JPH05341326A - Liquid crystal display device and its production - Google Patents

Liquid crystal display device and its production

Info

Publication number
JPH05341326A
JPH05341326A JP14732592A JP14732592A JPH05341326A JP H05341326 A JPH05341326 A JP H05341326A JP 14732592 A JP14732592 A JP 14732592A JP 14732592 A JP14732592 A JP 14732592A JP H05341326 A JPH05341326 A JP H05341326A
Authority
JP
Japan
Prior art keywords
conductor
insulator
liquid crystal
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14732592A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Miyuki Watanabe
みゆき 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14732592A priority Critical patent/JPH05341326A/en
Publication of JPH05341326A publication Critical patent/JPH05341326A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the liquid crystal display device which decreases photolithographic stages as compared with three times of the conventional process and improves the symmetry of the current-voltage characteristic and the process for production of this display device. CONSTITUTION:At least one 10 of a pair of substrates facing each other by clamping a liquid crystal consists of a matrix array substrate which is disposed with plural nonlinear resistance elements 17 in an array form, is disposed with pixel electrodes 15 respectively in series on the respective nonlinear resistance elements 17 and is further connected with respective rows or column directions by wiring electrodes 16. Each of the nonlinear resistance elements 17 consists of a first conductor (pixel electrode part 15)-insulator 11-second conductor 12- insulator-11-third conductor (wiring electrode part 16). The first conductor and the third conductor consist of the same material and both exist on one surface of the insulator 11. The second conductor 12 exists on the other surface of the insulator 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、特に非線形抵抗素子
からなるスイッチング素子を各画素に組み込んだ液晶表
示装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device in which a switching element composed of a non-linear resistance element is incorporated in each pixel, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、液晶表示装置は、時計,電卓,計
測機器等の比較的簡単なものから、パーソナル・コンピ
ュータ,ワード・プロセッサ,更にはOA用の端末機
器,TV画像表示等の大容量情報表示用として使用され
てきており、より高画質が求められるようになってき
た。
2. Description of the Related Art In recent years, liquid crystal display devices have changed from relatively simple devices such as clocks, calculators and measuring instruments to personal computers, word processors, OA terminal devices, large-capacity TV image displays and the like. It has been used for information display, and higher image quality has been demanded.

【0003】この種の液晶表示装置における駆動方法と
しては、単純マルチプレックス駆動方式が、2階調表示
品として使用されるワード・プロセッサなどに対して一
般に採用されてきた。しかし、液晶表示装置に対してよ
り大画面,高解像度,高精細度が求められるようにな
り、これまでのマルチプレックス駆動方式の欠点とされ
ていたコントラスト比を向上させるための駆動方法が、
様々行なわれている。その1つが個々の画素を直接にス
イッチ駆動するものであり、スイッチング素子に薄膜ト
ランジスタや非線形抵抗素子を用いている。このうち非
線形抵抗素子は、薄膜トランジスタの3端子に比べて基
本的に2端子であるために構造が簡単であり、製造が容
易である。このため、製造歩留まりの向上が期待出来、
コスト低下の利点がある。
As a driving method in this type of liquid crystal display device, a simple multiplex driving method has been generally adopted for a word processor used as a two-gradation display product. However, a liquid crystal display device is required to have a larger screen, higher resolution, and higher definition, and a driving method for improving the contrast ratio, which has been a drawback of the multiplex driving method so far, is
Various things are done. One of them directly switches and drives each pixel, and uses a thin film transistor or a non-linear resistance element as a switching element. Among them, the non-linear resistance element basically has two terminals as compared with three terminals of the thin film transistor, and therefore has a simple structure and is easy to manufacture. Therefore, improvement in manufacturing yield can be expected,
There is an advantage of cost reduction.

【0004】このような非線形抵抗素子は、薄膜トラン
ジスタと同様の材料を用いて接合形成したダイオードの
型、酸化亜鉛を用いたバリスタの型、電極間に絶縁物を
挾んだ金属−絶縁体−金属(MIM)の型、更には金属
電極間に半導電性の層を用いた型等が開発されている。
このうちMIM型は、構造が最も簡単なものの1つで、
現在、既に実用化されている。さて、図7は従来のMI
M型の非線形抵抗素子を有するマトリックスアレイ基板
の1画素部分の一例を示す断面図であり、製造工程に従
って説明する。
Such a non-linear resistance element is a diode type formed by using a material similar to that of a thin film transistor, a varistor type using zinc oxide, a metal-insulator-metal sandwiching an insulator between electrodes. A (MIM) mold, and a mold using a semiconductive layer between metal electrodes have been developed.
Of these, the MIM type is one of the simplest in structure,
Currently, it is already in practical use. Now, Fig. 7 shows the conventional MI
FIG. 3 is a cross-sectional view showing an example of one pixel portion of a matrix array substrate having an M-type nonlinear resistance element, which will be described according to the manufacturing process.

