JPH0442416B2 - - Google Patents

Info

Publication number
JPH0442416B2
JPH0442416B2 JP9162984A JP9162984A JPH0442416B2 JP H0442416 B2 JPH0442416 B2 JP H0442416B2 JP 9162984 A JP9162984 A JP 9162984A JP 9162984 A JP9162984 A JP 9162984A JP H0442416 B2 JPH0442416 B2 JP H0442416B2
Authority
JP
Japan
Prior art keywords
heat
reinforcing material
resin
melting
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9162984A
Other languages
Japanese (ja)
Other versions
JPS60235844A (en
Inventor
Akira Nagai
Akio Takahashi
Toshio Sugawara
Masahiro Ono
Motoyo Wajima
Toshikazu Narahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9162984A priority Critical patent/JPS60235844A/en
Publication of JPS60235844A publication Critical patent/JPS60235844A/en
Publication of JPH0442416B2 publication Critical patent/JPH0442416B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はプリント回路板に用いるに好適な、フ
ツ素系樹脂層を持つプリプレグシート及びそれを
積層してて得られる積層板(及び金属箔張り積層
板)に関するものである。 〔発明の背景〕 従来一般に、プリント回路板及び多層プリント
回路板の材料として補強材であるガラスクロスに
熱硬化性樹脂を組合せた積層板またはこれに銅箔
などの金属箔を張着した金属箔張積層板が使用さ
れている。しかし通常のガラスクロスの比誘電率
は5〜6であり、一方、熱硬化性樹脂の比誘電率
は3.5〜4.5であるから、これを組合せて積層板を
製造した場合、全体としての比誘電率は4.5〜5.5
となり、また近年出回つている比較的比誘電率の
低いガラスクロスを使用してもせいぜい4〜4.5
程度にしかならない。しかるに、近年、大型計算
機の高速処理化に伴い、信号伝幡速度の向上を図
るために、プリント回路板用として比誘電率の低
い積層材料が要求されている。しかし上記の組合
せにおいては、全体としての比誘電率を4以下に
することは不可能である。 そこで従来の熱硬化性樹脂の代りに比誘電率の
低いフツ素系樹脂をガラスクロスと組合せた積層
板を用いたプリント回路板が開発されている。し
かしこれらはフツ素系樹脂の加熱溶融圧着による
積層方法を用いており、使用されるフツ素系樹脂
の溶融温度は一般に非常に高いので、銅の酸化等
の問題、作業性や成形性等の問題のため、その製
造方法は前記の従来一般のものと比較すると困難
な面が多い。 また特開昭58−42290号で示されているように、
フツ素系樹脂フイルムと耐熱性樹脂とを組合せた
フイルムシートに金属箔を貼着した可撓性プリン
ト回路基板は既に公知である。しかしこの場合、
フツ素系樹脂フイルムと耐熱性樹脂との組合せに
よつて得られたフイルムシートと金属箔との間に
何らかの接着層を介する必要がある。これは、耐
熱性樹脂が縮合硬化あるいは高沸点溶剤タイプで
あらるため、フイルムシートを作成する段階で既
に樹脂を硬化反応まで進める必要があり、その硬
化時に縮合物あるいは溶剤がでるため、その後は
接着能力を既に失つており、したがつて直接銅箔
を重ねて硬化することができないからである。従
つて、これをそのまま一般の補強材を必要とする
積層材料に当てはめると、積層材料全体における
フツ素系樹脂の占める割合が減少し、比誘電率に
及ぼすフツ素系樹脂の効果がかなり減殺されるこ
とになる。 〔発明の目的〕 本発明は以上のような点に鑑みてなされたもの
で、フツ素樹脂の効果を十分活用して低誘電率を
実現し、しかも別に接着材を介することなく比較
的低温で容易に積層成形可能なプリント回路板用
のプリプレグシートおよびそれを積層した積層板
を提供することを目的とする。 〔発明の概要〕 本発明のプリプレグシートは、フツ素系樹脂を
コーテイングないし含浸された補強材層と、該補
強材層の両面にコーテイングされた加熱溶融硬化
性樹脂層とからなるものである。また本発明の積
層板は、上記のプリプレグシートを複数枚積層し
てその加熱溶融硬化性樹脂層の加熱溶融硬化によ
り互に接着したものである。この積層板の表面に
は必要に応じ銅箔の金属箔が張設されていてもよ
い。この金属箔の張設も前記加熱溶融硬化性樹脂
層の加熱溶融硬化による接着によつてなされてい
る。 本発明の上記プリプレグシートの加熱溶融硬化
性樹脂層は従来のガラスクロスに塗布されている
それと同様のものでよく、これを、フツ素系樹脂
のコーテイングないし含浸された補強材層に、該
従来のものと同様の条件で塗布することにより、
容易に本発明のプリプレグシートが得られる。 本発明のプリプレグシートはその加熱溶融硬化
性樹脂層が未硬化の状態のものであるから、該プ
リピレグシートを互にもしく金属層と重ねて、従
来のこの種の樹脂の硬化反応と同様の比較的低い
温度で加熱溶融硬化反応を行わせることにより、
別に接着材の併用の必要なしに、容易に直接積層
接着が可能であり、従つて、フツ素系樹脂の占め
る割合を低下させることがないから、低い比誘電
率を保つことができる。 本発明における補強材としては一般に積層材料
に使用されているものが殆ど全て使用できる。例
えば、無機繊維としてはSiO2,A2O3等を成分と
するEガラス,Cガラス,Aガラス,Sガラス,
Dガラス,YM−31−Aガラス及び石英を使用し
たQガラス等の各種ガラス繊維、また有機繊維と
しては、芳香族ポリアミドイミド骨格を有する高
分子化合物を成分とするアラミド繊維等を用いる
ことができる。 本発明におけるフツ素樹脂としては、四フツ化
エチレン重合体,エチレン−四フツ化エチレン共
重合体,四フツ化エチレン−六フツ化プロピレン
共重合体、又は種々の四フツ化エチレン−パーフ
ルオロアルキルビニルエーテル共重合体等を用い
ることがでできる。 本発明における熱硬化性樹脂(加熱溶融硬化性
樹脂)としては、エポキシ樹脂,フエノール樹
脂,不飽和ポリエステル樹脂,ポリイミド樹脂,
トリアジン樹脂,メラミン樹脂等の、一般に積層
材料として使用されている加熱溶融硬化性樹脂の
いずれも用いることができる。 しかし上に挙げたフツ素系樹脂と熱硬化性樹脂
との親和性は非常に悪いので、かかるフツ素系樹
脂をコーテイングないしは含浸させた補強材層の
表面に何らかの接着性向上のための処理を行なつ
て、熱硬化性樹脂との親和性を向上させることが
必要である。フツ素系樹脂と他の物質との接着性
を上げる表面加工法には、大別して化学的処理方
法と物理的処理方法の2つが考えられるが、本発
明においてフツ素系樹脂と熱硬化性樹脂との接着
性を上げるには、化学的処理方法および物理的処
理方法のいずれを用いてもよい。 化学的処理方法としては、ケミカルエツチング
法,グラフト重合法,オスミウム酸処理,鉄ペン
タカルボニル処理等が利用可能であり、これらは
反応性の高い官能基を導入することにより接着性
の向上を与える方法である。 物理的処理法としては、スパツタエツチング,
プラズマ処理,コロナ処理,真空放電処理等が利
用可能であり、これらはフツ素系樹脂の表面を荒
すことにより、アンカー効果を利用して接着性を
与えるものである。またその他の方法として不均
一核化・結晶化等がある。 フツ素系樹脂をコーテイングないしは含浸させ
た補強材にこれらの表面加工法のいずれか一つ又
は幾つかを適用することにより、熱硬化性樹脂に
対して、従来のフツ素樹脂を含有していない補強
材と同様の方法で、積層材料を製造することが可
能である。 補強材にフツ素系樹脂層を形成させるには、噴
き付けや塗工によるコーテイング方法、又は溶融
あるいは溶液状態のフツ素系化合物による含浸方
法等を用いることができる。この場合、コーテイ
ングが結果的に含浸と同じになつても、又はその
逆の場合でも、効果は同じである。或いはまた、
補強材に用いる未織の繊維にフツ素系樹脂でコー
テイングないし含浸を行ない、その得られた繊維
をクロスに織つて補強材としてもよい。すなわ
ち、本発明におけるフツ素系樹脂層を持つ補強材
は、補強材表面がフツ素樹脂で被覆されていても
いなくてもどちらでもよい。 〔発明の実施例〕 実施例 1 4,4′−ジシアナミドジフエニルメタンをメチ
ルエチルケトン中で70℃,60分反応させて固形分
重量50%のワニスを作成した。 他方、フツ素系樹脂コーテツド補強材〔日東電
工製ニトフロンテープNo.970−4〕(ガラスクロス
厚0.05mm)に酸素プラズマ処理を行なつた。この
場合、試料である該フツ素樹脂コーテツド補強材
を収容した反応器内を減圧し、次に酸素ガスを導
入し、器内圧を1mmHgとした。この酸素ガスの
導入量は、0.5×10SCC/min(SCCは標準状態の
意)とした。次にRF電極に13.56MHz,80Wの高
周波電力を印加して試料の各面各2分、両面計4
分プラズマ処理を行なつた。 このプラズマ処理を行なつた、上記補強材に更
にケミカルエツチングを行ないフツ素系樹脂の表
面処理を行なつた。これは金属ナトリウムのナフ
タリン/テトラヒドロフラン溶液に上記試料を含
浸させることにより行なつたのであるが、このと
き表面のフツ素原子が部分的に除かれて炭素フイ
ルムを生成する次式のような反応が起きたと推定
される。 (―CF2)n―+2nNa→(―C)n―+2nNaF 上記の表面処理を行なつた補強材に加熱溶融硬
化樹脂層として前記ワニスを塗布した後、90〜
100℃,10分間乾燥することによりプリプレグシ
ートを得た。 次に、このようにして得られたプリプレグシー
ト10枚を重ねたものの上下に厚さ0.07mmのTAI処
理を行なつた銅箔(古河−C.F.C.製)を重ね、圧
力40Kgf/cm2,温度180℃で90分積層接着を行な
い、230℃,180分間硬化を行なつて銅張り積層板
を得た。 実施例 2 アラルダイト8011(チバガイギ社製ブロム化ビ
スフエノールA型エポキシ樹脂)100部,ジシア
ンジアミド3.5部,ベンジルジメチルアミン0.2部
をメチルエチルケトンとメチルセロソルブとの混
合溶媒中で80℃、30分間反応させて固形分重量50
%のワニスを作成した。これを両面接着処理テフ
ロンコーテツドガラスクロス(目東電工製ニトフ
ロンテープNo.972,厚さ0.03mm)に加熱溶融硬化
性樹脂層として塗布した後、130℃,10分間乾燥
を行ない、プリプレグシートを得た。次に得られ
たプリプレグシート10枚を重ねたものの上下に厚
さ0.07mmのTAI処理した銅箔を重ね、圧力40Kg
f/cm,温度170℃で80分間積層接着を行ない、
銅張り積層板を得た。 実施例 3 N,N′−ビスマレイミド−4,4′−ジフエニル
メタン45部,4,4′−ジアミノジフエニルメタン
10部をメチルセロソルブ中で100℃,60分反応さ
せ、さらにDEN−438(ダウケミカル製フエノー
ルノボラツク型エポキシ樹脂)を加えて90℃,30
分反応させた後、ベンゾグアナミン8部とメチル
エチルケトンを加え、固形分重量50%のワニスを
作成した。他方、日東電工製ニトフロンテープNo.
972−4に実施例1で示したケミカルエツチング
処理だけを行なつて得た補強材に加熱溶融硬化性
樹脂層として上記ワニスを塗工し、140〜150℃,
10分乾燥を行なつてプリプレグミートを得た。得
られたプリプレグシート10枚を重ねたものの上下
に厚さ0.07mmのTAI処理した銅箔を重ね、180℃,
90分間積層接着を行なつて銅張り積層板を得た。 また、他方、以上の実施例に対する比較例とし
て、それぞれ実施例1,2,3におけるフツ素系
樹脂コーテツドガラスクロスの代わりに日東紡製
ガラスクロスを用い、実施例1,2,3と同様の
ワニス,成形条件で従来タイプの銅張積層板を作
成した。 このようにして作成した本発明実施例と比較
例、さらには、既成のテフロン/ガラスクロス銅
張り積層板について、幾つかの特性の比較検討を
行なつた。表1にその結果を示す。
[Field of Application of the Invention] The present invention relates to a prepreg sheet having a fluororesin layer suitable for use in printed circuit boards, and a laminate (and metal foil-clad laminate) obtained by laminating the same. . [Background of the Invention] Conventionally, as materials for printed circuit boards and multilayer printed circuit boards, laminates made by combining thermosetting resin with glass cloth as a reinforcing material, or metal foils made by pasting metal foils such as copper foils on this have been commonly used. Tensioned laminate is used. However, the dielectric constant of ordinary glass cloth is 5 to 6, while that of thermosetting resin is 3.5 to 4.5, so when a laminate is manufactured by combining them, the dielectric constant as a whole is Rate is 4.5-5.5
And even if you use glass cloth with a relatively low dielectric constant that has become available in recent years, the dielectric constant will be 4 to 4.5 at most.
It will only be to a certain extent. However, in recent years, with the increase in processing speed of large computers, there has been a demand for laminated materials with low dielectric constants for use in printed circuit boards in order to improve signal propagation speed. However, in the above combination, it is impossible to reduce the overall dielectric constant to 4 or less. Therefore, a printed circuit board using a laminated board in which a fluorine-based resin with a low dielectric constant is combined with glass cloth instead of the conventional thermosetting resin has been developed. However, these methods use a lamination method using heat-melted pressure bonding of fluorocarbon resins, and since the melting temperature of the fluorocarbon resins used is generally very high, there are problems such as copper oxidation, and problems such as workability and moldability. Due to these problems, the manufacturing method thereof is more difficult than the conventional methods described above. Also, as shown in Japanese Patent Application Laid-open No. 58-42290,
A flexible printed circuit board in which a metal foil is attached to a film sheet made of a combination of a fluorine-based resin film and a heat-resistant resin is already known. But in this case,
It is necessary to interpose some kind of adhesive layer between the metal foil and the film sheet obtained by combining the fluororesin film and the heat-resistant resin. This is because the heat-resistant resin is condensation curing or high boiling point solvent type, so it is necessary to advance the resin to a curing reaction at the stage of creating the film sheet, and condensates or solvent are released during curing, so after that, This is because the copper foil has already lost its adhesive ability and therefore cannot be directly stacked with copper foil and cured. Therefore, if this is applied directly to laminated materials that require general reinforcing materials, the proportion of the fluorine resin in the entire laminated material will decrease, and the effect of the fluorine resin on the dielectric constant will be considerably reduced. That will happen. [Object of the Invention] The present invention has been made in view of the above points, and it is possible to realize a low dielectric constant by fully utilizing the effects of fluororesin, and also to achieve a low dielectric constant at a relatively low temperature without using a separate adhesive. An object of the present invention is to provide a prepreg sheet for a printed circuit board that can be easily laminated and molded, and a laminate made by laminating the same. [Summary of the Invention] The prepreg sheet of the present invention consists of a reinforcing material layer coated with or impregnated with a fluorocarbon resin, and a heat-melting curable resin layer coated on both sides of the reinforcing material layer. Further, the laminate of the present invention is obtained by laminating a plurality of the prepreg sheets described above and bonding them together by heat-melting and curing the heat-melting curable resin layer. The surface of this laminate may be covered with a metal foil such as copper foil, if necessary. This metal foil is also stretched by adhesion by heating and melting and hardening the heat-melting hardening resin layer. The heat-melting curable resin layer of the prepreg sheet of the present invention may be the same as that applied to conventional glass cloth, and this is applied to the reinforcing material layer coated or impregnated with fluorine resin. By applying the same conditions as those of
The prepreg sheet of the present invention can be easily obtained. Since the prepreg sheet of the present invention has an uncured heat-melting curable resin layer, the prepreg sheet was overlapped with a metal layer and compared with the conventional curing reaction of this type of resin. By performing a heating melt hardening reaction at a relatively low temperature,
Direct lamination bonding is easily possible without the need to use an adhesive, and therefore, the proportion occupied by the fluororesin is not reduced, so a low dielectric constant can be maintained. As the reinforcing material in the present invention, almost all those commonly used in laminated materials can be used. For example, inorganic fibers include E glass, C glass, A glass, S glass containing SiO 2 , A 2 O 3 , etc.
Various glass fibers such as D glass, YM-31-A glass, and Q glass using quartz can be used, and as organic fibers, aramid fibers containing a polymer compound having an aromatic polyamide-imide skeleton can be used. . The fluororesin used in the present invention includes a tetrafluoroethylene polymer, an ethylene-tetrafluoroethylene copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, or various tetrafluoroethylene-perfluoroalkyl A vinyl ether copolymer or the like can be used. Thermosetting resins (heat-melting curable resins) in the present invention include epoxy resins, phenolic resins, unsaturated polyester resins, polyimide resins,
Any heat-melting hardening resin that is generally used as a laminated material, such as triazine resin or melamine resin, can be used. However, the compatibility between the above-mentioned fluorocarbon resins and thermosetting resins is very poor, so the surface of the reinforcing material layer coated or impregnated with such fluorocarbon resins must be treated to improve adhesion. It is necessary to improve the affinity with the thermosetting resin. Surface treatment methods for increasing the adhesion between fluorocarbon resins and other substances can be roughly classified into two types: chemical treatment methods and physical treatment methods.In the present invention, fluorocarbon resins and thermosetting resins are In order to increase the adhesion with the substrate, either a chemical treatment method or a physical treatment method may be used. As chemical treatment methods, chemical etching method, graft polymerization method, osmic acid treatment, iron pentacarbonyl treatment, etc. can be used, and these methods improve adhesiveness by introducing highly reactive functional groups. It is. Physical treatment methods include sputter etching,
Plasma treatment, corona treatment, vacuum discharge treatment, etc. can be used, and these provide adhesiveness by roughening the surface of the fluororesin and utilizing the anchor effect. Other methods include heterogeneous nucleation and crystallization. By applying one or more of these surface treatment methods to reinforcing materials coated or impregnated with fluororesin, thermosetting resins that do not contain conventional fluororesin can be applied. It is possible to produce laminated materials in a similar way to reinforcements. To form a fluorine-based resin layer on the reinforcing material, a coating method by spraying or coating, or an impregnation method with a fluorine-based compound in a melted or solution state can be used. In this case, the effect is the same whether the coating results in the same as the impregnation or vice versa. Or also,
The unwoven fibers used as the reinforcing material may be coated or impregnated with a fluorocarbon resin, and the resulting fibers may be woven into a cloth to form the reinforcing material. That is, in the reinforcing material having a fluororesin layer in the present invention, the surface of the reinforcing material may or may not be coated with a fluororesin. [Examples of the Invention] Example 1 A varnish with a solid content of 50% was prepared by reacting 4,4'-dicyanamidiphenylmethane in methyl ethyl ketone at 70°C for 60 minutes. On the other hand, a fluorine-based resin coated reinforcing material [Nitoflon tape No. 970-4 manufactured by Nitto Denko] (glass cloth thickness 0.05 mm) was subjected to oxygen plasma treatment. In this case, the pressure inside the reactor containing the fluororesin-coated reinforcing material as a sample was reduced, and then oxygen gas was introduced to bring the internal pressure to 1 mmHg. The amount of oxygen gas introduced was 0.5×10 SCC/min (SCC means standard condition). Next, a high frequency power of 13.56MHz, 80W was applied to the RF electrode for 2 minutes on each side of the sample, for a total of 4 times on both sides.
A minute plasma treatment was performed. The reinforcing material that had been subjected to this plasma treatment was further subjected to chemical etching to perform a surface treatment of fluorine resin. This was done by impregnating the above sample in a naphthalene/tetrahydrofuran solution of metallic sodium. At this time, the fluorine atoms on the surface were partially removed and a reaction as shown in the following equation occurred to form a carbon film. It is assumed that this occurred. (-CF 2 )n-+2nNa→(-C)n-+2nNaF After applying the varnish as a heat-melted hardening resin layer to the reinforcing material subjected to the above surface treatment, 90~
A prepreg sheet was obtained by drying at 100°C for 10 minutes. Next, 10 prepreg sheets obtained in this way were stacked, and then TAI-treated copper foil (manufactured by Furukawa CFC) with a thickness of 0.07 mm was stacked on top and bottom of the stack, and the pressure was 40 Kgf/cm 2 and the temperature was 180 °C. Lamination adhesion was performed at ℃ for 90 minutes, and curing was performed at 230℃ for 180 minutes to obtain a copper-clad laminate. Example 2 100 parts of Araldite 8011 (brominated bisphenol A type epoxy resin manufactured by Ciba Geigi), 3.5 parts of dicyandiamide, and 0.2 parts of benzyldimethylamine were reacted at 80°C for 30 minutes in a mixed solvent of methyl ethyl ketone and methyl cellosolve to form a solid. Minute weight 50
% varnish was created. This was applied as a heat-melting hardening resin layer to double-sided adhesive treated Teflon coated glass cloth (Nitoflon Tape No. 972 manufactured by Meto Denko, thickness 0.03 mm), and then dried at 130℃ for 10 minutes to form a prepreg sheet. I got it. Next, the obtained 10 prepreg sheets were stacked, and TAI-treated copper foil with a thickness of 0.07 mm was stacked on top and bottom of the stack, and a pressure of 40 kg was applied.
f/cm, laminated and bonded for 80 minutes at a temperature of 170℃,
A copper-clad laminate was obtained. Example 3 45 parts of N,N'-bismaleimide-4,4'-diphenylmethane, 4,4'-diaminodiphenylmethane
10 parts were reacted in methyl cellosolve at 100°C for 60 minutes, and DEN-438 (phenol novolak type epoxy resin manufactured by Dow Chemical) was added and reacted at 90°C for 30 minutes.
After reacting for several minutes, 8 parts of benzoguanamine and methyl ethyl ketone were added to prepare a varnish with a solid content of 50%. On the other hand, Nitto Denko's Nitoflon Tape No.
972-4 was subjected to only the chemical etching treatment shown in Example 1, the above varnish was coated as a heat-melt hardening resin layer, and the material was heated at 140 to 150°C.
Prepreg meat was obtained by drying for 10 minutes. The obtained 10 prepreg sheets were stacked, and TAI-treated copper foil with a thickness of 0.07 mm was layered on the top and bottom of the stack, and heated at 180℃.
Lamination bonding was performed for 90 minutes to obtain a copper-clad laminate. On the other hand, as a comparative example for the above examples, Nittobo glass cloth was used in place of the fluororesin-coated glass cloth in Examples 1, 2, and 3, and the same as in Examples 1, 2, and 3 was used. A conventional type of copper-clad laminate was made using the following varnish and molding conditions. Comparative studies were conducted on several properties of the Examples of the present invention and Comparative Examples thus prepared, as well as the existing Teflon/glass cloth copper-clad laminates. Table 1 shows the results.

〔発明の効果〕〔Effect of the invention〕

本発明のプリプレグシートは、フツ素系樹脂を
コートないし含浸した補強材に加熱溶融硬化性樹
脂をコートしたものであるから、補強材に加熱溶
融硬化性樹脂をコートした従来のシートと同じワ
ニス(加熱溶融硬化性樹脂ワニス)を同じ作業条
件で上記前者の補強材にコーテイングをすること
によつて容易に製造することができ、しかも、比
誘電率は上記従来シートよりも低い。 また、このプリプレグシートを互に重ね合せ、
もしくは更にその上下面(又はその一方)に金属
箔を重ね合せ、又は、回路の形成された各プリン
ト回路単板の間に介在させて、別途接着材の併用
なしに直接積層により、絶縁積層板もしくは金属
箔張り積層板又は多層プリント回路板を得ること
ができる。この場合、該プリプレグシート自体の
加熱溶融硬化性樹脂層の硬化反応によつて接着が
行われるので、同様の樹脂を用いた前記従来シー
トの積層の場合と同じ比較的低い温度で積層成形
が可能であると共に、付加的な接着材の介在によ
るフツ素系樹脂の割合の低下がないので低い比誘
電率を保持することができる。 また前述したように本発明のプリプレグシート
は積層せずにそれ1枚を加圧成形硬化反応をさせ
て薄層プリント板として使用可能であり、可撓性
プリント回路板に利用し得る。この場合にも低誘
電率、それ自体の硬化接着性の利点があることは
同様である。
The prepreg sheet of the present invention is made by coating a reinforcing material coated or impregnated with a fluorocarbon resin and a heat-melt hardening resin, so it is coated with the same varnish ( It can be easily manufactured by coating the former reinforcing material with a heat-melting hardening resin varnish) under the same working conditions, and the dielectric constant is lower than that of the conventional sheet. In addition, these prepreg sheets are stacked on top of each other,
Alternatively, by overlapping metal foils on the upper and lower surfaces (or one of them), or by interposing them between each printed circuit single board on which a circuit is formed, and directly laminating them without using a separate adhesive, an insulating laminate or metal Foil-clad laminates or multilayer printed circuit boards can be obtained. In this case, since the adhesion is performed by the curing reaction of the heat-melt curable resin layer of the prepreg sheet itself, lamination molding can be performed at the same relatively low temperature as in the case of lamination of the conventional sheets using the same resin. In addition, since there is no reduction in the proportion of fluororesin due to the presence of an additional adhesive, a low dielectric constant can be maintained. Further, as described above, the prepreg sheet of the present invention can be used as a thin-layer printed board by subjecting a single sheet to a pressure molding and curing reaction without being laminated, and can be used for a flexible printed circuit board. This case also has the advantages of a low dielectric constant and its own cured adhesiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプリプレグシートの模式的断
面図、第2図は該プリプレグシートを積層した銅
張り積層板の模式的断面図である。 1:フツ素系樹脂コーテツド又は含浸補強材
層、2:加熱溶融硬化性樹脂層、3:プリプレグ
シート、4:銅箔。
FIG. 1 is a schematic sectional view of a prepreg sheet of the present invention, and FIG. 2 is a schematic sectional view of a copper-clad laminate in which the prepreg sheets are laminated. 1: Fluorine resin coated or impregnated reinforcing material layer, 2: Heat-melt curable resin layer, 3: Prepreg sheet, 4: Copper foil.

Claims (1)

【特許請求の範囲】 1 フツ素系樹脂をコーテイングないし含浸され
た補強材層と、該補強材層の両面にコーテイング
された加熱溶融硬化性樹脂層とからなることを特
徴とするプリプレグシート。 2 フツ素系樹脂をコーテイングないし含浸され
た補強材層と該補強材層の両面にコーテイングさ
れた加熱溶融硬化性樹脂層とから各々なるプリプ
レグシートの複数枚が積層され該加熱溶融硬化性
樹脂層の加熱溶融硬化により接着されていること
を特徴とする積層板。 3 上記積層板はその表面に上記加熱溶融硬化性
樹脂層の加熱溶融硬化により接着保持された金属
箔層を有する特許請求の範囲第2項の積層板。
[Scope of Claims] 1. A prepreg sheet comprising a reinforcing material layer coated with or impregnated with a fluorine-based resin, and a heat-melting curable resin layer coated on both surfaces of the reinforcing material layer. 2. A plurality of prepreg sheets each consisting of a reinforcing material layer coated or impregnated with a fluorocarbon resin and a heat-melting curable resin layer coated on both surfaces of the reinforcing material layer are laminated to form the heat-melting curable resin layer. A laminate board characterized by being bonded by heating, melting and curing. 3. The laminate according to claim 2, wherein the laminate has a metal foil layer adhered and held on its surface by heat-melt curing of the heat-melt curable resin layer.
JP9162984A 1984-05-08 1984-05-08 Prepreg sheet and laminate thereof Granted JPS60235844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9162984A JPS60235844A (en) 1984-05-08 1984-05-08 Prepreg sheet and laminate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9162984A JPS60235844A (en) 1984-05-08 1984-05-08 Prepreg sheet and laminate thereof

Publications (2)

Publication Number Publication Date
JPS60235844A JPS60235844A (en) 1985-11-22
JPH0442416B2 true JPH0442416B2 (en) 1992-07-13

Family

ID=14031839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9162984A Granted JPS60235844A (en) 1984-05-08 1984-05-08 Prepreg sheet and laminate thereof

Country Status (1)

Country Link
JP (1) JPS60235844A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673943B2 (en) * 1986-06-14 1994-09-21 松下電工株式会社 Laminate
JPS63199245A (en) * 1987-02-14 1988-08-17 Matsushita Electric Works Ltd Laminated board
JPH01139531U (en) * 1988-03-14 1989-09-25
SG93210A1 (en) 1999-06-29 2002-12-17 Univ Singapore Method for lamination of fluoropolymer to metal and printed circuit board (pcb) substrate
US6500529B1 (en) 2001-09-14 2002-12-31 Tonoga, Ltd. Low signal loss bonding ply for multilayer circuit boards
US6783841B2 (en) 2001-09-14 2004-08-31 Tonoga, Inc. Low signal loss bonding ply for multilayer circuit boards
CN102181127B (en) * 2011-03-30 2012-12-05 同济大学 Preparation method of glass fiber reinforced epoxy resin composite material modified by reclaimed circuit board powder
TWI605742B (en) * 2012-05-23 2017-11-11 味之素股份有限公司 Multilayer printed wiring board manufacturing method

Also Published As

Publication number Publication date
JPS60235844A (en) 1985-11-22

Similar Documents

Publication Publication Date Title
US5785789A (en) Low dielectric constant microsphere filled layers for multilayer electrical structures
US5718039A (en) Method of making multilayer printed wiring board
US4994316A (en) Circuit boards
JPH0442416B2 (en)
JPS61286130A (en) Laminated board and manufacture thereof
JPS6230128A (en) Production of resin impregnated base material for producing laminate board for printed circuit board
JPH0946012A (en) Low dielectric constant flexible wiring board
JPS61214495A (en) Metal foil having binder layer for covering laminate plate and manufacture of base material for printed circuit
JPS62176842A (en) Laminated board and manufacture thereof
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JPH06256966A (en) Surface treated copper foil
JP2004224817A (en) Resin composition and prepreg and laminated sheet using the same
JP2002273824A (en) Copper foil laminate with adhesive and its manufacturing method
JP2866458B2 (en) Coverlay film
JPS589756B2 (en) Method for manufacturing coating sheet and copper clad laminate
JP2762544B2 (en) Low dielectric constant printed wiring board materials
JP2003128765A (en) Heat-resistant resin composition, prepreg using the same and laminate
JPH0753420B2 (en) Manufacturing method of multilayer printed wiring board
JPH0445530B2 (en)
JPH09293988A (en) Manufacture of shielding plate for multilayer printed wiring board
JPH06270337A (en) Highly heat-resistant prepreg
JPS5939546A (en) Copper lined laminated board
JPH02143849A (en) Metallic foil plated laminated sheet and its manufacture
JPS62295930A (en) Preparation of laminated sheet
JP2003094571A (en) Material for producing printed wiring board and its production method