bから取得する出力電圧も第三出力電圧V3及び第四出力電圧V4に基づいて、母材のばらつきによる変動分を相殺した出力電圧とすることが可能である。即ち、母材のばらつきによる変動分を含まない基準値Bm及び出力電圧(第三出力電圧V3及び第四出力電圧V4に基づく)に基づいて表層部における全範囲研削焼けの有無を判定するので、母材のばらつきに影響されない精度のよい判定結果が得られる。 Therefore, the reference value Bm can be set as the reference value Bm that cancels out the variation due to the variation of the base material based on the first output voltage V1 and the second output voltage V2. The output voltage acquired from the workpiece 2B to be inspected for comparison with the reference value Bm is also based on the third output voltage V3 and the fourth output voltage V4. Is possible. That is, since the presence or absence of the entire range grinding burn in the surface layer portion is determined based on the reference value Bm and the output voltage (based on the third output voltage V3 and the fourth output voltage V4) that do not include fluctuation due to the variation of the base material. Accurate determination results that are not affected by variations in the base material can be obtained.
また、上記実施形態の検査方法によれば、基準値設定工程S50において、基準値Bmは、第一出力電圧V1の平均値Av1及び第二出力電圧V2の平均値Av2に基づき設定される。これにより、基準値Bmが簡易に設定できるとともに、第一出力電圧V1及び第二出力電圧V2の一部に特異な点があっても基準値Bmとして良好に設定できる。 Further, according to the inspection method of the above embodiment, in the reference value setting step S50, the reference value Bm is set based on the average value Av1 of the first output voltage V1 and the average value Av2 of the second output voltage V2. As a result, the reference value Bm can be easily set, and even if there are specific points in a part of the first output voltage V1 and the second output voltage V2, it can be set favorably as the reference value Bm.
また、上記実施形態の検査方法によれば、第一判定工程S100では、基準値Bmと、第三出力電圧V3の平均値Av3及び第四出力電圧V4の平均値Av4の差分と、の大小によって全範囲研削焼けの有無を判定する。これにより、母材のばらつきによる変動分が除去された状態で基準値Bmと差分とが比較されるので、精度のよい全範囲研削焼けの判定結果が得られる。 Further, according to the inspection method of the above embodiment, in the first determination step S100, depending on the magnitude of the reference value Bm and the difference between the average value Av3 of the third output voltage V3 and the average value Av4 of the fourth output voltage V4. Determine if there is grinding burn on the entire area. As a result, the reference value Bm is compared with the difference in a state in which the variation due to the variation in the base material is removed, so that an accurate determination result of the entire range grinding burn can be obtained.
また、上記実施形態の検査方法によれば、基準工作物2A及び検査対象の工作物2Bは、円柱状又は円筒状であり、加工部位は外周面である。これにより、工作物を軸線周りに回転させながら安定した状態で出力電圧の取得ができるので、精度のよい判定結果が得られる。 Further, according to the inspection method of the above embodiment, the reference workpiece 2A and the workpiece 2B to be inspected are columnar or cylindrical, and the machining site is the outer peripheral surface. Thereby, since the output voltage can be acquired in a stable state while rotating the workpiece around the axis, an accurate determination result can be obtained.