【0005】先ず、ガラス基板1上にTa膜2をスパッ
タリング法や真空蒸着法等の薄膜形成法により形成し、
写真蝕刻法によりパターニングする。これにより、配線
(データ線)およびこの配線の端部である電極端子と、
これらに一体化した非線形抵抗素子の一方の第1の金属
からなる電極が得られる。
First, a Ta film 2 is formed on a glass substrate 1 by a thin film forming method such as a sputtering method or a vacuum evaporation method,
Patterning is performed by a photo-etching method. As a result, the wiring (data line) and the electrode terminal that is the end of this wiring,
An electrode made of the first metal of one of the nonlinear resistance elements integrated with these is obtained.

【0006】次に、Ta膜2を例えばクエン酸水溶液中
で陽極酸化法により化成し、非線形抵抗素子の絶縁体を
構成する酸化膜3を形成する。この時、電極端子に酸化
膜3が成長しないように、保護する必要がある。この方
法として、シリコンゴム張り付けやネガレジストの塗布
がある。続いて、非線形抵抗素子の他方の第2の金属と
してCr膜4を、薄膜形成・加工法により形成すると、
非線形抵抗素子5が完成する。更に、画像表示用の透明
電極6をCr膜4と接続するように形成すれば良い。こ
うした基本的な製造技術は特公昭55-161273 号公報に開
示され、その改良技術が特開昭58-178320 号公報等に開
示されている。
Next, the Ta film 2 is anodized in an aqueous solution of citric acid, for example, to form an oxide film 3 which constitutes an insulator of the nonlinear resistance element. At this time, it is necessary to protect the oxide film 3 from growing on the electrode terminals. As this method, there is sticking of silicone rubber or application of a negative resist. Subsequently, when the Cr film 4 is formed as the other second metal of the nonlinear resistance element by the thin film forming / processing method,
The nonlinear resistance element 5 is completed. Further, the transparent electrode 6 for image display may be formed so as to be connected to the Cr film 4. Such a basic manufacturing technique is disclosed in JP-B-55-161273, and an improved technique thereof is disclosed in JP-A-58-178320.

【0007】[0007]

【発明が解決しようとする課題】従来の非線形抵抗素子
は、上記の特公昭55-161273 号公報に記載されているよ
うに、非線形抵抗素子5および画像表示用の透明電極6
をパターン形成するために、3回の薄膜形成・写真蝕刻
を必要とした。このために、従来の単純マトリックスに
比べると、性能において優れながら工程は複雑となり、
生産収率の点では劣っていた。そこで、生産性をあげ、
収率を高めるために、より少ない工程で装置を製造する
ことが望まれていた。更に、非線形抵抗素子は構成上は
対称となっているが、双方の電極/絶縁膜界面が同一の
状態にはなり難く、液晶層のスイッチングに不可欠な電
流−電圧の双方向対称性が得難かった。このため、表示
画面上でフリッカーと呼ばれるちらつき現象や、残像と
称される表示情報の消え残りを生じ、問題となってい
た。これを解決するための手段として、非線形抵抗素子
を対称性を補うような向きに2個直列もしくは並列に接
続する報告がなされているが、いずれも工程をより複雑
にし、電流−電圧特性の対称性は改善出来ても、生産性
に劣るものであった。
A conventional non-linear resistance element is a non-linear resistance element 5 and a transparent electrode 6 for image display as described in Japanese Patent Publication No. 55-161273.
In order to form a pattern, it was necessary to form a thin film and photolithography three times. Therefore, compared to the conventional simple matrix, the process is complicated while the performance is excellent,
It was inferior in terms of production yield. Therefore, increase productivity,
It was desired to manufacture the device in fewer steps to increase the yield. Furthermore, although the non-linear resistance element is symmetrical in structure, it is difficult for both electrode / insulating film interfaces to be in the same state, and it is difficult to obtain bidirectional current-voltage symmetry, which is essential for switching the liquid crystal layer. It was For this reason, a flicker phenomenon called flicker on the display screen, and display information called an afterimage remains unerased, which is a problem. As a means for solving this, it has been reported that two non-linear resistance elements are connected in series or in parallel in a direction that complements the symmetry, but in both cases, the process is made more complicated and the current-voltage characteristics are symmetrical. The productivity was poor, but the productivity was poor.

【0008】この発明は、上記事情に鑑みなされたもの
で、フォトリソグラフィ工程を従来の3回に比べて減少
させると共に、電流−電圧特性の対称性を改善した液晶
表示装置及びその製造方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and provides a liquid crystal display device in which the photolithography process is reduced as compared with the conventional three times, and the symmetry of current-voltage characteristics is improved, and a manufacturing method thereof. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】この発明は、液晶を挾持
して相対向する一対の基板の少なくとも一方が、複数の
非線形抵抗素子をアレイ状に配置し、各非線形抵抗素子
にそれぞれ画素電極を直列に配置し、更に配線電極によ
り各行又は各列方向を接続したマトリクスアレイ基板よ
りなる液晶表示装置において、非線形抵抗素子は第1の
導体−絶縁体−第2の導体−絶縁体−第3の導体からな
り、且つ第1の導体と第3の導体は同一材料からなると
共にいずれも絶縁体の一面に位置し、絶縁体の他面に第
2の導体が位置する液晶表示装置である。
According to the present invention, at least one of a pair of substrates sandwiching a liquid crystal and facing each other has a plurality of nonlinear resistance elements arranged in an array, and each nonlinear resistance element has a pixel electrode. In a liquid crystal display device including a matrix array substrate arranged in series and connected in the respective row or column directions by wiring electrodes, the nonlinear resistance element includes a first conductor-insulator-second conductor-insulator-third conductor. The liquid crystal display device is made of a conductor, the first conductor and the third conductor are made of the same material, and both are located on one surface of the insulator, and the second conductor is located on the other surface of the insulator.

