JPS58181023A - Manufacture of electrooptic device - Google Patents

Manufacture of electrooptic device

Info

Publication number
JPS58181023A
JPS58181023A JP57064889A JP6488982A JPS58181023A JP S58181023 A JPS58181023 A JP S58181023A JP 57064889 A JP57064889 A JP 57064889A JP 6488982 A JP6488982 A JP 6488982A JP S58181023 A JPS58181023 A JP S58181023A
Authority
JP
Japan
Prior art keywords
film
electrode
mim
etching
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57064889A
Other languages
Japanese (ja)
Other versions
JPH0356456B2 (en
Inventor
Ryosuke Araki
亮輔 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57064889A priority Critical patent/JPS58181023A/en
Publication of JPS58181023A publication Critical patent/JPS58181023A/en
Publication of JPH0356456B2 publication Critical patent/JPH0356456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1365Active matrix addressed cells in which the switching element is a two-electrode device

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To make a display using an MIM large-sized, by anodizing the surface of the first metal which is etched selectively, forming the second metallic film, etching the second metallic film so as to be laid across the first metallic film, and removing the second metallic film. CONSTITUTION:A Ta film 12 is formed (a) on a glass transparent substrate 11, and Ta is etched and is patterned (b) to a prescribed shape. In this way, a data line 13 and one electrode 14 of an MIM element are formed at the same time. A Ta oxide film 15 is formed by being anodized in a citric acid solution, and a part of the Ta wire 13 is also anodized (c). A Cr film 16 is formed and its etching is executed (d). A resist film 17 is formed and a resist on the Ta electrode 14 is removed (e). A Cr film 18 is removed (f) by etching. In this way, the MIM element utilizing the Ta film thickness is formed. Subsequently, a transparent electrode 19 is formed in a prescribed shape, by which an MIM substrate is manufactured (g). In this way, an element having a size of 1/100 of a conventional one is obtained.

Description

【発明の詳細な説明】 本発明は電気光学装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing an electro-optical device.

更に詳しくは金属−酸化膜−金属構造を持つ非線形素子
(以下MIM素子と呼ぶ)を用いて各画素電極に電荷を
蓄積・保持させることにより表示を打なう液晶を用いた
電気光学装置の製造方法に関する。
More specifically, we manufacture electro-optical devices using liquid crystals that display by accumulating and retaining charge in each pixel electrode using a nonlinear element (hereinafter referred to as an MIM element) having a metal-oxide film-metal structure. Regarding the method.

近年、液晶表示装置の実用化が進み腕時計・電卓を始め
として多くの分野に応用がなされている。
In recent years, liquid crystal display devices have been put into practical use and are being applied to many fields including wristwatches and calculators.

しかし、他の分野、例えば情報端末や個人用小型電子機
器等の表示部への応用を考えた時、表示ユニットの容積
が小さい、低電圧駆動可能、消費電力が少ないなどとい
う利点にもかかわらず、駆動電圧−コントラスト特性が
あまり良くなく、多桁のマ) IJクス駆動が出来ない
ため表示可能な情装置が少ないという欠点が問題となっ
ていた。
However, when considering applications in other fields, such as display units in information terminals and small personal electronic devices, despite the advantages of display units such as small volume, low voltage drive, and low power consumption, However, the driving voltage-contrast characteristics were not very good, and since multi-digit IJ matrix driving was not possible, there were problems in that only a few information devices could be used for display.

この液晶表示装置の持つ欠点を解消するための一方法と
してM工M素子を用いたマトリクス駆動が考えられた。
Matrix driving using M elements has been considered as one way to overcome the drawbacks of this liquid crystal display device.

この方法は、第1図に一画素分の等価回路を示すように
非線形抵抗RMIMと容置CMIMが並列につながった
M工M素子1及び抵抗RLa と容置Q LCが並列に
つながった液晶を誘電体としたコンデンサ2とが直列に
結合されていると考えることが出来、マトリクス駆動の
選択期間にMIM素子1の低抵抗状態を利用して液晶を
誘電体としたコンデンサ2に電荷を蓄積し、非選択期間
はMIM素子1の高抵抗状態を利用して前述の電荷を保
持することにより液晶に電界を印加して液晶の配向状態
を制御して表示を行なうものである。
This method uses an M element 1 in which a nonlinear resistor RMIM and a capacitor CMIM are connected in parallel, and a liquid crystal in which a resistor RLa and a capacitor QLC are connected in parallel, as shown in Figure 1, which shows the equivalent circuit for one pixel. It can be considered that the capacitor 2 is connected in series with the capacitor 2, which has the liquid crystal as the dielectric, and the low resistance state of the MIM element 1 is utilized during the matrix drive selection period to accumulate charge in the capacitor 2, which has the liquid crystal as the dielectric. During the non-selection period, the high resistance state of the MIM element 1 is utilized to hold the above-mentioned charge, thereby applying an electric field to the liquid crystal to control the alignment state of the liquid crystal to perform display.