また、上記第二実施形態の研削焼け検査方法によれば、第一実施形態に対し、さらに、検査対象の工作物2Bの所定の検査領域Ar1の全範囲の内部に高周波励磁電流Hi1により渦電流を発生させた場合の第五出力電圧V5を取得する第五取得工程S110と、第五出力電圧V5の波形を周波数解析により周波数毎の出力値を演算する演算工程S120と、周波数毎の出力値が出力値に対応する周波数毎の閾値を超えた場合に、検査対象の工作物2Bの表層部における所定の検査領域Ar1の全範囲のうちの一部に所定量以上の研削焼けが発生する局所研削焼けがあると判定する第二判定工程S130と、を備える。これにより、工作物2Bの母材にばらつきがあっても、局所研削焼けが精度よく検出できる。 Further, according to the grinding burn inspection method of the second embodiment, compared to the first embodiment, an eddy current is further generated by the high frequency excitation current Hi1 inside the entire inspection area Ar1 of the workpiece 2B to be inspected. A fifth acquisition step S110 for acquiring the fifth output voltage V5 when the signal is generated, a calculation step S120 for calculating an output value for each frequency by frequency analysis of the waveform of the fifth output voltage V5, and an output value for each frequency When the value exceeds a threshold value for each frequency corresponding to the output value, a local area where grinding burn of a predetermined amount or more occurs in a part of the entire range of the predetermined inspection area Ar1 in the surface layer portion of the workpiece 2B to be inspected. A second determination step S130 for determining that there is grinding burn. Thereby, even if there is variation in the base material of the workpiece 2B, the local grinding burn can be detected with high accuracy.
また、上記実施形態によれば、研削焼け検査装置1,100は、研削加工された検査対象の工作物の内部に励磁電流により渦電流を発生させ、発生した渦電流に応じた出力電圧に基づいて前記検査対象の工作物の加工部位の表層部における研削焼けの有無を判定する。そして、研削焼け検査装置1,100は、磁気センサ10(センサ)と、制御装置30(制御部)と、を備える。 In addition, according to the above embodiment, the grinding burn inspection devices 1 and 100 generate an eddy current by an excitation current inside the ground workpiece to be inspected, and based on the output voltage corresponding to the generated eddy current. Then, the presence or absence of grinding burn in the surface layer portion of the processed part of the workpiece to be inspected is determined. The grinding burn inspection devices 1 and 100 include a magnetic sensor 10 (sensor) and a control device 30 (control unit).
磁気センサ10は、研削焼けを有していない基準工作物2Aの所定の位置P1の内部に高周波励磁電流Hi1、及び低周波励磁電流Li1により渦電流を発生させた場合の第一出力電圧V1及び第二出力電圧V2を取得するとともに、検査対象の工作物2Bの所定の検査領域Ar1の全範囲の内部に高周波励磁電流Hi1、及び低周波励磁電流Li1により渦電流を発生させた場合の第三出力電圧V3及び第四出力電圧V4を取得する。 The magnetic sensor 10 includes a first output voltage V1 when an eddy current is generated by a high frequency excitation current Hi1 and a low frequency excitation current Li1 in a predetermined position P1 of the reference workpiece 2A that does not have grinding burn. A third case in which the second output voltage V2 is acquired and an eddy current is generated by the high frequency excitation current Hi1 and the low frequency excitation current Li1 within the entire range of the predetermined inspection area Ar1 of the workpiece 2B to be inspected. The output voltage V3 and the fourth output voltage V4 are acquired.
また、制御装置30(制御部)は、磁気センサ10が取得した第一出力電圧V1及び第二出力電圧V2に基づき、検査対象の工作物2Bの所定の検査領域Ar1の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値Bmを演算する基準値演算部33と、磁気センサ10が取得した第三出力電圧V3及び第四出力電圧V4の各平均値Av3,Av4を演算する平均値演算部35と、演算された基準値Bmと第三出力電圧V3及び第四出力電圧V4の各平均値Av3,Av4と、に基づき全範囲研削焼けの有無を判定する第一判定部36と、を備える。これにより、研削焼け検査装置1,100で得られる工作物2Bの検査結果において、上記研削焼け検査方法で得られる工作物2Bの検査結果に対する効果と同等の効果が得られる。 Further, the control device 30 (control unit) grinds over the entire range of the predetermined inspection area Ar1 of the workpiece 2B to be inspected based on the first output voltage V1 and the second output voltage V2 acquired by the magnetic sensor 10. A reference value calculation unit 33 for calculating the reference value Bm for determining whether or not there is a full range grinding burn in which burning occurs, and average values Av3 of the third output voltage V3 and the fourth output voltage V4 acquired by the magnetic sensor 10 , Av4 is calculated, and the whole range grinding burn is determined based on the calculated reference value Bm and the average values Av3, Av4 of the third output voltage V3 and the fourth output voltage V4. A first determination unit 36. Thereby, in the inspection result of the workpiece 2B obtained by the grinding burn inspection apparatus 1,100, an effect equivalent to the effect on the inspection result of the workpiece 2B obtained by the grinding burn inspection method can be obtained.