【0010】又、この発明は、光透過性の基板上に導体
を形成する工程と、導体を光透過率が著しく落ちない1
00オングストロームを上限にして僅かに残して陽極酸
化を行ない絶縁体を積層形成する工程と、絶縁体上に透
明導電膜で配線,素子の両端電極,液晶駆動用電極をパ
ターン形成する工程と、を具備する液晶表示装置の製造
方法である。
Further, according to the present invention, the step of forming a conductor on a light-transmissive substrate, and the light transmittance of the conductor is not significantly reduced.
A step of forming an insulator by performing anodization while slightly leaving the upper limit of 00 angstrom to form an insulator, and a step of patterning a wiring, a both-end electrode of an element, and a liquid crystal drive electrode on the insulator by a transparent conductive film. It is a method of manufacturing a liquid crystal display device.

【0011】[0011]

【作用】この発明によれば、非線形抵抗素子を直列接続
することにより、電流−電圧の対称性が確保され、残像
対策には多大な功を奏し、フォトリソグラフィ工程も基
本的には1〜2回と、従来に比べて少なく、表示特性の
向上と生産性の向上が期待出来る。
According to the present invention, by connecting the non-linear resistance elements in series, the current-voltage symmetry is ensured, which is very effective in preventing afterimages, and the photolithography process is basically 1-2 steps. The number of times is less than that of the conventional one, and improvement in display characteristics and productivity can be expected.

【0012】[0012]

【実施例】以下、図面を参照して、この発明の3つの実
施例につき詳細に説明するが、この発明は液晶表示装置
のマトリックスアレイ基板、特にその非線形抵抗素子付
近を改良したもので、非線形抵抗素子付近についての
み、説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Three embodiments of the present invention will now be described in detail with reference to the drawings. The present invention is an improvement of the matrix array substrate of a liquid crystal display device, particularly the vicinity of its non-linear resistance element. Only the vicinity of the resistance element will be described.

【0013】尚、各実施例につき説明する前に、この発
明の概略について述べることにする。即ち、この発明の
液晶表示装置に用いるマトリックスアレイ基板では、電
流−電圧スイッチング特性を起こす絶縁体の上に一定間
隔に一対の電極となる第1の導体と第3の導体を配置
し、更に絶縁体の下に第2の導体を配置して、第1の導
体−絶縁体−第2の導体−絶縁体−第3の導体の構造を
持つ直列接続型の非線形抵抗素子を設けることにより、
電流−電圧特性の対称性を改善している。
Before describing each embodiment, the outline of the present invention will be described. That is, in the matrix array substrate used in the liquid crystal display device of the present invention, the first conductor and the third conductor, which are a pair of electrodes, are arranged at a constant interval on the insulator that causes the current-voltage switching characteristic, and further insulation is performed. By arranging the second conductor under the body and providing a series connection type non-linear resistance element having a structure of a first conductor-insulator-second conductor-insulator-third conductor,
The symmetry of current-voltage characteristics is improved.

【0014】このために、格別な工程を増やすことをせ
ず、基板上全面に薄い光透過性導体層、電流−電圧スイ
ッチング特性を起こす絶縁体層を積層形成する。これら
は順に各層を蒸着やスパッターで形成しても良いが、電
流−電圧スイッチング特性に敏感な形成膜厚の均一性の
点からは、TaやAlなどを形成した後、光透過性の導
体を光透過率が著しく落ちない100オングストローム
を上限にして僅かに残して陽極酸化をを行ない、積層構
造を得る方法が好ましい。次いで、絶縁体上に透明導電
膜で配線,素子の両端電極,液晶駆動用電極をパターン
形成すれば、僅か1回のフォトリソグラフィ工程でアレ
イ基板が完成する。
For this reason, a thin light-transmissive conductor layer and an insulator layer that causes current-voltage switching characteristics are laminated on the entire surface of the substrate without increasing extra steps. These layers may be formed by vapor deposition or sputtering in order, but from the viewpoint of uniformity of the formed film thickness sensitive to current-voltage switching characteristics, after forming Ta or Al, a light-transmissive conductor is formed. A method of obtaining a laminated structure by performing anodic oxidation with 100 angstrom being the upper limit at which the light transmittance does not remarkably decrease and leaving a small amount of it is preferable. Then, wiring, electrodes on both sides of the device, and electrodes for driving liquid crystal are patterned on the insulator to complete the array substrate by only one photolithography process.

