JPS58123517A - Manufacture of liquid crystal panel - Google Patents

Manufacture of liquid crystal panel

Info

Publication number
JPS58123517A
JPS58123517A JP57006553A JP655382A JPS58123517A JP S58123517 A JPS58123517 A JP S58123517A JP 57006553 A JP57006553 A JP 57006553A JP 655382 A JP655382 A JP 655382A JP S58123517 A JPS58123517 A JP S58123517A
Authority
JP
Japan
Prior art keywords
liquid crystal
metal
anodic oxidation
insulating film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57006553A
Other languages
Japanese (ja)
Other versions
JPH0437968B2 (en
Inventor
Yoshiyuki Ozawa
小沢 美幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP57006553A priority Critical patent/JPS58123517A/en
Publication of JPS58123517A publication Critical patent/JPS58123517A/en
Publication of JPH0437968B2 publication Critical patent/JPH0437968B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To manufacture liq. crystal panels each provided with a nonlinear resistance element in large quantities at a low cost by coating terminal parts requiring no insulating oxide film with org. thin films, carrying out anodic oxidation, and stripping the thin films off. CONSTITUTION:Panel patterns 12 are continuously formed on a glass substrate 1, and ''OFPR '' of TOKYO OKA KOGYO KK which is not dissolved in a soln. of citric acid or phosphoric acid is stuck by a photolithographic method as org. thin films 10 coating the terminal parts 4. An arbitrary position of an electrode pattern 11 is connected to a power source for applying voltage, anodic oxidation is carried out to form an oxide film with high reliability on the patterns 12 except the parts of the films 10, and the films 10 are stripped off with acetone. The specific resistance of the terminal parts 4 is not changed by the anodic oxidation, no trouble is caused with respect to the electric conductivity, and the parts 4 are favorably used as terminals. After fixing up counter electrodes, the substrate 1 is cut to obtain a number of stable liq. crystal panels at once.

Description

【発明の詳細な説明】 本発明に、金嬉−絶縁体−金属の三層lll造からなる
非線型抵抗素イすなわちM工Mを有する液晶パネルの製
造方法に関するものであり、その目的に、液晶パネル製
造において歩留l1llを同上させて品質の安定した液
晶パネルを低価格で多量生産する方法を柳供することで
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a liquid crystal panel having a non-linear resistance element, that is, a three-layer structure of metal, insulator, and metal. The object of the present invention is to provide a method for mass-producing liquid crystal panels with stable quality at a low cost while increasing the yield in manufacturing liquid crystal panels.

液晶表示装置alは低消費電力であること、小型、軽量
であること力・ら近年電卓や市子時削、電子機器表示製
画として著しく普及している。さらに小型パーソナルコ
ンピュータ等の表示装備として使用するという智求も生
まrtてきている。その反面液晶パネルを表示素子とし
て用いる場@ VCは、一般に表示情報量が小はいとい
う欠点がある。この欠点に、液晶に印加■圧コントラス
ト特性の急しゅん性が悪くマルチプレックス駆動にあ1
り適さないということに帰因している。現在、液晶をマ
ルチプレックス駆動する場合の限界値V120〜30桁
程度であると考えらnている。このマルチプレックス特
性を改善し、表示情報量を増すための方法として、いく
つかの方法が考案さγしている0その方法のひとつの流
γLとして、トランジスター、タイオード、その他の省
り的素子會液晶と組み合せることによって液晶のマルチ
プレックス特性を補正し、数百桁あるいにそn以上の多
桁マルチプレックス駆動を可能化するという方法がある
。その中で、金妬−絶縁体−金稍の三層!S造からなる
M工Mを用いた液晶表示装置に、数百桁程度の多桁マル
チプレックス駆動が可能であるうえVC構造が比較的簡
単で製造しやすいという特長をもっておジ、現任特に注
目ざγしているもののひとつである。
Liquid crystal display devices (AL) have become extremely popular in recent years as display devices for calculators, city cards, and electronic devices due to their low power consumption, small size, and light weight. Furthermore, the idea of using it as display equipment for small personal computers and the like is emerging. On the other hand, when a liquid crystal panel is used as a display element, @VC has the disadvantage that the amount of displayed information is generally small. This disadvantage is due to the poor contrast characteristics of the pressure applied to the liquid crystal, which makes it difficult for multiplex drive.
This is due to the fact that they are not suitable for At present, it is believed that the limit value V for multiplex driving of liquid crystals is about 120 to 30 digits. Several methods have been devised to improve this multiplexing characteristic and increase the amount of displayed information.One method is to use transistors, diodes, and other omitted elements. There is a method of correcting the multiplex characteristics of the liquid crystal by combining it with a liquid crystal to enable multi-digit multiplex driving of several hundred digits or more. Among them, there are three layers: gold envy, insulator, and gold envelopment! The liquid crystal display device using the M construction made of S construction is capable of multi-digit multiplex drive with several hundred digits, and the VC structure is relatively simple and easy to manufacture. It's one of the things that I do.

