JPH06186442A - Distributed refractive index type plastic optical transmission body - Google Patents

Distributed refractive index type plastic optical transmission body

Info

Publication number
JPH06186442A
JPH06186442A JP4340742A JP34074292A JPH06186442A JP H06186442 A JPH06186442 A JP H06186442A JP 4340742 A JP4340742 A JP 4340742A JP 34074292 A JP34074292 A JP 34074292A JP H06186442 A JPH06186442 A JP H06186442A
Authority
JP
Japan
Prior art keywords
optical transmission
refractive index
polymer
transmission body
plastic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4340742A
Other languages
Japanese (ja)
Inventor
Masahiro Matsumoto
正廣 松本
Tadanori Fukuda
忠則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4340742A priority Critical patent/JPH06186442A/en
Publication of JPH06186442A publication Critical patent/JPH06186442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a distributed refractive index type optical transmission body superior in translucent performance, mechanical characteristics and heat resistance. CONSTITUTION:A colorless transparent nonpolymeric compound being compatible with a polymer constituting the optical transmission body and also having a higher refractive index than it of the polymer, is dispersed in a concentration distribution continuously decreasing from a central part of the optical transmission body to the peripheral part, and the plastic optical transmission body has a distributed refractive index continuously decreasing from the central part to the peripheral part. A colorless transparent polymer incorporating an aliphatic N-substituted maleimide monomer unit as a copolymer component, is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバやロッドレ
ンズなどの光伝送体に好適に使用される、中心から外周
方向に連続的に低下する屈折率分布を有するプラスチッ
ク光伝送体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plastic optical transmission medium having a refractive index distribution continuously decreasing from the center to the outer periphery, which is preferably used for an optical transmission medium such as an optical fiber or a rod lens. is there.

【0002】[0002]

【従来の技術】従来より、光伝送体は石英ガラス及び/
又はプラスチックから製造されている。石英系光伝送体
は、優れた透光性能を持っているが、加工性や可撓性が
良くないばかりでなく高価であり、さらにファイバとし
て使用する場合、径が非常に細いため接続も高精度を要
求され、高度な技術と高価格の装置が必要である。
2. Description of the Related Art Conventionally, an optical transmission body is made of quartz glass and / or
Or manufactured from plastic. Quartz-based optical transmitters have excellent light-transmitting performance, but they are not only poor in workability and flexibility, but also expensive, and when used as fibers, their diameter is very small, so connection is high. Precision is required, and sophisticated technology and high-priced equipment are required.

【0003】これに対して、プラスチック系光伝送体
は、透光性能では石英系よりも劣るが、軽くて加工性が
良く、可撓性も良く、安価である等の利点がある。
On the other hand, the plastic type optical transmission body is inferior to the quartz type in light transmission performance, but has advantages such as light weight, good workability, good flexibility and low cost.

【0004】このプラスチック系光伝送体のなかでもロ
ッドレンズや広帯域光ファイバなどに利用される、中心
部から外周部へと連続的に低下する屈折率分布を有する
光伝送体を製造する方法が既にいくつか提案されてい
る。
Among these plastic type optical transmission bodies, a method for producing an optical transmission body having a refractive index distribution continuously decreasing from a central portion to an outer peripheral portion, which is used for a rod lens, a broadband optical fiber, etc., has already been proposed. Several have been proposed.