【0015】この場合は、図6(a)に示すように、近
接する画素電極部15(第1の導体)間の距離Aや画素
電極部15と配線電極部16(第3の導体)間の距離B
が素子の両端電極の距離Cより大きく、近接する画素電
極部15間や画素電極部15と配線電極部16間で余計
な電流が流れない程度に、絶縁体の抵抗が大きい時に有
効となる。これが問題となるような場合、更に図6
(b)に示すように、絶縁体層と光透過性導体層を配線
や素子,液晶駆動用電極を取り囲むようにパターニング
すれば良い。あるいは、予め陽極酸化前に金属をほぼ配
線や素子,液晶駆動用電極を連ならせたような形状にパ
ターニングして同様な工程処理を行なえば良い。これら
の方法でも、フォトリソグラフィ工程は従来の3回に比
べて2回と少ない。このようにして、少ない工程で残像
やフリッカーをなくした液晶表示装置を実現出来た。 (第1の実施例)
In this case, as shown in FIG. 6A, the distance A between the adjacent pixel electrode portions 15 (first conductor) and the distance between the pixel electrode portion 15 and the wiring electrode portion 16 (third conductor) are set. Distance B
Is larger than the distance C between both end electrodes of the element, and is effective when the resistance of the insulator is large to the extent that an unnecessary current does not flow between the adjacent pixel electrode portions 15 or between the pixel electrode portion 15 and the wiring electrode portion 16. If this poses a problem, please refer to FIG.
As shown in (b), the insulating layer and the light transmissive conductor layer may be patterned so as to surround the wiring, the element, and the liquid crystal driving electrode. Alternatively, a similar process may be performed by previously patterning a metal into a shape in which wirings, elements, and liquid crystal driving electrodes are connected in advance before anodizing. Even with these methods, the number of photolithography steps is as small as twice compared with the conventional three times. In this way, it was possible to realize a liquid crystal display device that eliminates afterimages and flicker in a few steps. (First embodiment)

【0016】この第1の実施例におけるマトリックスア
レイ基板は、図1(a)〜(c),図2および図3に示
すように構成され、図2は図1(c)の要部拡大図であ
り、図3は図1(c)の平面図であって上記の図6
(a)と同じものである。各図により、製造方法的に述
べることにする。
The matrix array substrate in the first embodiment is constructed as shown in FIGS. 1 (a) to 1 (c), FIG. 2 and FIG. 3, and FIG. 2 is an enlarged view of an essential part of FIG. 1 (c). FIG. 3 is a plan view of FIG. 1C, and FIG.
It is the same as (a). A manufacturing method will be described with reference to the drawings.

【0017】先ず、図1(a)に示すように、例えばS
iO2 のアルカリ防御被膜を表面部に備えた1.1mm
厚のガラス基板10上に、五酸化タンタルよりなる絶縁
体層11とTa(タンタル)よりなる光透過性導体層1
2を、Taのスパッタリング法とそれに続く陽極酸化に
より形成する。この時、450オングストロームのTa
を予め形成しておき、0.01%のクエン酸水溶液中
で、Ptを対極にして60Vの電圧を印加して、元々の
450オングストロームのTaが酸化膜に転嫁して10
00オングストロームの五酸化タンタルよりなる絶縁体
層11が得られる。スパッタリング法で得た元々のTa
は場所により10%の膜厚ばらつきがあり、430〜4
70オングストロームの範囲にあった。又、陽極酸化膜
のばらつきは極めて小さく、990〜1010オングス
トロームであった。
First, as shown in FIG. 1A, for example, S
1.1mm with a protective coating of alkali of io 2 on the surface
On a thick glass substrate 10, an insulating layer 11 made of tantalum pentoxide and a light transmissive conductor layer 1 made of Ta (tantalum).
2 is formed by the sputtering method of Ta and the subsequent anodic oxidation. At this time, Ta of 450 angstrom
Is formed in advance, and a voltage of 60 V is applied with Pt as a counter electrode in a 0.01% aqueous solution of citric acid, and the original Ta of 450 Å is transferred to the oxide film.
An insulator layer 11 of tantalum pentoxide of 00 Å is obtained. Original Ta obtained by sputtering method
Has a film thickness variation of 10% depending on the location, 430-4
It was in the 70 angstrom range. Further, the variation of the anodic oxide film was extremely small and was 990 to 1010 Å.

【0018】この結果、残ったTaは30〜70オング
ストロームの範囲にあり、可視光領域で97%以上の実
用上十分な光透過率を有していた。Ta,Al,Tiな
ど通常の金属では、100オングストローム以下であれ
ば、実用上十分な光透過率を有することが判っている。
又、五酸化タンタルよりなる絶縁体層11も透明であ
り、平坦であった。
As a result, the remaining Ta was in the range of 30 to 70 angstroms and had a practically sufficient light transmittance of 97% or more in the visible light region. It is known that ordinary metals such as Ta, Al, and Ti have a practically sufficient light transmittance as long as they are 100 angstroms or less.
The insulator layer 11 made of tantalum pentoxide was also transparent and flat.