この方式の場合、M工M素子1の非線形性と液晶を誘電
体としたコンデンサ2の容量Q La値及び抵抗Hr、
o値の3者の相関で液晶に印加される実効値が決定され
る。これら3者のうち液晶を誘電体としたコンデンサ2
の容量Q LOと抵抗RLCは画素電極の寸法とセルギ
ャップ及び使用する液晶を定めれば必然的にその値が定
まってしまう。そのためM工M素子1には液晶部分に応
じた特性が要求され、例えば04m1角の画素電極を持
った7μmギャップのセルに誘電異方性Δ6−27(ε
=35.g=8)、Vt&:LIVrma。
In the case of this method, the nonlinearity of the M element 1, the capacitance QLa value and the resistance Hr of the capacitor 2 using the liquid crystal as a dielectric,
The effective value applied to the liquid crystal is determined by the correlation of the three o values. Of these three, capacitor 2 uses liquid crystal as a dielectric.
The values of the capacitance QLO and the resistance RLC are determined by determining the dimensions of the pixel electrode, the cell gap, and the liquid crystal used. Therefore, the M element 1 is required to have characteristics according to the liquid crystal part. For example, a cell with a 7 μm gap and a 04 m square pixel electrode has a dielectric anisotropy of Δ6-27 (ε
=35. g=8), Vt&:LIVrma.

Vaat=t5Vrmsのネマチック液晶を封入して、
ツイストネマチックセルとして1 / 500デユーテ
イで駆動したい場合には、例えばT、−Ta2α−N 
sOr / A u #I造のM工M素子に要求される
寸法は約5μm角となる。
Enclose a nematic liquid crystal with Vaat=t5Vrms,
If you want to drive a twisted nematic cell with a duty of 1/500, for example, T, -Ta2α-N
The dimensions required for the M element of sOr/A u #I structure are approximately 5 μm square.

M工M素子は、以下の方法で形成される。ガラス等の透
明基板5FにT a Ill 6をスパッタ蒸着等によ
り形成し、7オトエノチング法によりTaを選択的にエ
ツチングして所定の形状になす。このとき’ra配線と
MUMの一方の電極が同時に形成される。
The M element is formed by the following method. Ta Ill 6 is formed on a transparent substrate 5F made of glass or the like by sputter deposition or the like, and Ta is selectively etched using a 7-otoetching method to form a predetermined shape. At this time, the 'ra wiring and one electrode of the MUM are formed simultaneously.

前記バター・ンニングされたTa6をC1,01wt%
クエン酸水溶水溶液中極酸化した後、Cr (NsOy
もしくは、さらに上層にAuを連続蒸着したものでもよ
い)8を蒸着し、これをフォトエツチング法により所定
の形状にパターンニングしてM工M素子となす。7・・
・陽!#酸化膜。この後透明電極9を形成して液晶表示
装置の一方の電極基板とする。
C1.01wt% of the buttered Ta6
After polar oxidation in an aqueous citric acid solution, Cr (NsOy
Alternatively, Au may be continuously deposited as an upper layer) (8) and patterned into a predetermined shape by photo-etching to form an M element. 7...
・Sun! #Oxide film. After that, a transparent electrode 9 is formed to serve as one electrode substrate of the liquid crystal display device.

以後通常の表示装置と同様に組立てることにより液晶表
示装置となす。
Thereafter, it is assembled into a liquid crystal display device in the same manner as a normal display device.