【0005】例えば、屈折率が重合体と異なる単量体
を、光伝送体を主に形成する重合体の表面又は中空状内
面に接触させて重合体内部に拡散させて濃度分布を持た
せた後に重合する方法(特公昭52-5857 号、特公昭56-3
7521号公報等)、屈折率および単量体反応性比が異なる
2種類以上の単量体を透明容器内で光重合させることに
よって屈折率分布を持たせる方法(特公昭54-30301号、
特開昭61-130904 号公報等)、揮発性が高く重合体と異
なる屈折率の単量体を含有した重合体を紡糸し、表面よ
り単量体を揮発させて濃度分布を持たせた後に重合する
方法(特開昭62-209402 号公報等)、単量体反応性比は
かなり近似するが屈折率は異なる2種類以上の単量体
を、この単量体に溶解される重合体容器内に充填した後
に重合する方法(特開平4-97302 号、特開平4-97303 号
公報)などがある。
For example, a monomer having a refractive index different from that of the polymer is brought into contact with the surface or hollow inner surface of the polymer mainly forming the optical transmission medium and diffused inside the polymer to give a concentration distribution. Method to polymerize later (Japanese Patent Publication No. 52-5857, Japanese Patent Publication No. 56-3)
7521, etc.), a method of imparting a refractive index distribution by photopolymerizing two or more kinds of monomers having different refractive indexes and monomer reactivity ratios in a transparent container (Japanese Patent Publication No. 54-30301).
Japanese Patent Laid-Open No. 61-130904), spinning a polymer containing a monomer having a high volatility and a refractive index different from that of the polymer, and volatilizing the monomer from the surface to give a concentration distribution. Polymerization method (Japanese Patent Laid-Open No. 62-209402, etc.), a polymer container in which two or more kinds of monomers having different monomer reactivity ratios but substantially different refractive indices are dissolved in the monomers. There is a method of polymerizing after filling the inside (JP-A-4-97302 and JP-A-4-97303).

【0006】しかし、これらの方法は全て、屈折率が大
きく異なる(例えば0.04以上)重合体が生成され、
かつ単量体反応性比が多少なりとも異なる2種類以上の
単量体を反応させ、又は、先に形成されている重合体成
形体内でこの重合体と屈折率が大きく異なる重合体を与
える単量体の単独重合反応などが行われるため、重合が
完結した重合体内に屈折率の異なるミクロな相分離構造
が形成されることを避けることができなかった。このた
め、透光性能に悪影響を与えてしまうという欠点があっ
た。
However, all of these methods produce polymers having greatly different refractive indices (for example, 0.04 or more),
And reacting two or more kinds of monomers having slightly different monomer reactivity ratios, or giving a polymer having a refractive index greatly different from that of the polymer formed previously in the polymer molded body. Since the homopolymerization reaction of the monomer is carried out, it is unavoidable that a microscopic phase-separated structure having a different refractive index is formed in the polymerized polymer. Therefore, there is a drawback in that the light transmission performance is adversely affected.

【0007】そこで、光伝送体を形成する重合体内に、
この重合体とは屈折率が異なりかつ非重合性の化合物
(例えば、可塑剤としてポリマ中に配合される低分子物
質)を均一に濃度勾配をつけて分散させ、一定方向に連
続的な屈折率分布を持たせる方法が提案されている(平
成4年度高分子学会予稿集,Vol.41,No.3,798, 79
9)。
Therefore, in the polymer forming the optical transmission medium,
A non-polymerizable compound that has a different refractive index from this polymer (for example, a low molecular weight substance that is blended in a polymer as a plasticizer) is dispersed with a uniform concentration gradient to obtain a continuous refractive index in a certain direction. A method for providing distribution has been proposed (Abstracts of the Society of Polymer Science, 1992, Vol.41, No.3, 798, 79)
9).

【0008】[0008]

【発明が解決しようとする課題】しかし、この方法は透
光性能では優れているが、重合体内に非重合性化合物を
添加分散させているので、その重合体のガラス転移温度
が低下し、耐熱性が悪化するという問題があった。これ
は、従来より耐熱性が石英系よりも低いために石英系光
伝送体に比し適用範囲が限られていたプラスチック光伝
送体の耐熱性をさらに低下させることになる。
However, although this method is excellent in light-transmitting performance, since the non-polymerizable compound is added and dispersed in the polymer, the glass transition temperature of the polymer is lowered, and the heat resistance is lowered. There was a problem that sex deteriorates. This further lowers the heat resistance of the plastic optical transmission body, which has a limited application range as compared with the silica type optical transmission body because the heat resistance thereof is lower than that of the silica type transmission body.