【0019】次に、図1(b)に示すように、絶縁体層
11上にITOからなる透明導電膜13をスパッタリン
グ法により形成する。この時に、透過率を高め、抵抗率
を十分に下げ、エッチング加工性を上げるために、基板
温度を200℃に上げる。続いて、透明導電膜13上に
レジスト(感光性樹脂)を全面塗布した後、フォトマス
クを用いて露光し、現像にてレジストパターン14を形
成する。このレジストパターン14は、透明導電膜13
のうち後述の画素電極部と配線電極部となる部分を覆っ
ている。
Next, as shown in FIG. 1B, a transparent conductive film 13 made of ITO is formed on the insulator layer 11 by a sputtering method. At this time, the substrate temperature is raised to 200 ° C. in order to increase the transmittance, sufficiently lower the resistivity, and improve the etching processability. Subsequently, after a resist (photosensitive resin) is applied on the entire surface of the transparent conductive film 13, the resist pattern 14 is formed by exposure using a photomask and development. The resist pattern 14 is the transparent conductive film 13
Of these, a portion to be a pixel electrode portion and a wiring electrode portion described later is covered.

【0020】次に、図1(c)および図2,図3に示す
ように、水,塩酸,硝酸を1:1:0.1の割合(容量
比)に混合し、30℃に加熱したエッチング液によりレ
ジストパターン14と同一のパターンを形成し、レジス
トパターン14を除去して画素電極部15と配線電極部
16を得る。そして、図2から明らかなように、第1の
導体(画素電極部15)−絶縁体(絶縁体層11)−第
2の導体(光透過性導体層12)−絶縁体(絶縁体層1
1)−第3の導体(配線電極部16)の構造を持つ非線
形抵抗素子17が形成される。尚、電流は、図2のE→
F→G又はG→F→Eの経路で流れる。更に、図3では
近接する画素電極部15間の距離A,画素電極部15と
配線電極部16間の距離Bはいずれも20μmに設定さ
れ、素子電極間距離Cは7μmに設定されている。そし
て、光透過性導体層12が薄いため高抵抗であり、これ
らの間で光透過性導体層12を介しての余計な電流の流
れは極めて小さく無視出来るものであった。
Next, as shown in FIG. 1 (c) and FIGS. 2 and 3, water, hydrochloric acid and nitric acid were mixed at a ratio of 1: 1: 0.1 (volume ratio) and heated to 30.degree. The same pattern as the resist pattern 14 is formed with an etching solution, and the resist pattern 14 is removed to obtain the pixel electrode portion 15 and the wiring electrode portion 16. Then, as is clear from FIG. 2, the first conductor (pixel electrode portion 15) -insulator (insulator layer 11) -second conductor (light-transmissive conductor layer 12) -insulator (insulator layer 1)
1) -The non-linear resistance element 17 having the structure of the third conductor (wiring electrode portion 16) is formed. The current is E →
It flows in the route of F → G or G → F → E. Further, in FIG. 3, the distance A between the adjacent pixel electrode portions 15 and the distance B between the pixel electrode portion 15 and the wiring electrode portion 16 are both set to 20 μm, and the inter-element electrode distance C is set to 7 μm. Since the light-transmissive conductor layer 12 is thin, it has a high resistance, and an extra current flow between them through the light-transmissive conductor layer 12 is extremely small and can be ignored.

【0021】この第1の実施例では、透明導電膜13単
層を電極に用いたが、配線電極部16側をCr,Al,
更にはTaなどの金属にしても良い。この場合には、普
通、フォトリソグラフィ工程が1回増えるが、大形高精
細の表示では配線抵抗の低下上、従来の技術でもこうし
た補助電極層の適用の必要性が生ずるものであり、格別
にこの点でこの発明の技術が劣るものではない。又、素
子特性の安定化のために、画素電極部15,配線電極部
16と絶縁体層11との接触部に数十〜百オングストロ
ームの薄いTi,Cr,Alなど金属層を設けても良
い。構造により、透明導電膜13の上もしくは下に透明
導電膜13と連続的に膜形成し、同一のフォトレジスト
マスクにてエッチングを行なえば、フォトリソグラフィ
工程が増加することもない。画素電極部15も、このく
らい薄い金属膜なら、光の透過をそれほど損なわずに済
み、問題はない。尚、上記のようなマトリックスアレイ
基板を用いて液晶表示装置を形成するには、例えば次の
ようにすれば良い。
In the first embodiment, the single layer of the transparent conductive film 13 is used as the electrode, but the wiring electrode portion 16 side is made of Cr, Al,
Further, a metal such as Ta may be used. In this case, the number of photolithography steps is usually increased by one. However, in the case of large-scale and high-definition display, the wiring resistance is lowered, and thus it is necessary to apply such an auxiliary electrode layer even in the conventional technique. In this respect, the technique of the present invention is not inferior. Further, in order to stabilize the device characteristics, a metal layer such as Ti, Cr, Al having a thickness of several tens to 100 angstroms may be provided at the contact portion between the pixel electrode portion 15, the wiring electrode portion 16 and the insulator layer 11. .. Depending on the structure, if the transparent conductive film 13 is continuously formed on or below the transparent conductive film 13 and etching is performed using the same photoresist mask, the photolithography process does not increase. If the pixel electrode portion 15 is a metal film having such a thin thickness, the transmission of light is not significantly impaired, and there is no problem. To form a liquid crystal display device using the matrix array substrate as described above, for example, the following may be performed.

