JPH0437962B2 - - Google Patents

Info

Publication number
JPH0437962B2
JPH0437962B2 JP58011954A JP1195483A JPH0437962B2 JP H0437962 B2 JPH0437962 B2 JP H0437962B2 JP 58011954 A JP58011954 A JP 58011954A JP 1195483 A JP1195483 A JP 1195483A JP H0437962 B2 JPH0437962 B2 JP H0437962B2
Authority
JP
Japan
Prior art keywords
refractive index
monomer
mixture
monomers
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58011954A
Other languages
Japanese (ja)
Other versions
JPS59137904A (en
Inventor
Yasuji Ootsuka
Motoaki Yoshida
Yasuhiro Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP58011954A priority Critical patent/JPS59137904A/en
Priority to US06/533,532 priority patent/US4521351A/en
Publication of JPS59137904A publication Critical patent/JPS59137904A/en
Publication of JPH0437962B2 publication Critical patent/JPH0437962B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は屈折率が次第に変化するような屈折率
分布を有する光伝送損失の小さい合成樹脂光伝送
体を製造する方法に関するものである。 屈折率分布が(1)式で示される合成樹脂光伝送体
は特公昭54−30301(特願昭50−11723)、特開昭53
−21937(特願昭51−96795)、および特開昭56−
149004(特願昭55−53920)に提案されている。 N=No(1−1/2A r2) (1) ここでNoは中心軸の屈折率、Nは中心軸から
rの距離にある点の屈折率で、Aは屈折率分布の
定数である。 前記特許は重合の進行とともに共重合体の組成
が変動することを利用し、単量体M1およびM2
してそれが重合体になつたときの屈折率の値が互
に異なり、しかも透明な共重合体を形成するもの
を選び、所定の形状に保つた単量体混合物体の所
定の一部分から共重合が開始し、ついで生成共重
合体を反応系内で連続的に析出させるように共重
合条件を選ぶことによつて、屈折率勾配を有する
光伝送体を製造するものである。 前記特許には、屈折率勾配を有する合成樹脂光
伝送体の製造法として、重合体になつたときの屈
折率の差が0.005またはそれよりも大きくなるよ
うな2種の単量体(単量体混合物を含む)M1
よびM2であつて、かつ単量体M1およびM2のそ
れらの共重合反応における単量体反応特性比をそ
れぞれr1およびr2とし、単量体M1と単量体M2
の混合モル比を(M1/M2)mとすれば、 r1(M1/M2)m+1/(M1/M2)m+r2 (2) の値が1.1以上であるかまたは1/1.1以下になるよ うな単量体M1と単量体M2との混合物を所定の形
状たとえば円柱状に保持すること、その所定形状
の混合物体に対して場所的に不均一な共重合条件
を付与することによつて最初に前記混合物体のう
ちの所定の部分たとえば円柱形状の混合物体の外
周部分のみが前記混合比とは異なるM1成分とM2
成分の比の共重合体を局部的に形成しついでその
部分から他の部分たとえば中心部分に向かつて
徐々に共重合が進行するようにして共重合物体の
内部において、前記所定の部分から他の部分に向
かつて、M1成分とM2成分との含有比が次第に変
化するような濃度勾配を持たせることからなる屈
折率勾配を有する合成樹脂光伝送体を製造する方
法が記載されている。 そして単量体M1とM2の組合せの例として、メ
タクリル酸メチルと安息香酸ビニルその他、およ
びメタクリル酸アルキルエステルとフエニル酢酸
ビニル類が挙もられている。しかしながらこれら
に挙げられている単量体の組合せから得られる光
伝送体は、その中心軸近くのみが(1)式の屈折率分
布を持つていて、周辺部にゆくにされて屈折率の
勾配は非常に緩やかとなつてしまう。これは、重
合とともに共重合体の屈折率は増加するが、最初
のうちはその上昇は緩やかであるが、重合の後半
では急上昇するためである。この方法によつて棒
状凸レンズを得るには周辺部を削つて除去し、中
心部近くのみを使用する必要があつた。 本発明者は、周辺部まで(1)式の分布に従う光伝
送体を得るべく鋭意研究の結果、本発明に至つ
た。すなわち、下記の条件を満足するような3種
の単量体M1,M2,M3の混合物を上記特許に記
載の重合方法によつて重合して光伝送体とする。
一般に多元共重合反応では次のようになる。生長
反応〜〜〜M1※ +Mj−→Mj※ の速度定数をKijと
すれば反応性比rijは rij≡Kii/Kij と定義され、X元共重合にはX(X−1)個の
反応性比がある。 本発明の単量体の組合せが満足すべき条件を示
す。いま、二つの整数i,jは1≦i,j≦X,
i>jなる関係があるとき (1) 反応性比に関して (rij(Mi/Mj)n+1)/{(Mi/Mj)n+rij}>
1.1 ここで(Mi/Mj)nは単量体Miと単量体Mjの
混合モル比である。 (2) 屈折率に関して ni(Miホモポリマーの屈折率)>nj(Mjホモ
ポリマーの屈折率) である必要がある。 X=3の場合について具体的に説明する。三元
共重合では次の9種類の生長反応が競合しておこ
る。 〜〜〜M1※ +M1→〜〜〜M1※ (速度定数
K11) 〜〜〜M1※ +M2→〜〜〜M2※ ( 〃
K12) 〜〜〜M1※ +M3→〜〜〜M3※ ( 〃
K13) 〜〜〜M2※ +M1→〜〜〜M1※ ( 〃
K21) 〜〜〜M2※ +M2→〜〜〜M2※ ( 〃
K22) 〜〜〜M2※ +M3→〜〜〜M3※ ( 〃
K23) 〜〜〜M3※ +M1→〜〜〜M1※ ( 〃
K31) 〜〜〜M3※ +M2→〜〜〜M2※ ( 〃
K32) 〜〜〜M3※ +M3→〜〜〜M3※ ( 〃