【0009】通信用途などに適用する場合、信頼性の点
で耐熱性が85℃以上である必要があるが、プラスチッ
ク光伝送体に一般的に使用されているポリメタクリル酸
メチルを用い、これに非重合性化合物を分散含有させて
屈折率分布型プラスチック光伝送体を作製したのでは、
85℃以上の耐熱性を維持することは難しい。まして、
さらに高い耐熱性が必要な用途には適応困難である。
In the case of application for communication, etc., it is necessary that the heat resistance is 85 ° C. or higher in terms of reliability. However, polymethylmethacrylate generally used for plastic optical transmitters is used. A dispersion-containing non-polymerizable compound was used to produce a gradient index plastic optical transmission medium.
It is difficult to maintain heat resistance above 85 ° C. not to mention,
It is difficult to apply to applications that require higher heat resistance.

【0010】また、ポリカーボネートを使用して作製す
ることも考えられるが、これを使用した光伝送体は耐熱
性の点で良好であるが、透光性能及び耐熱耐久性が問題
である。これは、重合反応の際に生成した副生物の除去
が困難であったり、副生物や重合体の分解物によって着
色するためである。
It is also conceivable to use polycarbonate for production, but an optical transmission body using this is excellent in heat resistance, but there is a problem in light transmission performance and heat durability. This is because it is difficult to remove the by-product generated during the polymerization reaction, or the by-product or the decomposed product of the polymer causes coloring.

【0011】以上のように、従来の方法では、85℃以
上という耐熱性水準を保ちながら透光性能が良く連続的
な屈折率分布を有するプラスチック光伝送体を作製する
ことは困難であった。
As described above, according to the conventional method, it was difficult to produce a plastic optical transmission body having a good light-transmitting property and a continuous refractive index distribution while maintaining a heat resistance level of 85 ° C. or higher.

【0012】そこで、本発明は、上記のような従来技術
の欠点を解消し、ポリメタクリル酸メチル系のステップ
インデックス型光伝送体に匹敵する透光性能や機械的特
性ばかりでなく、85℃以上の耐熱性をも有する、中心
部から外周部へと連続的に低下する屈折率分布を有する
プラスチック光伝送体を提供することを主な目的とす
る。
Therefore, the present invention solves the above-mentioned drawbacks of the prior art, and has not only the light-transmitting performance and mechanical characteristics comparable to those of the polymethylmethacrylate-based step index type optical transmission body, but also 85 ° C. or more. The main object of the present invention is to provide a plastic optical transmission body that also has the above heat resistance and has a refractive index distribution that continuously decreases from the central portion to the outer peripheral portion.

【0013】[0013]

【課題を解決するための手段】この目的を達成するた
め、本発明は、光伝送体を構成する重合体と相溶性であ
りかつ該重合体よりも高屈折率を有する無色透明な非重
合性化合物が、光伝送体の中心部から外周部へと連続的
に減少する濃度分布で分散され、中心部から外周部へと
連続的に低下する屈折率分布を有するプラスチック光伝
送体であって、前記重合体が脂肪族系のN−置換マレイ
ミドモノマ単位を共重合成分として含む無色透明な重合
体であることを特徴とする屈折率分布型プラスチック光
伝送体からなる。
In order to achieve this object, the present invention provides a colorless transparent non-polymerizable polymer which is compatible with a polymer constituting an optical transmission medium and has a higher refractive index than the polymer. The compound is a plastic optical transmission medium having a refractive index distribution that is dispersed in a concentration distribution that continuously decreases from the central portion to the outer peripheral portion of the optical transmission member, and that continuously decreases from the central portion to the outer peripheral portion, The above-mentioned polymer is a colorless and transparent polymer containing an aliphatic N-substituted maleimide monomer unit as a copolymerization component, which is a gradient index plastic optical transmission medium.

【0014】本発明では、光伝送体の中心部から外周部
へと連続的に低下する屈折率分布を、光伝送体の重合体
を形成する単量体とは重合しない高屈折率化合物を、重
合体内の中心部から外周部へと連続的に減少する濃度分
布で分散させることによって形成させている。
In the present invention, a high-refractive-index compound that does not polymerize the refractive index distribution that continuously decreases from the central portion to the outer peripheral portion of the optical transmission medium with the monomer forming the polymer of the optical transmission medium, It is formed by dispersing the polymer in a concentration distribution that continuously decreases from the central portion to the outer peripheral portion.