また、上記第二実施形態の研削焼け検査装置100によれば、第一実施形態の研削焼け検査装置1に対し、磁気センサ10(センサ)は、検査対象の工作物2Bの所定の検査領域Ar1の全範囲の内部に高周波励磁電流Hi1により渦電流を発生させた場合の第五出力電圧V5を取得する。また、制御装置30(制御部)は、磁気センサ10(センサ)が取得した第五出力電圧V5の波形を周波数解析し周波数毎の出力値を演算する出力値演算部37と、出力値に対応する周波数毎の閾値を記憶する記憶部38と、周波数毎の出力値が記憶部38に記憶された出力値に対応する周波数毎の閾値を超えた場合に、検査対象の工作物2Bの表層部における所定の検査領域Ar1の全範囲のうちの一部に所定量以上の研削焼けが発生する局所研削焼けがあると判定する第二判定部39と、を備える。これにより研削焼け検査装置100で得られる工作物2Bの検査結果において、上記第二実施形態の研削焼け検査方法で得られる工作物2Bの検査結果に対する効果と同等の効果が得られる。 Further, according to the grinding burn inspection device 100 of the second embodiment, the magnetic sensor 10 (sensor) is a predetermined inspection region Ar1 of the workpiece 2B to be inspected, compared to the grinding burn inspection device 1 of the first embodiment. The fifth output voltage V5 is obtained when an eddy current is generated by the high-frequency excitation current Hi1 within the entire range. The control device 30 (control unit) corresponds to an output value calculation unit 37 that performs frequency analysis on the waveform of the fifth output voltage V5 acquired by the magnetic sensor 10 (sensor) and calculates an output value for each frequency, and the output value. A storage unit 38 for storing a threshold value for each frequency to be performed, and a surface layer portion of the workpiece 2B to be inspected when an output value for each frequency exceeds a threshold value for each frequency corresponding to the output value stored in the storage unit 38 And a second determination unit 39 that determines that there is local grinding burn in which a predetermined amount or more of grinding burn is generated in a part of the entire range of the predetermined inspection area Ar1. Thereby, in the inspection result of the workpiece 2B obtained by the grinding burn inspection apparatus 100, an effect equivalent to the effect on the inspection result of the workpiece 2B obtained by the grinding burn inspection method of the second embodiment is obtained.
1,100・・・研削焼け検査装置、 2,2A,2B・・・工作物、 10・・・センサ(磁気センサ)、 30・・・制御部(制御装置)、 31・・・供給部、 32・・・第一取得部、 33・・・基準値演算部、 34・・・第二取得部、 35・・・平均値演算部、 36・・・第一判定部、 37・・・出力値演算部、 38・・・記憶部、 39・・・第二判定部、 Ar1・・・検査領域、 Av1,Av2,Av3,Av4・・・平均値、 Bm・・・基準値、 Hi1・・・高周波励磁電流、 Li1・・・低周波励磁電流、 P1・・・位置、 S10・・・第一取得工程、 S20・・・第二取得工程、 S50・・・基準値設定工程、 S60・・・第三取得工程、 S70・・・第四取得工程、 S90・・・平均値演算工程、 S100・・・第一判定工程、 S110・・・第五取得工程、 S120・・・演算工程、 S130・・・第二判定工程、 V1・・・第一出力電圧、 V2・・・第二出力電圧、 V3・・・第三出力電圧、 V4・・・第四出力電圧、 V5・・・第五出力電圧。 DESCRIPTION OF SYMBOLS 1,100 ... Grinding burn inspection apparatus 2, 2A, 2B ... Workpiece, 10 ... Sensor (magnetic sensor), 30 ... Control part (control apparatus), 31 ... Supply part, 32 ... First acquisition unit, 33 ... Reference value calculation unit, 34 ... Second acquisition unit, 35 ... Average value calculation unit, 36 ... First determination unit, 37 ... Output Value calculation unit, 38 ... storage unit, 39 ... second determination unit, Ar1 ... inspection region, Av1, Av2, Av3, Av4 ... average value, Bm ... reference value, Hi1 ...・ High frequency excitation current, Li1 ... Low frequency excitation current, P1 ... Position, S10 ... First acquisition step, S20 ... Second acquisition step, S50 ... Reference value setting step, S60 ... -Third acquisition step, S70 ... Fourth acquisition step, S90 ... Average value calculation step S100 ... first determination step, S110 ... fifth acquisition step, S120 ... calculation step, S130 ... second determination step, V1 ... first output voltage, V2 ... second output Voltage, V3 ... third output voltage, V4 ... fourth output voltage, V5 ... fifth output voltage.