さてMXMを用いた液晶パネルにおdるMIM部分の製
造方法の従来例を述べると以下のとおりである。第1図
にガラス基板1−ヒに金属薄膜全形成し、該金属をバタ
ーニングすることによって信号゛1極2、M工M構成部
分3、および端子部4を形成した様子の例を示している
。基鈑に一般にガラス−1!、機、石英カラス基板を用
いる。また金属薄膜の材質の例としては、タンタル、窒
化タンタル、アルミニウムなどが挙けらILるが、基本
的には酸化絶縁膜を形成できる金縞ならなんでもよい。
Now, a conventional example of a method for manufacturing an MIM portion in a liquid crystal panel using MXM is as follows. Fig. 1 shows an example of how a signal pole 2, an M component part 3, and a terminal part 4 are formed by completely forming a metal thin film on a glass substrate 1-A and patterning the metal. There is. Generally glass-1 on the base plate! , using a quartz glass substrate. Further, examples of the material of the metal thin film include tantalum, tantalum nitride, aluminum, etc., but basically any gold striped material that can form an oxide insulating film may be used.

金属#睡の形成力法としては、スパッタ法、蒸看法々ど
がある。次に電気化学的方法によって端子部4を除く金
属型槽の表面を酸化する。不質的にはM工M禍成部3の
表面だけを酸化すILば工いのであるが信号電接2の表
面75に酸化さnること61つたくか1わない。そnV
c対し端子部4は外部との電気的接if?、をとるもの
であるから、その表面を酸化することは許さnない。
Examples of methods for forming metal sheets include sputtering and steaming methods. Next, the surface of the metal mold tank except for the terminal portion 4 is oxidized by an electrochemical method. In terms of quality, the IL is used to oxidize only the surface of the M-damage forming part 3, but it does not oxidize the surface 75 of the signal electrical connection 2. SonV
The terminal part 4 is electrically connected to the outside if? , so oxidation of its surface is not allowed.

第2図は■気化学的方法として陽極酸化法を用いる場合
の例を示している。第2図においてミス的回路糸は′M
圧璽源5、ガラス基板1、陽極酸化液6、お工び金属板
7vc工って構成さnる。この場合、電圧は、ガラス基
板1に形成さγL’fr金属薄膜が正、金属@7が負と
なるように印加さnる。
FIG. 2 shows an example in which the anodic oxidation method is used as the vapor chemical method. In Figure 2, the incorrect circuit thread is 'M
It consists of a pressing source 5, a glass substrate 1, an anodizing solution 6, and a metal plate 7vc. In this case, the voltage is applied so that the γL'fr metal thin film formed on the glass substrate 1 is positive and the metal@7 is negative.

カラス基板1vC形成嘔n’e各々の金属薄膜はすべて
陽極酸化さnなけjLばならないので、端子部4の各々
は適当な方法によって′W11気的にひとつに1とめて
■圧■源5の工種側に接続すゐ必要がある。
Since each metal thin film must be anodized to form the glass substrate 1vC, each of the terminal parts 4 is fixed one by one by an appropriate method and the pressure source 5 is It is necessary to connect to the construction side.