K33) 単量体反応性比は(3)式によつて定義される。 r12≡K11/K12 r21≡K22/K21 r13≡K11/K13 r31≡K33/K31 r23≡K22/K23 r32≡K33/K32 (3) 本発明の単量体M1,M2,M3の組合せが満た
すべき条件は (1) 反応性比に関して (r12(M1/M2n+1)/{(M1/M2n+r21}>
1.1(4) (r13(M1/M3n+1)/{(M1/M3n+r31}>
1.1(5) (r23(M2/M3n+1)/{(M2/M3n+r32}>
1.1(6) ここで(Mi/Mj)nは単量体Miと単量体Mjの
混合モル比である。 (2) 屈折率に関して n1(M1ホモポリマーの屈折率)<n2(M2ホモポ
リマーの屈折率)<n3(M3ホモポリマーの屈折率) となる。ここで(n3−n2)および(n2−n1)はと
もにすくなくとも0.005であることが好ましい。 条件(1)は三元共重合の進行とともに最初単量体
M1が急速に重合し、次いで単量体M2が重合し、
単量体M3が最も遅れて重合することを示してい
る。言い換えれば重合初期に生成する共重合体は
単量体M1を多量に含んでいるが、重合の進行に
つれてM1の含有量は急速に低下し、かわつて単
量体M2の含有量が増加する。更に重合が進行す
ればM2の含有量も低下し、単量体M3の含有量が
増加することとなる。ここで条件(2)が満足されて
おけば、重合の進行とともに生成する共重合体の
屈折率が増すが、単量体の種類、単量体の仕込比
を調節することにより、共重合体の屈折率を重合
転化率とともに広い転化率の範囲にわたつてなだ
らかに増加させることができ、屈折率の急上昇を
避けることができる。 本発明に用いられる三元系の単量体の組合せの
例を第1表に挙げる。 単量体の混合割合は、単量体の種類、光伝送体
の直径、屈折率分布、重合条件などによつて異な
るが、通常はM120〜90,M22〜40,M35〜60
各重量%の範囲内から選ばれる。 次に本発明について詳細を説明する。 まず、所定量の単量体M1,M2,M3を混合し、
これに所定量の光重合開始剤(例えば過酸化ベン
ゾイル(BPO)、ベンゾインメチルエーテルな
ど)
The present invention relates to a method for manufacturing a synthetic resin optical transmitter having a refractive index distribution in which the refractive index gradually changes and has a low optical transmission loss. Synthetic resin optical transmitters whose refractive index distribution is expressed by equation (1) are disclosed in Japanese Patent Publication No. 54-30301 (Patent Application No. 11723-1981) and Japanese Patent Application Laid-open No. 1986-11723.
-21937 (Patent Application 1982-96795), and Japanese Patent Application 1986-
149004 (Patent Application No. 55-53920). N=No(1-1/2A r 2 ) (1) Here, No is the refractive index of the central axis, N is the refractive index of a point at a distance of r from the central axis, and A is the constant of the refractive index distribution. . The patent utilizes the fact that the composition of a copolymer changes as the polymerization progresses, and monomers M 1 and M 2 have different refractive index values when they become a polymer, and are transparent. Copolymerization is started from a predetermined portion of the monomer mixture kept in a predetermined shape, and then copolymerization is carried out so that the formed copolymer is continuously precipitated within the reaction system. By selecting polymerization conditions, an optical transmission body having a refractive index gradient can be manufactured. The patent describes a method for producing a synthetic resin light transmitting material having a refractive index gradient, in which two types of monomers (monomeric M 1 and M 2 (including a mixture of monomers), and the monomer reaction characteristic ratios of the monomers M 1 and M 2 in their copolymerization reactions are r 1 and r 2 , respectively, and the monomer M 1 If the mixing molar ratio of monomer M 2 and monomer M 2 is (M 1 /M 2 )m, then the value of r 1 (M 1 /M 2 )m+1/(M 1 /M 2 )m+r 2 (2) is Holding a mixture of monomer M 1 and monomer M 2 in a predetermined shape, such as a cylinder, such that the ratio is 1/1.1 or more or 1/1.1 or less, and the location of the mixture with respect to the predetermined shape of the mixture By applying copolymerization conditions that are non-uniform in terms of copolymerization, only a predetermined portion of the mixture, for example, the outer circumferential portion of a cylindrical mixture, differs from the mixing ratio of the M1 component and the M2 component.