Claims (7)
研削焼けを有していない基準工作物の所定の位置の内部に高周波励磁電流により前記渦電流を発生させた場合の第一出力電圧を取得する第一取得工程と、
前記基準工作物の前記所定の位置の内部に低周波励磁電流により前記渦電流を発生させた場合の第二出力電圧を取得する第二取得工程と、
前記第一出力電圧及び前記第二出力電圧に基づき、前記検査対象の工作物の所定の検査領域の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値を設定する基準値設定工程と、
前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流により前記渦電流を発生させた場合の第三出力電圧を取得する第三取得工程と、
前記検査対象の工作物の前記所定の検査領域の前記全範囲の内部に前記低周波励磁電流により前記渦電流を発生させた場合の第四出力電圧を取得する第四取得工程と、
前記基準値、前記第三出力電圧の平均値及び前記第四出力電圧の平均値に基づき、前記全範囲研削焼けの有無を判定する第一判定工程と、
を備える、工作物の研削焼け検査方法。 An eddy current is generated by an excitation current in the ground workpiece to be inspected, and the grinding burn in the surface layer portion of the processing site of the workpiece to be inspected is generated based on the output voltage corresponding to the generated eddy current. A method for inspecting grinding burn to determine presence or absence,
A first acquisition step of acquiring a first output voltage when the eddy current is generated by a high-frequency excitation current inside a predetermined position of a reference workpiece having no grinding burn;
A second acquisition step of acquiring a second output voltage when the eddy current is generated by a low-frequency excitation current inside the predetermined position of the reference workpiece;
Based on the first output voltage and the second output voltage, a reference value for determining the presence or absence of full-range grinding burn in which grinding burn occurs over the entire range of a predetermined inspection region of the workpiece to be inspected. A reference value setting process to be set;
A third acquisition step of acquiring a third output voltage when the eddy current is generated by the high-frequency excitation current inside the entire range of the predetermined inspection area of the workpiece to be inspected;
A fourth acquisition step of acquiring a fourth output voltage when the eddy current is generated by the low frequency excitation current inside the entire range of the predetermined inspection region of the workpiece to be inspected;
Based on the reference value, the average value of the third output voltage and the average value of the fourth output voltage, a first determination step of determining the presence or absence of the entire range grinding burn,
A grinding burn inspection method for a workpiece, comprising:
前記基準値は、前記第一出力電圧の平均値及び前記第二出力電圧の平均値に基づき設定される、請求項1に記載の工作物の研削焼け検査方法。 In the reference value setting step,
2. The grinding burn inspection method for a workpiece according to claim 1, wherein the reference value is set based on an average value of the first output voltage and an average value of the second output voltage.