【0015】この高屈折率化合物は、光伝送体を構成す
るベースの重合体よりも高い屈折率、例えば0.02以
上高い屈折率を有すること、この重合体と相溶性があっ
て該重合体中に均一分散できること、無色透明であるこ
と、及び、非重合性であって、重合体もベース重合体の
単量体との共重合体も形成しないことが必要である。さ
らに、沸点が200℃以上のような高沸点、及び、前記
重合体を形成する単量体よりも分子量が大きいことが好
ましい。このような非重合性の高屈折率化合物を用いれ
ば、重合が完結した重合体内に屈折率の異なるミクロな
相分離構造が形成されることがなく、透光性能の低下を
防止することができる。
The high refractive index compound has a higher refractive index than the base polymer constituting the optical transmission medium, for example, 0.02 or more higher refractive index, and is compatible with the polymer and has a high refractive index. It is necessary that it can be uniformly dispersed therein, that it is colorless and transparent, and that it is non-polymerizable and does not form a polymer or a copolymer with the monomers of the base polymer. Further, it is preferable that the boiling point is as high as 200 ° C. or higher and that the molecular weight is larger than that of the monomer forming the polymer. By using such a non-polymerizable high-refractive-index compound, it is possible to prevent the deterioration of the light-transmitting performance without forming a microscopic phase-separated structure having a different refractive index in the polymer in which the polymerization is completed. .

【0016】この高屈折率化合物としては、例えば、フ
タル酸ベンジルn−ブチル、フタル酸ジメチル、フタル
酸ジアリル、フタル酸ジオクチル、ジプロピレングリコ
ールジベンゾエート、ジエチレングリコールジベンゾエ
ート、リン酸トリフェニルなどを用いることができる。
As the high refractive index compound, for example, benzyl n-butyl phthalate, dimethyl phthalate, diallyl phthalate, dioctyl phthalate, dipropylene glycol dibenzoate, diethylene glycol dibenzoate, triphenyl phosphate and the like are used. You can

【0017】これに対し、屈折率分布を形成させる化合
物として、光伝送体を構成するベースの重合体よりも屈
折率が大きい重合体を与える単量体を用いるのでは、そ
の共重合によって屈折率の異なるミクロな相分離構造が
形成され透光性能の低下を生じるので不適当である。
On the other hand, if a monomer that gives a polymer having a refractive index larger than that of the base polymer forming the optical transmission medium is used as the compound for forming the refractive index distribution, the refractive index is obtained by the copolymerization. It is unsuitable because a microscopic phase separation structure different from each other is formed and the light transmission performance is deteriorated.

【0018】また、光伝送体を構成するベースの重合体
には、脂肪族系のN−置換マレイミドモノマ単位を共重
合成分として含む無色透明の重合体を用いることが必要
である。
Further, it is necessary to use a colorless and transparent polymer containing an aliphatic N-substituted maleimide monomer unit as a copolymerization component for the base polymer constituting the optical transmission medium.

【0019】脂肪族系N−置換マレイミドモノマ単位は
副反応の可能性が少なく、可視領域にポリメチルメタク
リレートよりも大きな特性吸収がなく、さらに、得られ
る重合体の機械的特性、ガラス転移温度、熱安定性等の
バランスからして、光伝送体の耐熱性を向上させるため
の共重合成分として好適である。
The aliphatic N-substituted maleimide monomer units have less possibility of side reactions, have no greater characteristic absorption in the visible region than polymethylmethacrylate, and, in addition, have mechanical properties, glass transition temperatures, From the balance of thermal stability and the like, it is suitable as a copolymerization component for improving the heat resistance of the optical transmission body.