A copolymer having the same ratio of components is formed locally, and the copolymerization is gradually progressed from that part to other parts, such as the central part, so that the copolymerization is carried out from the predetermined part to other parts inside the copolymerized body. A method for producing a synthetic resin light transmitting body having a refractive index gradient is described, which includes providing a concentration gradient such that the content ratio of the M 1 component and the M 2 component gradually changes toward a certain area. Examples of combinations of monomers M 1 and M 2 include methyl methacrylate and vinyl benzoate, and methacrylic acid alkyl ester and phenyl vinyl acetate. However, the optical transmission material obtained from the monomer combinations listed above has a refractive index distribution expressed by equation (1) only near its central axis, and the refractive index gradient increases toward the periphery. becomes very gradual. This is because the refractive index of the copolymer increases with polymerization, and although the increase is gradual at first, it increases sharply in the latter half of polymerization. In order to obtain a rod-shaped convex lens using this method, it was necessary to remove the peripheral portion and use only the portion near the center. The present inventor has conducted intensive research to obtain an optical transmission body that follows the distribution of equation (1) up to the peripheral portion, and has thus arrived at the present invention. That is, a mixture of three types of monomers M 1 , M 2 , and M 3 that satisfies the following conditions is polymerized to obtain a light transmitting material by the polymerization method described in the above patent.
In general, multicomponent copolymerization reactions are as follows. If the rate constant of the growth reaction ~~~ M 1 * +Mj-→Mj* is Kij, the reactivity ratio rij is defined as rij≡Kii/Kij, and X (X-1) reactions are required for X-element copolymerization. There is a sex ratio. The monomer combinations of the present invention indicate the conditions to be satisfied. Now, two integers i and j are 1≦i, j≦X,
When there is a relationship i>j (1) Regarding the reactivity ratio (rij (Mi/Mj) n +1)/{(Mi/Mj) n +rij}>