なお陽極酸化液6の例としては、クエン酸、リン酸水溶
液が挙げらjLる。まに金属板7の例としては、白金板
が挙げらnる。以上のようにして金属 5− 電接お工び酸化絶縁膜が形成ざnkカラス基板1に、も
う一度金属薄#全形成してバターニングを施すことによ
ってM工Mが完成する。第3図に、完成した1個のM■
Mの外観を示しており最初に形成烙nk金属のM工M構
成部6に、後から形成さγした金属4極8が父差する形
になっている。
Note that examples of the anodic oxidation solution 6 include citric acid and phosphoric acid aqueous solutions. An example of the metal plate 7 is a platinum plate. In the manner described above, a metal thin film is formed on the glass substrate 1, after which an oxide insulating film is formed, and a thin metal layer is once again formed and patterned to complete the M process M. Figure 3 shows one completed M■
The external appearance of the M is shown, and the M construction M component 6 is first formed using hot metal, and the metal quadrupole 8, which is later formed, is placed in front of it.

この後画紫市4Ij!9を金属電+#8と電気的に接続
するように形成し、その後は通常の液晶パネルとまっり
′〈同様の方法で組立らnる。
After this, Gamurasaki City 4Ij! 9 is formed so as to be electrically connected to metal electrode #8, and then assembled in the same manner as a normal liquid crystal panel.

以上がMIM全用いた液晶パネルにおけろMIM部分の
従来の製造方法の概略である。この製造方法において問
題となるひとつの点は絶縁基板上に最初に形成さrLk
金媚金膜薄膜極酸化法などの電気化学的方法によって酸
化する場@に、端子部を酸化膜としないために従来は1
枚づつの単品でしか陽極酸化で含ず大きなガラス基板に
連続したパネル市椿會陽極酸化することにでf!!なか
っに0なぜなら、第1図端子II 4は外部との電気的
な接続をとるものでその表面を酸化することに許さIL
ないためで実験室的製造方法に可能であるが、量産 6
− に結びつかない方法である。
The above is an outline of the conventional manufacturing method of the MIM portion in a liquid crystal panel that entirely uses MIM. One problem with this manufacturing method is that rLk is initially formed on an insulating substrate.
When oxidizing by an electrochemical method such as gold film thin film polar oxidation method, conventionally 1.
F! ! This is because terminal II 4 in Figure 1 is for electrical connection with the outside, and its surface cannot be oxidized.
Although it is possible with laboratory manufacturing methods because there is no mass production 6
− This is a method that does not lead to

本発明はかかる欠点を取り除き量産性と低価格で品質の
安定したパネルを提供するものである。
The present invention eliminates these drawbacks and provides a panel that is mass-producible, inexpensive, and of stable quality.

以下本発明の実施例全図面を用いて説明していく。Embodiments of the present invention will be described below using all the drawings.

第4図は本発明の実施例でガラス基板1上に最初に形成
さnだ金属筒4合のパターニング形状を示している。第
4図のパターニング形状において第1図バターニングと
異なル点ハパネルパターン12が連続して設けらnてい
ることである。この電極の端子部4上に有機薄膜を刊け
る、その方法として今回t1フォトリソグラフィー法で
0FPR’ii全面塗布→プレーベーク80℃、20分
間おこない→露肯→現像−→ポストベーク120℃、2
0分間おこなって端子部4を覆う有機薄膜10の伺いた
駄態を示したものである。第5図は本発明の実施例で連
続したパターンの陽+9t!酸化状態を示したもので、
電極パターン11の任意の場所を電圧電源5に接続し陽
極酸化を行ったところ、有機薄膜10部分いわゆる端−
f部4を除いては信頼性の高い酸化膜ができた。その後
有機薄膜をアセトンで剥離した、端子部4の比抵首は陽
僧酸化前と後で変らす導通に問題なく端子部4として良
好であった。
FIG. 4 shows the patterning shape of an n-shaped metal cylinder 4 initially formed on a glass substrate 1 in an embodiment of the present invention. In the patterning shape of FIG. 4, a dotted panel pattern 12, which is different from the patterning of FIG. 1, is continuously provided. The method for applying an organic thin film on the terminal portion 4 of this electrode is to apply 0FPR'ii on the entire surface using the t1 photolithography method → pre-bake at 80°C for 20 minutes → exposure → development → post-bake at 120°C, 2
This figure shows the failure of the organic thin film 10 covering the terminal portion 4 after 0 minutes of testing. FIG. 5 shows a continuous pattern of +9t! in an embodiment of the present invention. It shows the oxidation state.
When an arbitrary part of the electrode pattern 11 was connected to the voltage power source 5 and anodized, the organic thin film 10 part so-called end-
A highly reliable oxide film was formed except for the f section 4. Thereafter, the organic thin film was peeled off with acetone, and the resistivity neck of the terminal part 4 was found to be good as the terminal part 4 without any problem in conduction, which was different before and after the positive oxidation.