【0022】先ず、マトリックスアレイ基板の非線形抵
抗素子17形成面にポリイミド樹脂からなる配向膜を塗
布・焼成し、ラビングすることにより液晶配向方向を規
制する。対向用基板にも同様の処理を行ない、一方の液
晶表示用基板より約90°捩じった方向にラビングを行
なう。上記2種類の基板を用意し、液晶の分子長軸方向
が両基板間で約90°捩じれるように、5〜10μmの
間隔を保って保持させ、液晶を注入し液晶セルを構成す
る。そして、液晶セルの外側に偏光軸を約90°捩じっ
た形で偏光板を配置すれば良い。 (第2の実施例)
First, an alignment film made of a polyimide resin is applied to the surface of the matrix array substrate on which the non-linear resistance element 17 is formed, baked, and rubbed to regulate the liquid crystal alignment direction. The same process is performed on the counter substrate, and rubbing is performed in a direction twisted by about 90 ° from one liquid crystal display substrate. The above-mentioned two types of substrates are prepared, and the liquid crystal is injected by holding the liquid crystal at a distance of 5 to 10 μm so that the major axis direction of the liquid crystal is twisted by about 90 ° between the two substrates, and a liquid crystal cell is formed. Then, the polarizing plate may be arranged outside the liquid crystal cell with the polarization axis twisted by about 90 °. (Second embodiment)

【0023】第1の実施例と同様に、例えばSiO2
アルカリ防御被膜を表面部に備えた1.1mm厚のガラ
ス基板10上に、第1の導体(画素電極部15)−絶縁
体(絶縁体層11)−第2の導体(光透過性下部導体層
12)−絶縁体(絶縁体層11)−第3の導体(配線電
極部16)の構造を持つ非線形抵抗素子17を形成す
る。そして、第1の実施例では、図3に示すように近接
する画素電極部15間の距離A,画素電極部15と配線
電極部16間の距離Bはいずれも20μmに設定され、
素子電極間距離Cは7μmに設定されていたが、高精細
の表示では更に細かいパターンとなり、この第2の実施
例では、図4(a),(b)に示すように、近接する画
素電極部15間の距離A,画素電極部15と配線電極部
16間の距離Bはいずれも5μmに設定され、素子電極
間距離Cは2μmに設定されている。尚、図4(b)は
(a)のX−X′線に沿って切断し、矢印方向に見た断
面図である。光透過性導体層12が薄く高抵抗ではある
が、電極間距離が短いために、これらの間で光透過性導
体層12を介しての余計な電流の流れが生じてくる。そ
こで、距離A,距離Bでの電流経路を断つために、図4
に示すように、非線形抵抗素子を形成する絶縁体層11
と光透過性導体層12を、配線や素子、液晶駆動用電極
を取り囲むようにパターニングする。このためには、残
すパターンの形状にレジストをフォトリソグラフィで形
成し、絶縁体層11と光透過性導体層12を良く知られ
たCF4 とO2 を混ぜたガスプラズマ中でケミカルドラ
イエッチングすれば良い。レジストを除き去ると、図4
の状態になり、余計な部分にリーク電流が流れることが
なくなり、良好なスイッチング特性が得られる。尚、1
00オングストローム以下の金属の抵抗値では、10μ
m程度以下の距離で、上記のリークの影響が生じてくる
ので、この加工が有効である。尚、このマトリックスア
レイ基板を用いて液晶表示装置を形成するには、上記第
1の実施例と同様に行なえば良い。 (第3の実施例)
Similar to the first embodiment, the first conductor (pixel electrode portion 15) -insulator (on the glass substrate 10 having a thickness of 1.1 mm provided with an alkali protective coating of, for example, SiO 2 on the surface portion. A non-linear resistance element 17 having a structure of insulator layer 11) -second conductor (light-transmitting lower conductor layer 12) -insulator (insulator layer 11) -third conductor (wiring electrode portion 16) is formed. .. In the first embodiment, as shown in FIG. 3, the distance A between the adjacent pixel electrode portions 15 and the distance B between the pixel electrode portions 15 and the wiring electrode portions 16 are both set to 20 μm,
Although the distance C between the element electrodes was set to 7 μm, it becomes a finer pattern in high-definition display. In the second embodiment, as shown in FIGS. The distance A between the portions 15 and the distance B between the pixel electrode portion 15 and the wiring electrode portion 16 are both set to 5 μm, and the distance C between the element electrodes is set to 2 μm. Incidentally, FIG. 4B is a sectional view taken along line XX ′ in FIG. 4A and seen in the direction of the arrow. Although the light-transmissive conductor layer 12 is thin and has high resistance, an extra current flows between them through the light-transmissive conductor layer 12 due to the short distance between the electrodes. Therefore, in order to cut off the current path at the distance A and the distance B,
As shown in FIG.
Then, the light-transmissive conductor layer 12 is patterned so as to surround wirings, elements, and liquid crystal driving electrodes. For this purpose, a resist is formed by photolithography in the shape of the pattern to be left, and the insulator layer 11 and the light-transmissive conductor layer 12 are subjected to chemical dry etching in a well-known gas plasma containing CF 4 and O 2. Good. After removing the resist,
In this state, a leak current does not flow in an unnecessary portion, and good switching characteristics can be obtained. 1
Resistance value of metal below 00 angstrom is 10μ
This processing is effective because the influence of the above-mentioned leak occurs at a distance of about m or less. A liquid crystal display device can be formed using this matrix array substrate in the same manner as in the first embodiment. (Third embodiment)