1.1 Here, (Mi/Mj) n is the mixing molar ratio of monomer Mi and monomer Mj. (2) Regarding the refractive index, it is necessary that ni (refractive index of Mi homopolymer) > nj (refractive index of Mj homopolymer). The case where X=3 will be specifically explained. In ternary copolymerization, the following nine types of growth reactions occur in competition. 〜〜〜M 1 ※ +M 1 →〜〜〜M 1 ※ (rate constant
K 11 ) ~~~M 1 * +M 2 →~~~M 2 * ( 〃
K 12 ) ~~~M 1 * +M 3 →~~~M 3 * (〃
K 13 ) ~~~M 2 * +M 1 → ~~~M 1 * ( 〃
K 21 ) ~~~M 2 * +M 2 →~~~M 2 * (〃
K 22 ) ~~~ M 2 * +M 3 →~~~M 3 * ( 〃
K 23 ) ~~~M 3 * +M 1 →~~~M 1 * ( 〃
K 31 ) ~~~M 3 * +M 2 →~~~M 2 * ( 〃
K 32 ) ~~~M 3 * +M 3 →~~~M 3 * ( 〃
K 33 ) Monomer reactivity ratio is defined by equation (3). r 12 ≡K 11 /K 12 r 21 ≡K 22K 21 r 13 ≡K 11 /K 13 r 31 ≡K 33 /K 31 r 23 ≡K 22 /K 23 r 32 ≡K 33 /K 32 (3 ) The conditions that the combination of monomers M 1 , M 2 , and M 3 of the present invention must satisfy are (1) Regarding the reactivity ratio (r 12 (M 1 /M 2 ) n +1)/{(M 1 /M 2 ) n + r 21 }>
1.1(4) (r 13 (M 1 /M 3 ) n + 1) / {(M 1 /M 3 ) n + r 31 }>
1.1(5) (r 23 (M 2 /M 3 ) n + 1) / {(M 2 /M 3 ) n + r 32 }>
1.1(6) where (Mi/Mj) n is the mixing molar ratio of monomer Mi and monomer Mj. (2) Regarding the refractive index, n 1 (refractive index of M 1 homopolymer) < n 2 (refractive index of M 2 homopolymer) < n 3 (refractive index of M 3 homopolymer). Here, both (n 3 −n 2 ) and (n 2 −n 1 ) are preferably at least 0.005. Condition (1) is that as the terpolymerization progresses, the initial monomer
M 1 polymerizes rapidly, then monomer M 2 polymerizes,
It shows that monomer M 3 polymerizes most slowly. In other words, the copolymer formed at the initial stage of polymerization contains a large amount of monomer M1 , but as the polymerization progresses, the content of M1 rapidly decreases until the content of monomer M2 decreases. To increase. As the polymerization progresses further, the content of M 2 also decreases, and the content of monomer M 3 increases. If condition (2) is satisfied here, the refractive index of the copolymer produced will increase as the polymerization progresses, but by adjusting the type of monomer and the monomer charging ratio, the refractive index of the copolymer will increase as the polymerization proceeds. The refractive index of the polymer can be gradually increased over a wide conversion range along with the polymerization conversion rate, and a sudden rise in the refractive index can be avoided. Table 1 lists examples of combinations of ternary monomers used in the present invention. The mixing ratio of monomers varies depending on the type of monomer, the diameter of the optical transmitter, the refractive index distribution, polymerization conditions, etc., but is usually M 1 20-90, M 2 2-40, M 3 5. ~60
It is selected from within each weight % range. Next, the present invention will be explained in detail. First, a predetermined amount of monomers M 1 , M 2 , M 3 are mixed,
Add to this a predetermined amount of a photopolymerization initiator (e.g. benzoyl peroxide (BPO), benzoin methyl ether, etc.)