第6図に本発明の実施例におけるパネル相立後のカッテ
ィング部分の場所を示L7て卦り、南中において12が
−カッティング部分である。カッティング方法タイヤで
スクライプする方式で対向両極と組立後カッティングを
行ったところ、1度に数多くの安定した液晶パネルがで
きる工うr(なっ1ζ。
FIG. 6 shows the location of the cutting portion after the panels are assembled in the embodiment of the present invention, and 12 is the cutting portion in the south and middle. Cutting method After assembling the opposite poles and cutting using a tire scribing method, we were able to make many stable LCD panels at once.

以上に述べてp7rように本発明に、K rLば高い品
質の51工Mを用いた、低価格で1u産でAる方法が可
能VCなり、特V(表示情報)肯が太きくMIMを有す
る金属電極の数が多い電卓、胃子時割パネル製造に不発
明を適用すわばその効果は非常に犬良い。
As stated above, as shown in page 7r, in the present invention, it is possible to produce 1U at a low price by using high-quality 51mm in KrL, and it is possible to make a VC, and the special V (display information) has a strong positive effect on MIM. If the invention is applied to the manufacture of calculators with a large number of metal electrodes, the results are very good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の下部金W4電極の形状を示す図。 第2図は、下ボi金綱市欅を陽@!酬化する様子を示す
図。 第3図に、MIMのm成金示す図。 第4図に、本発明実施例におけろ下部′1!極端子部を
有機薄膜をコートした場所を示す図。 第5図は、本発明実姉例で連続し左下部電極を陽極酸化
する様−7−を示す図。 第6図に、本発明実施例で下部電a!を陽俸酸化し組立
後のカッティング場所を示す図。 以   上  9−
FIG. 1 is a diagram showing the shape of a conventional lower gold W4 electrode. Figure 2 shows the lower boi Kanetsuna City Keyaki @! FIG. FIG. 3 is a diagram showing MIM metal formation. FIG. 4 shows the lower part '1' in the embodiment of the present invention! A diagram showing a location where the electrode terminal portion is coated with an organic thin film. FIG. 5 is a diagram showing how the lower left electrode is continuously anodized in a sister example of the present invention. FIG. 6 shows the lower electrode a! according to the embodiment of the present invention. Diagram showing the cutting locations after anodizing and assembly. Above 9-

Claims (1)