【0024】第2の実施例では、最後に絶縁体層11と
光透過性導体層12のパターニングを行なったが、図5
(a)に示すように予めガラス基板10上にTa18を
形成し、これを配線や素子、液晶駆動用電極を概略連な
らせた形状にパターニングした後、陽極酸化して第1の
実施例で述べた工程を適用して図5(b)又は(c)や
(d)に示す配置を作っても良い。尚、このマトリック
スアレイ基板を用いて液晶表示装置を形成するには、上
記第1の実施例と同様に行なえば良い。
In the second embodiment, the insulating layer 11 and the light-transmissive conductor layer 12 are finally patterned.
As shown in (a), Ta 18 is formed on the glass substrate 10 in advance, and the Ta 18 is patterned into a shape in which wirings, elements, and liquid crystal driving electrodes are roughly connected, and then anodized to form Ta 18. By applying the steps described above, the arrangement shown in FIG. 5B or 5C or 5D may be formed. The liquid crystal display device can be formed using this matrix array substrate in the same manner as in the first embodiment.

【0025】[0025]

【発明の効果】この発明によれば、液晶表示装置は、電
流−電圧スイッチング特性を起こす絶縁体の上に一定間
隔に一対の電極となる第1の導体第3の導体を配置し、
更に絶縁体の下に第3の導体を配置して、第1の導体−
絶縁体−第2の導体−絶縁体−第3の導体からなる直列
接続型の非線形抵抗素子を有しているので、電流−電圧
特性の対称性を改善することが出来る。
According to the present invention, in a liquid crystal display device, a first conductor and a third conductor, which are a pair of electrodes, are arranged at regular intervals on an insulator that causes a current-voltage switching characteristic.
Furthermore, a third conductor is arranged under the insulator, and the first conductor-
Since the non-linear resistance element of the series connection type including the insulator-the second conductor-the insulator-the third conductor is included, the symmetry of the current-voltage characteristics can be improved.

【0026】この結果、残像,フリッカーなどの極めて
少ない表示が出来る。更に、このために格別な工程を増
やすことをせず、通常のアレイ基板製作にかかるより、
むしろ少ないフォトリソグラフィ工程により製造出来る
ので、マトリックス型液晶表示装置の実用普及化に非常
に有効である。
As a result, it is possible to perform display with extremely small afterimage and flicker. Furthermore, for this reason, without increasing extra steps, rather than taking a normal array substrate fabrication,
Rather, it can be manufactured by a small number of photolithography processes, which is very effective for practical use of matrix type liquid crystal display devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例に係る液晶表示装置に
おけるマトリックスアレイ基板の製造工程を示す断面
図。
FIG. 1 is a sectional view showing a manufacturing process of a matrix array substrate in a liquid crystal display device according to a first embodiment of the present invention.

【図2】図1の要部を拡大して示す断面図。FIG. 2 is an enlarged cross-sectional view showing a main part of FIG.

【図3】図1の一部の平面図。FIG. 3 is a plan view of a part of FIG.

【図4】この発明の第2の実施例に係る液晶表示装置に
おけるマトリックスアレイ基板の製造工程を示す平面図
と断面図。
FIG. 4 is a plan view and a sectional view showing a manufacturing process of a matrix array substrate in a liquid crystal display device according to a second embodiment of the present invention.

【図5】この発明の第3の実施例に係る液晶表示装置に
おけるマトリックスアレイ基板の製造工程を示す平面
図。
FIG. 5 is a plan view showing a manufacturing process of a matrix array substrate in a liquid crystal display device according to a third embodiment of the present invention.

【図6】この発明の概略を説明するために用いる液晶表
示装置におけるマトリックスアレイ基板の要部を示す平
面図。
FIG. 6 is a plan view showing a main part of a matrix array substrate in a liquid crystal display device used for explaining the outline of the present invention.

【図7】従来の液晶表示装置におけるマトリックスアレ
イ基板の1画素部分の一例を示す断面図。
FIG. 7 is a cross-sectional view showing an example of one pixel portion of a matrix array substrate in a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

10…ガラス基板、11…絶縁体層(絶縁体)、12…
光透過性導体層(第2の導体)、15…画素電極部(第
1の導体)、16…配線電極部(第3の導体)、17…
非線形抵抗素子。
10 ... Glass substrate, 11 ... Insulator layer (insulator), 12 ...
Light-transmissive conductor layer (second conductor), 15 ... Pixel electrode portion (first conductor), 16 ... Wiring electrode portion (third conductor), 17 ...
Non-linear resistance element.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液晶を挾持して相対向する一対の基板の
少なくとも一方が、複数の非線形抵抗素子をアレイ状に
配置し、各非線形抵抗素子にそれぞれ画素電極を直列に
配置し、更に配線電極により各行又は各列方向を接続し
たマトリクスアレイ基板よりなる液晶表示装置におい
て、 上記非線形抵抗素子は第1の導体−絶縁体−第2の導体
−絶縁体−第3の導体からなり、且つ上記第1の導体と
上記第3の導体は同一材料からなると共にいずれも上記
絶縁体の一面に位置し、絶縁体の他面に上記第2の導体
が位置することを特徴とする液晶表示装置。
1. A plurality of non-linear resistance elements are arranged in an array on at least one of a pair of substrates sandwiching a liquid crystal and facing each other, and pixel electrodes are arranged in series in each non-linear resistance element, and wiring electrodes are further arranged. In the liquid crystal display device including a matrix array substrate in which each row or each column direction is connected by, the non-linear resistance element includes a first conductor-insulator-second conductor-insulator-third conductor, and A liquid crystal display device, wherein the first conductor and the third conductor are made of the same material and are both located on one surface of the insulator, and the second conductor is located on the other surface of the insulator.
【請求項2】 光透過性の基板上に導体を形成する工程
と、上記導体を光透過率が著しく落ちない100オング
ストロームを上限にして僅かに残して陽極酸化を行ない
絶縁体を積層形成する工程と、上記絶縁体上に透明導電
膜で配線,素子の両端電極,液晶駆動用電極をパターン
形成する工程と、 を具備することを特徴とする液晶表示装置の製造方法。
2. A step of forming a conductor on a light-transmissive substrate, and a step of forming an insulator by performing anodization while slightly leaving the conductor to 100 angstrom as an upper limit at which the light transmittance does not significantly decrease and leaving a slight amount. And a step of patterning wiring, a both-ends electrode of an element, and a liquid crystal driving electrode on the insulator with a transparent conductive film, and a step of patterning the liquid crystal driving electrode.
JP14732592A 1992-06-08 1992-06-08 Liquid crystal display device and its production Pending JPH05341326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14732592A JPH05341326A (en) 1992-06-08 1992-06-08 Liquid crystal display device and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14732592A JPH05341326A (en) 1992-06-08 1992-06-08 Liquid crystal display device and its production

Publications (1)

Publication Number Publication Date
JPH05341326A true JPH05341326A (en) 1993-12-24

Family

ID=15427635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14732592A Pending JPH05341326A (en) 1992-06-08 1992-06-08 Liquid crystal display device and its production

Country Status (1)

Country Link
JP (1) JPH05341326A (en)

Similar Documents

Publication Publication Date Title
JP3099274B2 (en) Wide viewing angle type active matrix liquid crystal display device having halftone gray scale and method of manufacturing the same
TW200424719A (en) Liquid crystal display, thin film transistor array panel therefor, and manufacturing method thereof
KR20070080476A (en) Method for fabricating liquid crystal display using 3-mask process
JPH06250210A (en) Liquid crystal display device and its production
JP3234168B2 (en) Method for manufacturing TFT array substrate
JPH0458008B2 (en)
JPH05341326A (en) Liquid crystal display device and its production
JP2778746B2 (en) Liquid crystal display device and method of manufacturing electrode substrate
JPH08262491A (en) Liquid crystal display element and its production
JPH0990406A (en) Liquid crystal display device
JPH05333380A (en) Liquid crystal display device
JPH06308539A (en) Production of matrix array substrate
KR100741535B1 (en) Liquid crystal display device and manufacturing method thereof
JP3052361B2 (en) Active matrix liquid crystal display device and manufacturing method thereof
JP2585465B2 (en) Matrix array substrate
JPH0822031A (en) Liquid crystal display device and its production
JP2647115B2 (en) Manufacturing method of matrix array substrate
KR100219476B1 (en) Reflective thin-film transistor liquid crystal display elements and its manufacturing method
JPH05196968A (en) Liquid crystal display device
JPH05188403A (en) Manufacture of matrix array substrate
JPH07209673A (en) Production of liquid crystal display device
JPH05313206A (en) Matrix array substrate
JPH05232517A (en) Substrate for liquid crystal display device and its production
JPH06160911A (en) Liquid crystal display device
JPH052192A (en) Matrix array substrate and production thereof