【0020】この脂肪族系N−置換マレイミドモノマと
しては、例えば、メチル、エチル、イソプロピル、イソ
ブチル、第2ブチル、t-ブチル、2,2-ジメチルプロピ
ル、シクロヘキシル等の炭素数が1から6までの脂肪族
系炭化水素基でN置換されたマレイミドモノマが挙げら
れる。これらのうち、単量体の純度を高めるための蒸留
がし易く無色透明性および熱安定性が高いことから、常
温で液体であるイソプロピル、イソブチル、第2ブチ
ル、t-ブチル、2,2-ジメチルプロピル等の置換体が好ま
しく、なかでも無色透明性に最も優れているイソプロピ
ル置換体が特に好ましい。
Examples of the aliphatic N-substituted maleimide monomer include methyl, ethyl, isopropyl, isobutyl, sec-butyl, t-butyl, 2,2-dimethylpropyl, cyclohexyl and the like having 1 to 6 carbon atoms. The maleimide monomer N-substituted with the aliphatic hydrocarbon group of is mentioned. Of these, isopropyl, isobutyl, sec-butyl, t-butyl, 2,2-butyl, which are liquids at room temperature, are easy to distill to increase the purity of the monomer, and have high colorless transparency and high thermal stability. Substitutes such as dimethylpropyl are preferable, and among them, isopropyl substitutes, which are most excellent in colorless transparency, are particularly preferable.

【0021】これに対し、芳香族基で置換されたN−置
換マレイミドは、黄色あるいは淡黄色と着色しているた
め、光伝送体の透光性能に悪影響を与えるので不適当で
ある。
On the other hand, the N-substituted maleimide substituted with an aromatic group is not suitable because it is colored yellow or light yellow, which adversely affects the light transmission performance of the optical transmission medium.

【0022】しかし、脂肪族系N−置換マレイミド単量
体の単独重合体は、無色透明性が高くガラス転移温度が
200℃前後と高く耐熱耐久性を充分満たしているもの
の、機械的特性が不充分であるので光伝送体には不適当
である。
However, the homopolymer of the aliphatic N-substituted maleimide monomer has a high colorless transparency and a glass transition temperature of about 200 ° C., which is sufficiently high in heat resistance and durability, but has poor mechanical properties. Since it is sufficient, it is not suitable for an optical transmission body.

【0023】従って、この重合体を形成する重合成分に
は、脂肪族系のN−置換マレイミドモノマ単位の他に、
光伝送体に通常用いられている重合成分を用いることが
必要である。
Accordingly, in addition to the aliphatic N-substituted maleimide monomer unit, the polymerization component forming this polymer is
It is necessary to use the polymerization component normally used for an optical transmission body.

【0024】この重合成分としては、例えば、メタクリ
ル酸メチル、メタクリル酸エチル、メタクリル酸イソプ
ロピル、メタクリル酸シクロヘキシル、メタクリル酸脂
肪族置換シクロヘキシルなどが挙げられる。これらの中
でも、メタクリル酸メチルが、得られる光伝送体が無色
透明性に優れかつ高いガラス転移温度が得られる点から
好ましい。
Examples of the polymerization component include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, cyclohexyl methacrylate, and aliphatic substituted cyclohexyl methacrylate. Among these, methyl methacrylate is preferable because the obtained light transmission body has excellent colorless transparency and a high glass transition temperature.

【0025】この際の共重合組成は、前記脂肪族系N−
置換マレイミドが5〜70モル%含まれることが好まし
く、さらに好ましくは10〜50モル%含まれる場合で
ある。
The copolymer composition at this time is the above-mentioned aliphatic N-
It is preferable that the substituted maleimide be contained in an amount of 5 to 70 mol%, and more preferably 10 to 50 mol%.

【0026】脂肪族系N−置換マレイミドは、単独重合
した場合、ポリメチルメタクリレートのような通常の光
伝送体重合体に近い屈折率の無色透明性に優れた重合体
を与えることができる。しかも、脂肪族系N−置換マレ
イミドとメタクリル酸メチルとは単量体反応性比の差が
大きくないので、脂肪族系N−置換マレイミドをメチル
メタクリレートのような光伝送体用単量体に共重合させ
ても組成分布が生じ難く優れた透光性能を発揮すること
ができる。
When homopolymerized, the aliphatic N-substituted maleimide can give a polymer having a refractive index close to that of an ordinary light transmitting polymer such as polymethylmethacrylate and excellent in colorless transparency. Moreover, since the difference in the monomer reactivity ratio between the aliphatic N-substituted maleimide and the methyl methacrylate is not large, the aliphatic N-substituted maleimide is used in combination with a monomer for an optical transmitter such as methyl methacrylate. Even if polymerized, composition distribution hardly occurs and excellent light-transmitting performance can be exhibited.