【表】【table】

【表】 を溶解し、これを所定の内径(たとえば約2.9mm)
を有し一端を閉じたガラス管を満たし第1図に示
す装置によつて光共重合する。管状の紫外線ラン
プ1が装置中心にあり、ランプ1の上部と下部に
は円筒状の遮光板2が取り付けてあつて、管の中
心部の部分から放出される紫外線のみによつてガ
ラス管4内の混合物が照射されるようにしてあ
る。なお11は、ランプ1からの光が遮光板2の
間隔(たとえば70mm)だけに放出するように設け
たつば状の遮光補助板である。紫外線強度はシリ
コンフオトセル3でモニターされている。紫外線
ランプ1から所定距離たとえば10cmの距離に上記
単量体混合物を満たした複数本のガラス管4を支
持部材5に装着し、モーター6でたとえば毎分40
回転で回転させておく。最初紫外線ランプ1をガ
ライ管4の下端より低い位置に置き、ランプ1を
モーター7によつて一定速度V(mm/min)で上
方に移動させながら紫外線を照射する。装置内部
には一定温度の空気を入口8からフアン9で送り
込み排出口10より排出しているが、ランプ1の
発熱のために温度は上昇するが、送入空気温度よ
り或る程度高い温度で一定となる。光共重合はガ
ラス管4の底部よりおこる。 重合によつて体積が収縮するが、ガラス管の上
部にある重合していない部分から単量体混合物が
常に供給されるので重合体内部に空隙が生じるこ
とはない。ランプ1の移動とともに重合する部分
は次第に上部に移動し、遂にガラス管4内の単量
体混合物がすべて固化する。照射開始してから所
定時間たとえば約10時間後に照射終了後ガラス管
4を装置より取り外したとえば80℃に24時間加熱
して残存単量体をできるだけ重合させておく。つ
いでガラス管4を破砕し、共重合体ロツドを取り
出す。ロツドは両端の部分を除き、ロツド全体に
亘つて屈折率分布定数Aは一定値を示す。 得られた光伝送体を加熱延伸して、光集束性の
繊維を得ることができる。ロツドの加熱延伸に先
立ち、ロツドに微量含まれている揮発性物質を除
去するために10-3〜10-4mmHgの減圧下に50℃3
〜4日間おく。 次に第2図に原理を示した熱延伸装置によつて
延伸する。すなわち上記の合成樹脂ロツドをプリ
フオーム21として支持部材22に装着し速度
V1(mm/sec)で降下させ、一定温度Tdの定温加
熱器23の間を通過させ、下方のドライブロール
24により速度V2mm/secで引張り、延伸する。
V2/V1が延伸率となる。得られた合成樹脂光学
繊維25を切断研磨して長さ1〜2mmのロツドレ
ンズに仕上げ、そのレンズ作用から(1)式の屈折率
分布定数Aを求める。また、合成樹脂光学繊維を
ドラムに巻きつけ、一端より6328Åのレーザー光
を入射させ、他端より射出する光の強度を測定す
る。繊維の長さと射出光の強度の関係から伝送損
失を求める。 実施例を次に示す。 実施例 1〜4 単量体M1として屈折率が1.492のメタクリル酸
メチル(MMA)を、M2として屈折率が1.52のア
クリロニトリル(AN)を、そしてM3として屈
折率が1.578の安息香酸ビニル(VB)からなる三
元系で図面に示した装置を用いて、第2表に示す
条件によりレンズを製造し、表に示す結果を得
た。 なお、(3)式における単量体反応性比はr12
1.34,r13=8.52,r21=0.12,r23=5.0,r31=0.07,
r32=0.05であり、実施例1についての(4),(5),(6)
式の左辺の値はそれぞれ1.56,8.62および5.68で
あつていずれも(4),(5),(6)式を満足していた。実
施例2〜4についても同時に(4)〜(6)式を満足し
た。
[Table] Melt it and make it into a specified inner diameter (for example, about 2.9 mm).
A glass tube with one end closed is filled with the above-mentioned materials, and photocopolymerization is carried out using the apparatus shown in FIG. A tubular ultraviolet lamp 1 is located at the center of the device, and cylindrical light-shielding plates 2 are attached to the upper and lower parts of the lamp 1. A mixture of these is irradiated. Reference numeral 11 denotes a brim-shaped auxiliary light-shielding plate provided so that the light from the lamp 1 is emitted only at an interval of 70 mm between the light-shielding plates 2. The ultraviolet light intensity is monitored with a silicon photocell 3. A plurality of glass tubes 4 filled with the above-mentioned monomer mixture are mounted on a support member 5 at a predetermined distance, for example, 10 cm from the ultraviolet lamp 1, and a motor 6 is used to speed up the rotation at a rate of, for example, 40 cm per minute.