シタ力ってM工M素子寸法は、7オトエソチングの精度
、特にフォトリングラフィの精度により最小限界が決ま
る。5μm寸法の、<ターン化には高精度のマスクアラ
イナ−を必要とするが、こういりた高精度マスクアライ
ナ−は、基板寸法が小さく現段階では4インチ径の基板
が最高で、これ以上大きな基板が可能なマスクアライナ
−は解像度が低くなる。列の方法としてマスク製作に利
用されているパターンジェネレーターという製電を用い
る方法がある。このパターンジェネレーターは、解像度
は2〜3μmで基板寸法も6インチ四角のものが可能で
あるが処理能力が小さく、1時間当り1枚程度でコスト
高となり量産にはむかない。
The minimum limit for the size of the M element, ie, the force, is determined by the accuracy of the 7-dimensional etching, especially the accuracy of the photolithography. A high-precision mask aligner is required for 5μm dimension <turning, but such a high-precision mask aligner has a small substrate size, and currently works best on a 4-inch diameter substrate, and for larger substrates. Mask aligners that use substrates have lower resolution. There is a method using an electrical device called a pattern generator, which is used in mask production. This pattern generator has a resolution of 2 to 3 .mu.m and is capable of producing a substrate with a size of 6 inches square, but its processing capacity is small and the processing capacity is about one sheet per hour, making it expensive and unsuitable for mass production.

本発明の目的は、かかる欠点を除去しパターン形成にお
けるフォトリソグラフィのパターン寸法に対する制限を
緩やかにし、大型基板上への製造を容易ならしめること
により大型の電気光学装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a large-sized electro-optical device by eliminating such drawbacks, easing restrictions on pattern dimensions of photolithography in pattern formation, and facilitating manufacturing on large-sized substrates.

本発明は素子の寸法が従来フォトエツチングの精一度に
のみ制限されていたものを金属膜の膜厚で制限すること
により、寸法を大巾に小さくし従来に比べより小さな寸
法の絵素を形成し表示装置の大型化、高解像化ならしめ
るものである。
In the present invention, the dimensions of the element, which were conventionally limited only by the precision of photoetching, are limited by the thickness of the metal film, thereby significantly reducing the dimensions and forming picture elements with smaller dimensions than in the past. This allows display devices to become larger and have higher resolution.

以下実施例に従って説明する。The following will be explained according to examples.

実施例1 第4図及第5図を用いて説明する。第4図、第5図はそ
れぞれ本発明について示した断面図及び平1面図である
Example 1 This will be explained using FIGS. 4 and 5. FIGS. 4 and 5 are a cross-sectional view and a plan view of the present invention, respectively.

ガラス等の透明基板11上にスパッタ蒸着によりT a
 膜12を形成しくa)、フォトエツチング法により選
択的に’raをエッチ〉グし所定の形状にT(+をパタ
ーンニングする(b)。この時、配!1(データ線)1
3とM工M素子の一方の電極14は同時に形成される。
T a is deposited on a transparent substrate 11 such as glass by sputter deposition.
To form the film 12 (a), selectively etch 'ra' by photo-etching method and pattern T(+) into a predetermined shape (b). At this time, the wiring !1 (data line) 1
3 and one electrode 14 of the M element are formed at the same time.

次に0.01 wt%クエン酸水溶水溶液中極酸化する
ことによりTat極14の表面にTa#化膜15を形成
する。この時同時にTα配1113の一部も陽極酸化さ
れる(c)。
Next, a Ta# film 15 is formed on the surface of the Tat electrode 14 by polar oxidation in a 0.01 wt% citric acid aqueous solution. At this time, a part of the Tα layer 1113 is also anodized (c).

次にCr膜16を熱蒸着等により形成し、これを所定の
形状に7オトエソチングする(d)。このときTa電極
14上のCrMiを除去する。まず通常のフォトエツチ
ング法程に従いレジスト膜17を形成し、Ta電511
14上のレジストを通常のフォトリソグラフィの技術に
より除去する(#)。’ra電極14上の露出されたO
r膜18をエツチングにより除去する(1)。これによ
りTa膜厚を利用したMIM素子が形成される。
Next, a Cr film 16 is formed by thermal evaporation or the like, and etched into a predetermined shape (d). At this time, CrMi on the Ta electrode 14 is removed. First, a resist film 17 is formed according to a normal photoetching process, and a Ta electrode 511 is formed.
The resist on 14 is removed by normal photolithography technique (#). 'ra electrode 14 exposed O
The r film 18 is removed by etching (1). As a result, an MIM element utilizing the Ta film thickness is formed.

この後透明電極19を所定の形状で形成してMIM基板
が出来る(?)。以下通常の液晶表示装置と同様にして
組立てることにより表示装置が得られる。
After this, a transparent electrode 19 is formed in a predetermined shape to form an MIM substrate (?). A display device is obtained by assembling the display device in the same manner as a normal liquid crystal display device.

実施例2 第6図を用いて説明する。Example 2 This will be explained using FIG.