前記基準値と、前記第三出力電圧の平均値及び前記第四出力電圧の平均値の差分と、の大小によって前記全範囲研削焼けの有無を判定する、請求項1又は2に記載の工作物の研削焼け検査方法。 In the first determination step,
The workpiece according to claim 1, wherein presence or absence of the entire range grinding burn is determined based on a magnitude between the reference value and a difference between an average value of the third output voltage and an average value of the fourth output voltage. Grinding burn inspection method.
さらに、
前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流により前記渦電流を発生させた場合の第五出力電圧を取得する第五取得工程と、
前記第五出力電圧の波形を周波数解析により周波数毎の出力値を演算する演算工程と、
周波数毎の前記出力値が前記出力値に対応する周波数毎の閾値を超えた場合に、前記検査対象の工作物の前記表層部における前記所定の検査領域の全範囲のうちの一部に所定量以上の研削焼けが発生する局所研削焼けがあると判定する第二判定工程と、
を備える、請求項1−4の何れか1項に記載の工作物の研削焼け検査方法。 The grinding burn inspection method is:
further,
A fifth acquisition step of acquiring a fifth output voltage when the eddy current is generated by the high-frequency excitation current inside the entire range of the predetermined inspection area of the workpiece to be inspected;
A calculation step of calculating an output value for each frequency by frequency analysis of the waveform of the fifth output voltage;
When the output value for each frequency exceeds a threshold value for each frequency corresponding to the output value, a predetermined amount is included in a part of the entire range of the predetermined inspection region in the surface layer portion of the workpiece to be inspected A second determination step for determining that there is local grinding burn in which the above grinding burn occurs;
A grinding burn inspection method for a workpiece according to claim 1, comprising:
前記研削焼け検査装置は、センサと、制御部と、を備え、
前記センサは、
研削焼けを有していない基準工作物の所定の位置の内部に高周波励磁電流、及び低周波励磁電流により前記渦電流を発生させた場合の第一出力電圧及び第二出力電圧を取得するとともに、前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流、及び前記低周波励磁電流により前記渦電流を発生させた場合の第三出力電圧及び第四出力電圧を取得し、
前記制御部は、
前記センサが取得した前記第一出力電圧及び前記第二出力電圧に基づき、前記検査対象の工作物の所定の検査領域の全範囲に亘って研削焼けが発生する全範囲研削焼けの有無を判定するための基準値を演算する基準値演算部と、
前記センサが取得した前記第三出力電圧及び前記第四出力電圧の各平均値を演算する平均値演算部と、
前記演算された前記基準値と前記第三出力電圧及び前記第四出力電圧の前記各平均値とに基づき前記全範囲研削焼けの有無を判定する第一判定部と、
を備える、工作物の研削焼け検査装置。 An eddy current is generated by an excitation current in the ground workpiece to be inspected, and the grinding burn in the surface layer portion of the processing site of the workpiece to be inspected is generated based on the output voltage corresponding to the generated eddy current. A grinding burn inspection device for determining the presence or absence of
The grinding burn inspection device includes a sensor and a control unit,
The sensor is
While obtaining a first output voltage and a second output voltage when the eddy current is generated by a high frequency excitation current and a low frequency excitation current inside a predetermined position of a reference workpiece that does not have grinding burn, Acquire the third output voltage and the fourth output voltage when the eddy current is generated by the high-frequency excitation current and the low-frequency excitation current within the entire range of the predetermined inspection area of the workpiece to be inspected. And
The controller is
Based on the first output voltage and the second output voltage acquired by the sensor, it is determined whether or not there is a full range grinding burn in which grinding burn occurs over the entire range of a predetermined inspection region of the workpiece to be inspected. A reference value calculation unit for calculating a reference value for
An average value calculation unit for calculating each average value of the third output voltage and the fourth output voltage acquired by the sensor;
A first determination unit that determines the presence or absence of the entire range grinding burn based on the calculated reference value and the average values of the third output voltage and the fourth output voltage;
A grinding burn inspection device for workpieces.