Keep it spinning. First, the ultraviolet lamp 1 is placed at a position lower than the lower end of the glass tube 4, and ultraviolet rays are irradiated while the lamp 1 is moved upward by the motor 7 at a constant speed V (mm/min). Air at a constant temperature is fed into the inside of the device from an inlet 8 by a fan 9 and is discharged from an outlet 10. Although the temperature rises due to the heat generated by the lamp 1, it remains at a temperature that is somewhat higher than the inlet air temperature. becomes constant. Photocopolymerization occurs from the bottom of the glass tube 4. Although the volume shrinks during polymerization, no voids are created inside the polymer because the monomer mixture is always supplied from the unpolymerized portion at the top of the glass tube. As the lamp 1 moves, the portion to be polymerized gradually moves upward, and finally all of the monomer mixture in the glass tube 4 solidifies. After a predetermined period of time, for example about 10 hours, from the start of irradiation, the glass tube 4 is removed from the apparatus and heated to, for example, 80° C. for 24 hours to polymerize as much of the remaining monomer as possible. Then, the glass tube 4 is crushed and the copolymer rod is taken out. The refractive index distribution constant A exhibits a constant value throughout the rod except for the ends thereof. The obtained light transmitting body is heated and stretched to obtain a light-focusing fiber. Prior to heating and stretching the rod, the rod was heated at 50℃3 under a reduced pressure of 10 -3 to 10 -4 mmHg to remove trace amounts of volatile substances contained in the rod.
Leave for ~4 days. Next, it is stretched using a hot stretching device whose principle is shown in FIG. That is, the above synthetic resin rod is attached to the support member 22 as a preform 21, and the speed
The film is lowered at a speed of V 1 (mm/sec), passed through a constant temperature heater 23 at a constant temperature Td, and pulled and stretched by a lower drive roll 24 at a speed of V 2 mm/sec.
V 2 /V 1 is the stretching ratio. The obtained synthetic resin optical fiber 25 is cut and polished to form a rod lens having a length of 1 to 2 mm, and the refractive index distribution constant A of equation (1) is determined from the lens action. In addition, a synthetic resin optical fiber is wrapped around a drum, a 6328 Å laser beam is applied from one end, and the intensity of the light emitted from the other end is measured. Transmission loss is determined from the relationship between the length of the fiber and the intensity of the emitted light. Examples are shown below. Examples 1 to 4 Methyl methacrylate (MMA) with a refractive index of 1.492 as monomer M 1 , acrylonitrile (AN) with a refractive index of 1.52 as M 2 , and vinyl benzoate with a refractive index of 1.578 as M 3 Lenses were manufactured using the ternary system consisting of (VB) using the apparatus shown in the drawings under the conditions shown in Table 2, and the results shown in the table were obtained. In addition, the monomer reactivity ratio in equation (3) is r 12 =
1.34, r 13 = 8.52, r 21 = 0.12, r 23 = 5.0, r 31 = 0.07,
r 32 =0.05, and (4), (5), (6) for Example 1
The values on the left side of the equation were 1.56, 8.62, and 5.68, respectively, and all satisfied equations (4), (5), and (6). Examples 2 to 4 also satisfied formulas (4) to (6).