【特許請求の範囲】 (1)  液晶層を支持する二枚の絶縁基板のうち少な
くとも一方の基板の液晶層と接する側の基板面上に、金
属電極を形成し、該金属の少なくとも一部を陽極酸化す
ることによって絶縁膜と重なる様に形成して得らnる。 金属、絶縁膜および金属の三層構造からなる非線型抵抗
素子(以下Metal−InElulatOr−Met
alの頭文字t−取って「M工M」と略称する)を有す
る液晶パネル製造方法において、最初に形成さγLる金
属電極のうち、酸化絶縁膜を形成することを必要としな
い電極も含むすべての電極を連続につらね、酸化絶縁p
t−必要としない端子部にクエン酸又はリン酸浴孜中で
浴出しない有磯博膵をコー)LTaを1場極酸化し、そ
の後前壁薄膜を剥離すゐことを特許とする成品パネルの
製造方法。 (21前記酸化絶縁IIIを必要としない部分に、クエ
ン酸又はリン酸溶液中に溶出しない、OMR−83、○
FPR(東京応化工業登録商標)、AZ1350J(シ
ュプレーカンパニ登録商43J)、ET CBレジスト
(サンフ化学工業登録商標)から選ばrした1つである
特許請求の範囲第1項記載の液晶表示パネルの製造方法
。 (3)  前記酸化絶縁膜を必要としない部分への有機
薄Hωのコート方法として、フォトリソグラフィー、ス
クリーン印刷、オフセット印刷でコーティングすること
を特徴とする特許請求の範囲第1項記載の液晶パネルの
製造方法。 (4)  前Mi?基板上に連続して作ったパターン電
極と対向基板型@を組み合せ1度に数多くの液晶パネル
組立、分割製造することを特徴とする特許請求第1項記
載の液晶表示パネルの製造方法。
[Scope of Claims] (1) A metal electrode is formed on the surface of at least one of the two insulating substrates supporting the liquid crystal layer on the side that is in contact with the liquid crystal layer, and at least a portion of the metal is It is formed by anodic oxidation so as to overlap with the insulating film. A nonlinear resistance element consisting of a three-layer structure of metal, insulating film, and metal (hereinafter referred to as Metal-InElulatOr-Met)
In the liquid crystal panel manufacturing method having the initial letter t- of al and abbreviated as "M", among the metal electrodes formed first, electrodes that do not require the formation of an oxide insulating film are also included. All electrodes are connected continuously and oxidized p
A patented product panel in which LTa is polarized in one place and the front wall thin film is then peeled off. manufacturing method. (21 OMR-83, OMR-83, which does not dissolve in citric acid or phosphoric acid solution in areas that do not require the oxide insulation III)
Production of a liquid crystal display panel according to claim 1, which is one selected from FPR (Tokyo Ohka Kogyo registered trademark), AZ1350J (Spree Company registered trademark 43J), and ET CB resist (Sunf Chemical Industry registered trademark). Method. (3) The liquid crystal panel according to claim 1, wherein the organic thin Hω is coated on the portions not requiring the oxide insulating film by photolithography, screen printing, or offset printing. Production method. (4) Previous Mi? 2. The method of manufacturing a liquid crystal display panel according to claim 1, wherein a large number of liquid crystal panels are assembled and divided at one time by combining patterned electrodes continuously formed on a substrate and a counter substrate type @.
JP57006553A 1982-01-19 1982-01-19 Manufacture of liquid crystal panel Granted JPS58123517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57006553A JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57006553A JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Publications (2)

Publication Number Publication Date
JPS58123517A true JPS58123517A (en) 1983-07-22
JPH0437968B2 JPH0437968B2 (en) 1992-06-23

Family

ID=11641518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57006553A Granted JPS58123517A (en) 1982-01-19 1982-01-19 Manufacture of liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS58123517A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070857A (en) * 1973-10-29 1975-06-12
JPS50150396A (en) * 1974-05-21 1975-12-02
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070857A (en) * 1973-10-29 1975-06-12
JPS50150396A (en) * 1974-05-21 1975-12-02
JPS55161273A (en) * 1979-05-30 1980-12-15 Northern Telecom Ltd Liquid crystal display unit and producing same

Also Published As

Publication number Publication date
JPH0437968B2 (en) 1992-06-23

Similar Documents

Publication Publication Date Title
US4188095A (en) Liquid type display cells and method of manufacturing the same
US5485294A (en) Process for producing MIM elements by electrolytic polymerization
JPH01102433A (en) Structure for electrode of liquid crystal panel
JPS58123517A (en) Manufacture of liquid crystal panel
JPS599635A (en) Electrooptic device
JP3249284B2 (en) Manufacturing method of liquid crystal display device
JPS58123516A (en) Manufacture of liquid crystal panel
JPS62247330A (en) Liquid crystal display device
JP3270920B2 (en) Manufacturing method of liquid crystal display device
JPH06308539A (en) Production of matrix array substrate
JPS58178320A (en) Electrooptic device
JPH0331823A (en) Production of liquid crystal display device and electrode substrate
JPH0356456B2 (en)
JPS5840527A (en) Production of substrate for liquid crystal panel
JPH11305267A (en) Active matrix substrate, its manufacture, liquid crystal panel, and electronic instrument using its panel
JPS59128519A (en) Manufacture of electrooptical device
JPS58111085A (en) Manufacture of liquid crystal panel
JPH05203996A (en) Production of matrix array substrate
JPH08286198A (en) Liquid crystal display device and its production
JPH0850311A (en) Production of liquid crystal display device
JPS58184119A (en) Production of electrooptic device
JPH05188403A (en) Manufacture of matrix array substrate
JPS61167926A (en) Electrochromic display element
JPH03237435A (en) Bidirectional nonlinear resistance element and active matrix liquid crystal panel using bidirectional nonlinear resistance element and production thereof
JPS5997119A (en) Electrooptic device