さらに、
前記センサは、
前記検査対象の工作物の前記所定の検査領域の全範囲の内部に前記高周波励磁電流により前記渦電流を発生させた場合の第五出力電圧を取得し、
前記制御部は、
前記センサが取得した前記第五出力電圧の波形を周波数解析し周波数毎の出力値を演算する出力値演算部と、
前記出力値に対応する周波数毎の閾値を記憶する記憶部と、
前記周波数毎の前記出力値が前記記憶部に記憶された前記出力値に対応する周波数毎の前記閾値を超えた場合に、前記検査対象の工作物の前記表層部における前記所定の検査領域の全範囲のうちの一部に所定量以上の研削焼けが発生する局所研削焼けがあると判定する第二判定部と、
を備える、請求項6に記載の研削焼け検査装置。 In the grinding burn inspection device,
further,
The sensor is
Obtaining a fifth output voltage when the eddy current is generated by the high-frequency excitation current within the entire range of the predetermined inspection area of the workpiece to be inspected;
The controller is
An output value calculation unit that performs frequency analysis on the waveform of the fifth output voltage acquired by the sensor and calculates an output value for each frequency;
A storage unit for storing a threshold value for each frequency corresponding to the output value;
When the output value for each frequency exceeds the threshold value for each frequency corresponding to the output value stored in the storage unit, all of the predetermined inspection area in the surface layer part of the workpiece to be inspected A second determination unit that determines that there is a local grinding burn in which a predetermined amount or more of the grinding burn occurs in a part of the range;
A grinding burn inspection device according to claim 6, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016152189A JP6786934B2 (en) | 2016-08-02 | 2016-08-02 | Grinding burn inspection method and grinding burn inspection equipment for workpieces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016152189A JP6786934B2 (en) | 2016-08-02 | 2016-08-02 | Grinding burn inspection method and grinding burn inspection equipment for workpieces |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018021800A true JP2018021800A (en) | 2018-02-08 |
JP6786934B2 JP6786934B2 (en) | 2020-11-18 |
Family
ID=61165376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016152189A Active JP6786934B2 (en) | 2016-08-02 | 2016-08-02 | Grinding burn inspection method and grinding burn inspection equipment for workpieces |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6786934B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112945699A (en) * | 2021-04-07 | 2021-06-11 | 中航飞机起落架有限责任公司 | Method for manufacturing comparison sample for heat damage eddy current inspection acceptance standard |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4982384A (en) * | 1972-12-09 | 1974-08-08 | ||
JPS59500804A (en) * | 1982-05-10 | 1984-05-10 | キヤタピラ− トラツクタ− カンパニイ | Method and apparatus for polishing workpieces |
JPH10206395A (en) * | 1997-01-24 | 1998-08-07 | Ntn Corp | Nondestructive detecting method of eddy current system |
JP2008290203A (en) * | 2007-05-25 | 2008-12-04 | Nissan Diesel Motor Co Ltd | Grinding work monitoring system and grinding work monitoring method |
JP2010276431A (en) * | 2009-05-27 | 2010-12-09 | Toyota Motor Corp | Eddy current flaw detector and eddy current flaw detection method |
JP2011106932A (en) * | 2009-11-16 | 2011-06-02 | Jtekt Corp | Apparatus and method for detecting process-modified layer |
JP2011247631A (en) * | 2010-05-24 | 2011-12-08 | Jtekt Corp | Eddy current detection method and eddy current detection sensor |
JP2011252877A (en) * | 2010-06-04 | 2011-12-15 | Jtekt Corp | Eddy current inspection device and eddy current inspection method |
JP2013224916A (en) * | 2012-03-19 | 2013-10-31 | Nsk Ltd | Grinding burn determination device and grinding burn determination method |
-
2016
- 2016-08-02 JP JP2016152189A patent/JP6786934B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4982384A (en) * | 1972-12-09 | 1974-08-08 | ||
JPS59500804A (en) * | 1982-05-10 | 1984-05-10 | キヤタピラ− トラツクタ− カンパニイ | Method and apparatus for polishing workpieces |
US4514934A (en) * | 1982-05-10 | 1985-05-07 | Caterpillar Tractor Co. | Method and apparatus for abrasively machining a workpiece |