【表】【table】

【表】【table】

【表】 実施例4の屈折率分布を第3表に示す。 なお、比較のためANを使用せずにMMA75部
およびVB25部を用いて実施例4と同一寸法の光
伝送体を製造した場合の屈折率分布を第3図の点
線に示す。 実施例1のロツドを270℃で100倍に熱延伸して
直径0.29mm屈折率分布定数A=0.563mm-2、伝送損
失1.2dB/mの光フアイバーを得た。 実施例 5〜10 MMA−AN−VB以外の三元系を用いて製造
した光伝送体の製造条件、結果を第3表に示す。
[Table] Table 3 shows the refractive index distribution of Example 4. For comparison, the dotted line in FIG. 3 shows the refractive index distribution when an optical transmission body having the same dimensions as in Example 4 was manufactured using 75 parts of MMA and 25 parts of VB without using AN. The rod of Example 1 was hot-stretched 100 times at 270° C. to obtain an optical fiber having a diameter of 0.29 mm, a refractive index distribution constant A=0.563 mm −2 , and a transmission loss of 1.2 dB/m. Examples 5 to 10 Table 3 shows the manufacturing conditions and results of optical transmission bodies manufactured using ternary systems other than MMA-AN-VB.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するための製造装置の一
例を示す1部断面の側面図、第2図は第1図の装
置に続いて本発明を実施する装置の一例を示す側
面図である。第3図は本発明によつて得られた光
伝送体の屈折率分布の一例を示すグラフである。
FIG. 1 is a partially sectional side view showing an example of a manufacturing apparatus for explaining the present invention, and FIG. 2 is a side view showing an example of an apparatus for carrying out the present invention following the apparatus shown in FIG. . FIG. 3 is a graph showing an example of the refractive index distribution of the optical transmission body obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 単量体Miが重合体になつたときの屈折率を
niとすると、niが互いに異なる3種の単量体(単
量体混合物を含む)M1,M2,M3の混合物を所
定の形状に保持することと、その所定形状の混合
物体に対して場所的に不均一な共重合条件を付与
することによつて最初に前記混合物体のうちの所
定の部分のみが前記混合比とは異なる単量体成分
の比の共重合体を局部的に形成しついでその部分
から他の部分に向かつて徐々に共重合が進行する
ようにして、共重合物体の内部において、前記所
定の部分から他の部分に向かつて、単量体成分が
次第に変化するような濃度勾配を持たせる屈折率
勾配を有する合成樹脂光伝送体を製造する方法に
おいて、単量体Miとして、niが低い単量体Miほ
ど共重合し易いような単量体の組合せを選ぶこと
により光伝送体全体に亘つて屈折率が中心軸から
の距離の二乗に比例して減少している合成樹脂光
伝送体を製造する方法。
1 The refractive index when the monomer Mi becomes a polymer is
If ni is a mixture of three different monomers (including monomer mixtures) M 1 , M 2 , M 3 that are different from each other, the mixture is held in a predetermined shape, and the mixture object of the predetermined shape is By applying locally non-uniform copolymerization conditions, only a predetermined portion of the mixture is locally coated with a copolymer having a ratio of monomer components different from the mixing ratio. Once formed, the copolymerization proceeds gradually from that part to other parts, so that the monomer components gradually change from the predetermined part to other parts inside the copolymerized body. In the method of manufacturing a synthetic resin optical transmitter having a refractive index gradient that has a concentration gradient, a combination of monomers is selected such that the monomer Mi with a lower ni is easier to copolymerize. A method of manufacturing a synthetic resin light transmitting body in which the refractive index decreases over the entire light transmitting body in proportion to the square of the distance from the central axis.
JP58011954A 1983-01-27 1983-01-27 Method for producing plastic optial transmission body Granted JPS59137904A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58011954A JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body
US06/533,532 US4521351A (en) 1983-01-27 1983-09-16 Process for producing light-transmitting element of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011954A JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body

Publications (2)

Publication Number Publication Date
JPS59137904A JPS59137904A (en) 1984-08-08
JPH0437962B2 true JPH0437962B2 (en) 1992-06-23

Family

ID=11792011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011954A Granted JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body

Country Status (1)

Country Link
JP (1) JPS59137904A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321937A (en) * 1976-08-12 1978-02-28 Mitsubishi Electric Corp Preparation of synthetic resin material for optical transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321937A (en) * 1976-08-12 1978-02-28 Mitsubishi Electric Corp Preparation of synthetic resin material for optical transmission

Also Published As

Publication number Publication date
JPS59137904A (en) 1984-08-08

Similar Documents

Publication Publication Date Title
US3955015A (en) Method of manufacturing a transparent light conducting element of synthetic resin having refractive index gradient
JP3010369B2 (en) Method of manufacturing synthetic resin optical transmission body
US4521351A (en) Process for producing light-transmitting element of synthetic resin
JPH05247142A (en) Copolymer having photopolymerizable group, composition containing the same, and process for cladding optical fiber with the composition
KR860009311A (en) Index distribution type optical transmission medium and method for manufacturing same
KR0180518B1 (en) Light guide
EP0606598A2 (en) Shaped articles of graduated refractive index exhibiting low dispersion
US6106745A (en) Method of making graded index polymeric optical fibers
JPH0576602B2 (en)
JPH0437962B2 (en)
JPS60119510A (en) Manufacture of preform for plastic optical fiber
JPH0340362B2 (en)
EP0864109B1 (en) Method of making graded index polymeric optical fibres
JPH0429043B2 (en)
GB636379A (en) Production of shaped optical elements
JPH0355801B2 (en)
JPH0340361B2 (en)
JPH10245410A (en) Production of plastic optical fiber, and plastic optical fiber produced thereby
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JPS62108208A (en) Plastic optical transmission body and its production
JPH0854521A (en) Plastic optical fiber
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JPH06297596A (en) Refractive index distribution type plastic optical fiber