第6図は本発明を説明する断面図である。FIG. 6 is a sectional view illustrating the present invention.

Cr膜16を形成し、所定の形状にパターンニングする
までは、実施例1と同様に行った後(al、粘性の小さ
なレジスト21を全面に塗布する(6)。
After forming the Cr film 16 and patterning it into a predetermined shape in the same manner as in Example 1 (al), a resist 21 with low viscosity is applied to the entire surface (6).

粘性が小さいため基板上の凹部はレジスト膜厚が厚く、
凸部は薄くなる。レジスト塗布後の熱処理により、さら
にこの傾向は大きくなる。レジスト塗布した基板をプラ
ズマエツチングもしくはイオンエツチングによりレジス
)t−エツチングしてぃ表面が側出される(c)。露出
されるのは、最も高い所の面であるT、上のCrmであ
る(レジスト膜厚が最も薄い)。この露出したOrをエ
ツチングするとTaFIkの段差部は垂直方向には厚く
なっているためエツチングされず第6図−のように残り
、M I Ml子の電極22が形成される。以後透明電
極19を形成しM工M素子基板が出来るU)。以下通常
の液晶表示装置と同様にして組立てることにより表示装
置を得る。
Because the viscosity is low, the resist film thickness is thick in the recesses on the substrate.
The convex portion becomes thinner. This tendency is further exacerbated by heat treatment after resist coating. The resist-coated substrate is subjected to plasma etching or ion etching to expose the resist surface (c). What is exposed is the Crm above T, which is the highest surface (the resist film thickness is the thinnest). When this exposed Or is etched, the stepped portion of TaFIk is not etched because it is thick in the vertical direction and remains as shown in FIG. 6, forming the electrode 22 of the M I Ml element. Thereafter, a transparent electrode 19 is formed to produce an M-process M-element substrate (U). Thereafter, a display device is obtained by assembling in the same manner as a normal liquid crystal display device.

以上の方法により形成されるM工M素子の寸法は以下の
ようになる。
The dimensions of the M element manufactured by the above method are as follows.

マスクアライナ−の解像度を20μmとすれば、従来の
MIM素子寸法は、Tαα電極巾2ハ4発明によれば、
TQ膜厚を02μmとすると、Ta電極巾(Ta膜厚)
 0. 2 /j m X C r電極巾20An=4
μ−となり従来の100分の1のM工M素子寸法が可能
となる。本説明の図面は従来の形状と同じ形状としてい
るため、前記M工M素子がTa電極の両側に出来るよう
になっているためM工M素子寸法は2つ合せて8μ−と
なり50分の1となっている。第7図のように1つのM
IMとする,ことは簡単である。
If the resolution of the mask aligner is 20 μm, the conventional MIM element dimensions are Tαα electrode width 2×4 according to the invention.
If the TQ film thickness is 02 μm, the Ta electrode width (Ta film thickness)
0. 2 /j m X Cr electrode width 20An=4
μ-, which makes it possible to reduce the M element size by 1/100 of the conventional size. The drawings in this explanation have the same shape as the conventional shape, so the M-type M elements are formed on both sides of the Ta electrode, so the total dimensions of the two M-type elements are 8 μ-, which is 1/50. It becomes. One M as shown in Figure 7
It is easy to use IM.

本発明の説明において第2の金属にCrを用いたが、O
rの他NiCrが一般的であり、また透明電極との接続
を得やすくするため及び液晶に対する金属のパソンベー
ション膜としてAuを金属の上層に形成することもある
In the description of the present invention, Cr was used as the second metal, but O
In addition to r, NiCr is commonly used, and Au is sometimes formed on top of the metal to facilitate connection with the transparent electrode and as a metal passivation film for the liquid crystal.

また、透明電極の形成はTa膜形成前でもCr膜形成前
でもよい。
Further, the transparent electrode may be formed before forming the Ta film or before forming the Cr film.