JPH10206395A (en) * | 1997-01-24 | 1998-08-07 | Ntn Corp | Nondestructive detecting method of eddy current system |
JP2008290203A (en) * | 2007-05-25 | 2008-12-04 | Nissan Diesel Motor Co Ltd | Grinding work monitoring system and grinding work monitoring method |
JP2010276431A (en) * | 2009-05-27 | 2010-12-09 | Toyota Motor Corp | Eddy current flaw detector and eddy current flaw detection method |
JP2011106932A (en) * | 2009-11-16 | 2011-06-02 | Jtekt Corp | Apparatus and method for detecting process-modified layer |
JP2011247631A (en) * | 2010-05-24 | 2011-12-08 | Jtekt Corp | Eddy current detection method and eddy current detection sensor |
JP2011252877A (en) * | 2010-06-04 | 2011-12-15 | Jtekt Corp | Eddy current inspection device and eddy current inspection method |
JP2013224916A (en) * | 2012-03-19 | 2013-10-31 | Nsk Ltd | Grinding burn determination device and grinding burn determination method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112945699A (en) * | 2021-04-07 | 2021-06-11 | 中航飞机起落架有限责任公司 | Method for manufacturing comparison sample for heat damage eddy current inspection acceptance standard |
CN112945699B (en) * | 2021-04-07 | 2022-05-03 | 中航飞机起落架有限责任公司 | Method for manufacturing comparison sample for heat damage eddy current inspection acceptance standard |
Also Published As
Publication number | Publication date |
---|---|
JP6786934B2 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4998821B2 (en) | Eddy current inspection method and eddy current inspection apparatus for implementing the eddy current inspection method | |
JP2010164306A (en) | Method and device for hardened depth | |
Zakharov et al. | Analysis of methods for estimation of machine workpiece roundness | |
US20110062953A1 (en) | Nondestructive testing system for steel workpiece | |
JP5499916B2 (en) | Eddy current inspection apparatus and eddy current inspection method | |
JP2018021800A (en) | Grinding burn inspection method for workpiece, and grinding burn inspection device | |
JP2008032681A (en) | Inspection method of rolling device component, and inspection device for rolling device component | |
JP2013224916A (en) | Grinding burn determination device and grinding burn determination method | |
TWI692637B (en) | Method for inspecting surface property of steel product | |
US11821810B2 (en) | Rolling machine element fatigue diagnosis method and rolling machine element fatigue diagnosis system | |
JP5445054B2 (en) | Processed alteration layer detection apparatus and processing alteration layer detection method | |
JP2017223585A (en) | Abnormality detection device of workpiece and abnormality detection method of workpiece | |
JP6601599B1 (en) | Rolling part inspection method and rolling part inspection apparatus | |
JP2017207483A (en) | Workpiece abnormality inspection device and workpiece abnormality inspection method | |
JP2022102492A (en) | Evaluation method of roller bearing, and evaluation device | |
JP2010243173A (en) | Device and method for inspecting hardening quality | |
JP2010151686A (en) | Flaw detection device, and method for manufacturing bearing device for vehicle using the flaw detection device | |
JP2003315173A (en) | Method for detecting residual stress in workpiece with eddy current tester using eddy current | |
EP4173752A1 (en) | Machining device and method | |
CN112809463B (en) | Surface texture estimation system | |
JP6715570B2 (en) | Pipe flaw detector and pipe flaw detection method | |
JP7255768B1 (en) | How to identify bearing damage | |
Kolarits | Improved grinding quality inspection of large bearing components using Barkhausen noise analysis | |
WO2013065565A1 (en) | Defect inspection device and defect inspection method for resin retention apparatus | |
Kinnunen et al. | Etching-based measurement error compensation for eddy current displacement measurement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201012 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6786934 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |