JPH0437968B2 - - Google Patents

Info

Publication number
JPH0437968B2
JPH0437968B2 JP57006553A JP655382A JPH0437968B2 JP H0437968 B2 JPH0437968 B2 JP H0437968B2 JP 57006553 A JP57006553 A JP 57006553A JP 655382 A JP655382 A JP 655382A JP H0437968 B2 JPH0437968 B2 JP H0437968B2
Authority
JP
Japan
Prior art keywords
metal
liquid crystal
film
crystal display
terminal portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57006553A
Other languages
Japanese (ja)
Other versions
JPS58123517A (en
Inventor
Yoshuki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP57006553A priority Critical patent/JPS58123517A/en
Publication of JPS58123517A publication Critical patent/JPS58123517A/en
Publication of JPH0437968B2 publication Critical patent/JPH0437968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は、金属−絶縁体−金属の三層構造から
なる非線型抵抗素子すなわちMIMを有する液晶
パネルの製造方法に関するものであり、その目的
は、液晶パネル製造において歩留りを向上させて
品質の安定した液晶パネルを低価格で多量生産す
る方法を提供することである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a liquid crystal panel having a nonlinear resistance element, that is, MIM, which has a three-layer structure of metal-insulator-metal. The purpose of the present invention is to provide a method for mass-producing liquid crystal panels of stable quality at a low price by improving the quality.

液晶表示装置は低消費電力であること、小型、
軽量であることから近年電卓や電子時計、電子機
器表示装置として著しく普及している。さらに小
型パーソナルコンピユータ等の表示装置として使
用するという要求も生まれてきている。その反面
液晶パネルを表示素子として用いる場合には、一
般に表示情報量が小さいという欠点がある。この
欠点は、液晶は印加電圧コントラスト特性の急し
ゆん性が悪くマルチプレツクス駆動にあまり適さ
ないということに帰因している。現在、液晶をマ
ルチプレツクス駆動する場合の限界値は20〜30桁
程度であると考えられている。このマルチプレツ
クス特性を改善し、表示情報量を増すための方法
として、いくつかの方法が考案されている。その
方法のひとつの流れとして、トランジスター、ダ
イオード、その他の電気的素子を液晶と組み合わ
せることによつて液晶のマルチプレツクス特性を
補正し、数百桁あるいはそれ以上の多桁マルチプ
レツクス駆動を可能化するという方法がある。そ
の中で、金属−絶縁体−金属の三層構造からなる
MIMを用いた液晶表示装置は、数百桁程度の多
桁マルチプレツクス駆動が可能であるうえに構造
が比較的簡単で製造しやすいという特長をもつて
おり、現在特に注目されているもののひとつであ
る。
Liquid crystal display devices have low power consumption, small size,
Because they are lightweight, they have become extremely popular in recent years as calculators, electronic watches, and display devices for electronic devices. Furthermore, there is a growing demand for use as a display device for small personal computers and the like. On the other hand, when a liquid crystal panel is used as a display element, there is a drawback that the amount of displayed information is generally small. This drawback is attributable to the fact that liquid crystals have poor contrast characteristics with applied voltage and are not well suited for multiplex driving. Currently, the limit value for multiplex driving of liquid crystals is thought to be about 20 to 30 digits. Several methods have been devised to improve this multiplexing characteristic and increase the amount of displayed information. One way to do this is to correct the multiplex characteristics of liquid crystals by combining transistors, diodes, and other electrical elements with liquid crystals, making it possible to drive multi-digit multiplexes of hundreds of digits or more. There is a method. Among them, it consists of a three-layer structure of metal-insulator-metal.
Liquid crystal display devices using MIM are currently attracting particular attention because they are capable of multi-digit multiplex drive with hundreds of digits, have a relatively simple structure, and are easy to manufacture. be.

さてMIMを用いた液晶パネルにおけるMIM部
分の製造方法の従来例を述べると以下のとおりで
ある。第1図はガラス基板1上に金属薄膜を形成
し、該金属はパターニングすることによつて信号
電極2、MIM構成部分3、および端子部4を形
成した様子の例を示している。基板は一般にガラ
ス基板、石英ガラス基板を用いる。また金属薄膜
の材質の例としては、タンタル、窒化タンタル、
アルミニウムなどが挙げられるが、基本的には酸
化絶縁膜を形成できる金属ならなんでもよい。金
属薄膜の形成方法としては、スパツタ法、蒸着法
などがある。次に電気化学的方法によつて端子部
4を除く金属電極の表面を酸化する。本質的には
MIM構成部3の表面だけを酸化すればよいので
あるが信号電極2の表面が酸化されることはまつ
たくかまわない。それに対し端子部4は外部との
電気的接続をとるものであるから、その表面を酸
化することは許されない。
Now, a conventional example of a method for manufacturing an MIM portion in a liquid crystal panel using MIM is as follows. FIG. 1 shows an example in which a metal thin film is formed on a glass substrate 1, and the metal is patterned to form a signal electrode 2, an MIM component part 3, and a terminal part 4. A glass substrate or a quartz glass substrate is generally used as the substrate. Examples of materials for metal thin films include tantalum, tantalum nitride,
Examples include aluminum, but basically any metal that can form an oxide insulating film may be used. Methods for forming metal thin films include sputtering, vapor deposition, and the like. Next, the surface of the metal electrode except for the terminal portion 4 is oxidized by an electrochemical method. essentially
Although it is sufficient to oxidize only the surface of the MIM component 3, it is not a problem that the surface of the signal electrode 2 is oxidized. On the other hand, since the terminal portion 4 is for electrical connection with the outside, oxidation of its surface is not allowed.

第2図は電気化学的方法として陽極酸化法を用
いる場合の例を示している。第2図において電気
的回路系は電圧電源5、ガラス基板1、陽極酸化
液6、および金属板7によつて構成される。この
場合、電圧は、ガラス基板1に形成された金属薄
膜が正、金属板7が負となるように印加される。
ガラス基板1に形成された各々の金属薄膜はすべ
て陽極酸化されなければならないので、端子部4
の各々は適当な方法によつて電気的にひとつにま
とめて電圧電源5の正極側に接続する必要があ
る。なお陽極酸化液6の例としては、クエン酸、
りん酸水溶液が挙げられる。また金属板7の例と
しては、白金板が挙げられる。以上にようにして
金属電極および酸化絶縁膜が形成されたガラス基
板1に、もう一度金属薄膜を形成してパターニン
グを施すことによつてMIMが完成する。第3図
は、完成した1個のMIMの外観を示しており最
初に形成された金属のMIM構成部3に、後から
形成された金属電極8が交差する形になつてい
る。
FIG. 2 shows an example in which an anodic oxidation method is used as the electrochemical method. In FIG. 2, the electrical circuit system is composed of a voltage power source 5, a glass substrate 1, an anodic oxidizing solution 6, and a metal plate 7. In this case, the voltage is applied such that the metal thin film formed on the glass substrate 1 is positive and the metal plate 7 is negative.
Since each metal thin film formed on the glass substrate 1 must be anodized, the terminal portion 4 must be anodized.
It is necessary to electrically connect them together to the positive terminal side of the voltage power source 5 by an appropriate method. Examples of the anodic oxidation solution 6 include citric acid,
Examples include phosphoric acid aqueous solution. Furthermore, an example of the metal plate 7 is a platinum plate. MIM is completed by forming a metal thin film again on the glass substrate 1 on which the metal electrode and oxide insulating film have been formed and patterning it. FIG. 3 shows the appearance of one completed MIM, in which the first formed metal MIM component 3 is intersected by a later formed metal electrode 8.

この後画素電極9を金属電極8と電気的に接続
するように形成し、その後は通常の液晶パネルと
まつたく同様の方法で組立られる。
Thereafter, the pixel electrode 9 is formed so as to be electrically connected to the metal electrode 8, and thereafter it is assembled in the same manner as a normal liquid crystal panel.

以上がMIMを用いた液晶パネルにおけるMIM
部分の従来の製造方法の概略である。この製造方
法において問題となるひとつの点は絶縁基板上に
最初に形成された金属薄膜を陽極酸化法などの電
気化学的方法によつて酸化する場合に、端子部を
酸化膜としないために従来は1枚づつの単品でし
か陽極酸化できず大きなガラス基板に連続したパ
ネル電極を陽極酸化することはできなかつた。な
ぜなら、第1図端子部4は外部との電気的な接続
をとるものでその表面を酸化することは許されな
いためで実験室的製造方法は可能であるが、量産
に結びつかない方法である。
The above is MIM in a liquid crystal panel using MIM.
1 is a schematic diagram of a conventional method of manufacturing a part. One problem with this manufacturing method is that when the metal thin film first formed on the insulating substrate is oxidized by an electrochemical method such as anodization, the terminal area is not made into an oxide film, which is conventional. could only be anodized one piece at a time, and it was not possible to anodize continuous panel electrodes on a large glass substrate. This is because the terminal portion 4 in FIG. 1 is for electrical connection with the outside, and oxidation of its surface is not allowed.Although a laboratory manufacturing method is possible, this method does not lead to mass production.

本発明は、かかる欠点を取り除き量産性と低価
格で品質の安定したパネルを提供するものであ
る。以下本発明の実施例を図面を用いて説明して
いく。第4図は本発明の実施例でガラス基板1上
に最初に形成された金属電極のパターニング形状
を示している。第4図のパターニング形状におい
て第1図パターニングと異なる点はパネルパター
ン12が連続して設けられていることである。こ
の電極の端子部4上に有機薄膜を付ける、その方
法として今回はフオトリソグラフイー法でOFPR
を全面塗布→プレーベーク80℃、20分間おこない
→露光→現像→ポストベーク120℃、20分間おこ
なつて端子部4を覆う有機薄膜10の付いた状態
を示したものである。第5図は本発明の実施例で
連続したパターンの陽極酸化状態を示したもの
で、電極パターン11の任意の場所を電圧電源5
に接続し陽極酸化を行つたところ、有機薄膜10
部分いわゆる端子部4を除いては信頼性の高い酸
化膜ができた。その後有機薄膜をアセトンで剥離
した、端子部4の比抵抗は陽極酸化前と後で変ら
ず導通は問題なく端子部4として良好であつた。
The present invention eliminates these drawbacks and provides a panel that is mass-producible, inexpensive, and of stable quality. Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 shows the patterning shape of the metal electrode initially formed on the glass substrate 1 in the embodiment of the present invention. The patterning shape shown in FIG. 4 differs from the patterning shown in FIG. 1 in that the panel pattern 12 is continuously provided. The method for attaching an organic thin film on the terminal part 4 of this electrode is OFPR using photolithography.
This figure shows the state in which the organic thin film 10 covering the terminal portion 4 is formed by coating the entire surface → pre-baking at 80° C. for 20 minutes → exposing → developing → post-baking at 120° C. for 20 minutes. FIG. 5 shows the state of anodic oxidation of a continuous pattern in an embodiment of the present invention.
When connected to the organic thin film 10 and anodized, the organic thin film 10
A highly reliable oxide film was formed except for the so-called terminal portion 4. Thereafter, the organic thin film was peeled off with acetone, and the resistivity of the terminal portion 4 did not change before and after the anodization, and the terminal portion 4 was found to have good conductivity without any problem.

第6図は本発明の実施例におけるパネル組立後
のカツテイング部分の場所を示しており、図中に
おいて12がカツテイング部分である。カツテイ
ング方法タイヤでスクライブする方式で対向電極
と組立後カツテイングを行つたところ、1度に数
多くの安定した液晶パネルができるようになつ
た。
FIG. 6 shows the location of the cutting portion after panel assembly in the embodiment of the present invention, and 12 in the figure is the cutting portion. Cutting method: By scribing with a tire and cutting after assembling the counter electrode, we were able to make many stable liquid crystal panels at once.

以上の如く、本発明の液晶表示パネルの製造方
法は、基板上に、複数本の第1金属膜からなる列
電極線、マトリクス状に配置された第1金属膜−
絶縁膜−第2金属膜の構造からなる非線型素子と
画素電極、第1金属膜からなる接続端子部が形成
され、かつ列電極線、非線型素子及び接続端子部
を構成する第1金属膜のそれぞれは電気的に接続
されてなる液晶表示パネルの製造方法において、
同一基板上に、多数組の該液晶表示パネルを形成
し、該多数組の液晶表示パネルのそれぞれは該第
1金属間で電気的に接続されてなり、該非線型素
子を構成する絶縁膜は第1金属膜を陽極酸化して
形成してなるものであり、陽極酸化する前に少な
くとも該第1金属膜からなる接続端子部上には保
護膜を形成して陽極酸化するようにしたので、次
のような特有の効果が得られる。
As described above, the method for manufacturing a liquid crystal display panel of the present invention includes column electrode lines made of a plurality of first metal films on a substrate, first metal films arranged in a matrix,
A nonlinear element and a pixel electrode having a structure of an insulating film and a second metal film, and a connection terminal part made of a first metal film are formed, and a first metal film forming a column electrode line, a nonlinear element, and a connection terminal part. In a method for manufacturing a liquid crystal display panel in which each of the above is electrically connected,
A plurality of sets of the liquid crystal display panels are formed on the same substrate, each of the plurality of sets of liquid crystal display panels is electrically connected between the first metals, and the insulating film constituting the nonlinear element is connected to the first metal. It is formed by anodizing a first metal film, and before anodizing, a protective film is formed at least on the connection terminal portion made of the first metal film and anodizing is performed. You can obtain unique effects such as.

すなわち、複数組の液晶表示パネルを同一基板
上に形成したので、複数組の液晶表示パネルが一
度の工程で製造でき、製造コストが格段に低減さ
れる。更に、第1金属膜−絶縁膜−第2金属膜の
構造からなる非線型素子の絶縁膜は第1金属を陽
極酸化して形成する際に、多数組の液晶表示パネ
ルのそれぞれは該第1金属間で電気的に接続され
ているので、一回の陽極酸化工程で全ての非線型
素子の絶縁膜が形成でき、かつ絶縁膜の形成を必
要としない第1金属膜からなる接続端子上には保
護膜が施されているので、保護膜が形成されてい
る接続端子上には絶縁膜が形成されない。
That is, since a plurality of sets of liquid crystal display panels are formed on the same substrate, a plurality of sets of liquid crystal display panels can be manufactured in one process, and manufacturing costs are significantly reduced. Further, when the insulating film of the non-linear element having the structure of first metal film-insulating film-second metal film is formed by anodizing the first metal, each of the multiple sets of liquid crystal display panels Since the metals are electrically connected, the insulating films of all nonlinear elements can be formed in a single anodic oxidation process, and there is no need to form an insulating film on the connecting terminal made of the first metal film. Since a protective film is provided, an insulating film is not formed on the connection terminal on which the protective film is formed.

基板上に第1金属配線を設け、該第1金属配線
を陽極酸化して絶縁膜を形成し、該絶縁膜に接し
て第2金属配線を形成し、該第1金属配線−該絶
縁膜−該第2金属配線により非線型素子を形成し
てなる非線型素子の形成方法において、該第1金
属配線中の絶縁膜の形成を必要としない領域に有
機薄膜をコートして後、該第1金属配線を陽極酸
化してなるようにしたから、上記絶縁膜の形成を
必要としない領域を陽極酸化膜形成後、エツチン
グ等により酸化膜を除去する必要がない為、この
領域を通じて良好な外部導通をとることができ
る。
A first metal wiring is provided on the substrate, an insulating film is formed by anodizing the first metal wiring, a second metal wiring is formed in contact with the insulating film, and the first metal wiring - the insulating film - In the method of forming a non-linear element by forming a non-linear element using the second metal wiring, after coating an organic thin film in a region of the first metal wiring that does not require the formation of an insulating film, Since the metal wiring is anodized, there is no need to remove the oxide film by etching after forming the anodic oxide film in the area where the insulation film is not required, so good external conduction can be achieved through this area. can be taken.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の下部金属電極の形状を示す
図。第2図は、下部金属電極を陽極酸化する様子
を示す図。第3図、MIMの構成を示す図。第4
図は、本発明実施例における下部電極端子部を有
機薄膜をコートした場所を示す図。第5図は、本
発明実施例で連続した下部電極を陽極酸化する様
子を示す図。第6図は、本発明実施例では下部電
極を陽極酸化し組立後のカツテイング場所を示す
図。
FIG. 1 is a diagram showing the shape of a conventional lower metal electrode. FIG. 2 is a diagram showing how the lower metal electrode is anodized. FIG. 3 is a diagram showing the configuration of MIM. Fourth
The figure shows a location where the lower electrode terminal portion in an example of the present invention is coated with an organic thin film. FIG. 5 is a diagram showing how a continuous lower electrode is anodized in an embodiment of the present invention. FIG. 6 is a diagram showing the cutting location after anodizing the lower electrode and assembling in the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、複数本の第1金属膜からなる列電
極線、マトリクス状に配置された第1金属膜−絶
縁膜−第2金属膜の構造からなる非線型素子と画
素電極、第1金属膜からなる接続端子部が形成さ
れ、かつ列電極線、非線型素子及び接続端子部を
構成する第1金属膜のそれぞれは電気的に接続さ
れてなる液晶表示パネルの製造方法において、同
一基板上に、多数組の該液晶表示パネルを形成
し、該多数組の液晶表示パネルのそれぞれは該第
1金属間で電気的に接続されてなり、該非線型素
子を構成する絶縁膜は第1金属膜を陽極酸化して
形成してなるものであり、陽極酸化する前に少な
くとも該第1金属膜からなる接続端子部上には保
護膜を形成して陽極酸化することを特徴とする液
晶表示パネルの製造方法。
1 On a substrate, a column electrode line made of a plurality of first metal films, a nonlinear element and pixel electrode made of a structure of a first metal film-insulating film-second metal film arranged in a matrix, and a first metal In a method for manufacturing a liquid crystal display panel, in which a connection terminal portion consisting of a film is formed, and each of the column electrode lines, the non-linear element, and the first metal film constituting the connection terminal portion are electrically connected, a plurality of sets of the liquid crystal display panels are formed, each of the plurality of sets of liquid crystal display panels is electrically connected between the first metals, and the insulating film constituting the non-linear element is connected to the first metal film. A liquid crystal display panel characterized in that a protective film is formed on at least the connection terminal portion made of the first metal film before the anodization. Production method.
JP57006553A 1982-01-19 1982-01-19 Manufacture of liquid crystal panel Granted JPS58123517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006553A JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006553A JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Publications (2)

Publication Number Publication Date
JPS58123517A JPS58123517A (en) 1983-07-22
JPH0437968B2 true JPH0437968B2 (en) 1992-06-23

Family

ID=11641518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006553A Granted JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS58123517A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070857A (en) * 1973-10-29 1975-06-12
JPS50150396A (en) * 1974-05-21 1975-12-02
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070857A (en) * 1973-10-29 1975-06-12
JPS50150396A (en) * 1974-05-21 1975-12-02
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Also Published As

Publication number Publication date
JPS58123517A (en) 1983-07-22

Similar Documents

Publication Publication Date Title
JPS59131974A (en) Electrooptic apparatus
US4861141A (en) Electro optical device and method for manufacturing same
JPS599635A (en) Electrooptic device
JPH0437968B2 (en)
JPH04305627A (en) Production of active matrix substrate
JP2795883B2 (en) Nonlinear element in liquid crystal display
JPS58123516A (en) Manufacture of liquid crystal panel
JP3249284B2 (en) Manufacturing method of liquid crystal display device
JPH03212621A (en) Liquid crystal display device
JPS58111085A (en) Manufacture of liquid crystal panel
JPS58181023A (en) Manufacture of electrooptic device
JPS6214118A (en) Electrochromic element
JP2590670B2 (en) Manufacturing method of electro-optical device
JPS5983191A (en) Manufacture of electrooptic unit
JP2795898B2 (en) Method for manufacturing MSI type nonlinear switching element
JPS6292919A (en) Liquid crystal display element for multiplex driving system
JPS58178320A (en) Electrooptic device
JPH0346632A (en) Production of reflection type mim active matrix substrate
JPH05173186A (en) Manufacture of thin film transistor panel
JPH0434510Y2 (en)
JPH0352277A (en) Manufacture of nonlinear element
JP3341346B2 (en) Manufacturing method of nonlinear element
JPS5840527A (en) Production of substrate for liquid crystal panel
JPS63122103A (en) Thin film nonlinear resistance element
JPS58196523A (en) Production of electrooptical device