以上本発明によれば従来のM工M素子面積に比べ1〜2
ケタ小さいM工M素子を得ることが可能となる。
As described above, according to the present invention, compared to the conventional M process M element area, the area is 1 to 2
It becomes possible to obtain an M element with an order of magnitude smaller size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1画素分のMUM素子と液晶部分の等価回路で
ある。 第2図,第3図は従来のM工M素子を示す。 第4図(、)〜(め、第5図(a)〜(杓は本発明によ
るMIM素子を示す断面図及び平面圓である。 第6図(a)〜(1)は、本発明によるM工M素子を示
す断面図である。 第7図は、本発明によるM工M素子を示す平面図である
。 以  上 出願人  株式会社諏訪精工舎 代理人  弁理士 最上  務 第2図 ’L’j J図 −lり 一/1 (J) 第50 第6図 第7図 121−
FIG. 1 shows an equivalent circuit of a MUM element for one pixel and a liquid crystal section. FIGS. 2 and 3 show conventional M-engine and M-elements. Figures 4(a) to 5(a) to 5(a) are cross-sectional views and plane circles showing the MIM device according to the present invention. FIG. 7 is a cross-sectional view showing the M-engine M element. FIG. 7 is a plan view showing the M-engine M element according to the present invention. 'j J figure-1/1 (J) No. 50 Fig. 6 Fig. 7 121-

Claims (1)

【特許請求の範囲】[Claims] 基板上に第1の金属膜を形成する工程と、第1の金属を
所定の形状に選択的にエツチング、する工程と、前記第
1の金属の表面を陽極酸化する工程と、第2の金属膜を
形成する工程と、第2の金属の一部が酸化膜でおおわれ
た第1の金属上をまたがるように第2の金属膜を所定の
形状に選択的にエツチングする工程と、前記第2の金属
膜のパターンの内、前記第1の金属膜上の前記第2の金
属膜を選択的に除去する工程とを有することを特徴とす
る電気光学装置の製造方法。
a step of forming a first metal film on a substrate; a step of selectively etching the first metal into a predetermined shape; a step of anodizing the surface of the first metal; a step of selectively etching the second metal film into a predetermined shape so that a portion of the second metal straddles the first metal covered with the oxide film; selectively removing the second metal film on the first metal film in the metal film pattern.
JP57064889A 1982-04-19 1982-04-19 Manufacture of electrooptic device Granted JPS58181023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57064889A JPS58181023A (en) 1982-04-19 1982-04-19 Manufacture of electrooptic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064889A JPS58181023A (en) 1982-04-19 1982-04-19 Manufacture of electrooptic device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15508992A Division JP2590670B2 (en) 1992-06-15 1992-06-15 Manufacturing method of electro-optical device

Publications (2)

Publication Number Publication Date
JPS58181023A true JPS58181023A (en) 1983-10-22
JPH0356456B2 JPH0356456B2 (en) 1991-08-28

Family

ID=13271102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064889A Granted JPS58181023A (en) 1982-04-19 1982-04-19 Manufacture of electrooptic device

Country Status (1)

Country Link
JP (1) JPS58181023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164279A (en) * 1985-01-16 1986-07-24 Seiko Epson Corp Manufacture of mim liquid crystal display unit
US4683183A (en) * 1984-01-13 1987-07-28 Seiko Epson Kabushiki Kaisha Method of manufacturing MIM elements in liquid crystal displays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683183A (en) * 1984-01-13 1987-07-28 Seiko Epson Kabushiki Kaisha Method of manufacturing MIM elements in liquid crystal displays
JPS61164279A (en) * 1985-01-16 1986-07-24 Seiko Epson Corp Manufacture of mim liquid crystal display unit

Also Published As

Publication number Publication date
JPH0356456B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
JPS59131974A (en) Electrooptic apparatus
JPS6349914B2 (en)
JPS599635A (en) Electrooptic device
JPS58181023A (en) Manufacture of electrooptic device
JP2590670B2 (en) Manufacturing method of electro-optical device
JPH0326367B2 (en)
JPS5852680A (en) Manufacture of liquid crystal panel substrate
JPS58178320A (en) Electrooptic device
JPH0446412B2 (en)
JPH06308539A (en) Production of matrix array substrate
JPH029325B2 (en)
JPH0352277A (en) Manufacture of nonlinear element
JPS58123516A (en) Manufacture of liquid crystal panel
JP2549682B2 (en) Liquid crystal display and manufacturing method thereof
JPH02304534A (en) Display device driving nonlinear element
JPS6037523A (en) Matrix liquid crystal display device
JPH0437968B2 (en)
JPS6364081A (en) Formation of wire electrode
JPS5840527A (en) Production of substrate for liquid crystal panel
JPH0519302A (en) Manufacture of matrix array substrate
JPH05333380A (en) Liquid crystal display device
JPS628125A (en) Production of liquid crystal display device and its substrate
JPH05341326A (en) Liquid crystal display device and its production
JPS58127985A (en) Liquid crystal display
JPS5879281A (en) Matrix type liquid crystal display