【0027】このように、脂肪族系N−置換マレイミド
を共重合させることによって、得られる共重合体の耐熱
性が向上し130℃以上のガラス転移温度とすることが
できるので、前記した非重合性の高屈折率化合物を分散
含有させても、90℃以上のガラス転移温度とすること
ができる。
By copolymerizing the aliphatic N-substituted maleimide in this manner, the heat resistance of the resulting copolymer can be improved and the glass transition temperature of 130 ° C. or higher can be achieved. A glass transition temperature of 90 ° C. or higher can be obtained even when a high refractive index compound having a high property is dispersedly contained.

【0028】本発明の光伝送体はバッチ作製法でも連続
作製法でも作製することができる。バッチ作製法は、予
め作製しておいた重合体製中空管の中空内に、その中空
管の重合体を溶解しかつ非重合性高屈折率化合物を分散
含有する重合性溶液(単量体成分、重合開始剤、分子量
調整剤を含む単量体混合物)を充填させ、非重合性高屈
折率化合物の拡散を促しながら外側から重合を進め、ロ
ッド状のプリフォームを得、その後に、所望の径になる
ように加熱延伸する方法である。
The optical transmission article of the present invention can be produced by either a batch production method or a continuous production method. The batch production method is a polymerizable solution (a single amount is a solution of a polymer hollow tube prepared in advance, in which the polymer of the hollow tube is dissolved and the non-polymerizable high refractive index compound is dispersed. Body component, a polymerization initiator, a monomer mixture containing a molecular weight modifier) is filled, the polymerization is advanced from the outside while promoting the diffusion of the non-polymerizable high-refractive-index compound, and a rod-shaped preform is obtained. It is a method of heating and stretching so as to obtain a desired diameter.

【0029】この際の重合体製中空管は、非重合性の高
屈折率化合物を含有しない以外は中空部内に充填した物
と同じ単量体混合物から形成してもよいし、また、その
主成分となる単量体が同じであれば異なる単量体混合物
から形成してもよい。さらにまた、脂肪族系N−置換マ
レイミドモノマ単位を共重合させた重合体で構成されて
いてもよい。
In this case, the polymer hollow tube may be formed of the same monomer mixture as that filled in the hollow portion except that it does not contain a non-polymerizable high refractive index compound. They may be formed from different monomer mixtures as long as they have the same main component monomer. Furthermore, it may be composed of a polymer obtained by copolymerizing an aliphatic N-substituted maleimide monomer unit.

【0030】また、重合開始剤としてはアゾビスイソブ
チロニトリル等のアゾ化合物、過酸化ベンゾイル等の過
酸化物等の通常のラジカル重合開始剤が、また、分子量
調整剤としてはn−ブチルメルカプタン等のメルカプタ
ン類等の通常のラジカル連鎖移動剤が用いられる。
As the polymerization initiator, an azo compound such as azobisisobutyronitrile, a normal radical polymerization initiator such as a peroxide such as benzoyl peroxide, and n-butyl mercaptan can be used as the molecular weight regulator. Ordinary radical chain transfer agents such as mercaptans are used.

【0031】また、連続作製法は、2重同心円状の吐出
孔を有する紡出口金の外側部に、別の重合装置内あるい
は連続的につながった重合装置内で単量体混合液を重合
して重合開始剤と分子量調整剤を残したまま重合率50
〜90%で重合を止めた重合体単量体混合物、または重
合開始剤と分子量調整剤を残さずに重合率50〜90%
で重合を止めた後にさらに重合開始剤と分子量調整剤を
添加した重合体単量体混合物を導く。一方、同じ口金の
内側部には、高屈折率非重合性化合物を含有する単量体
混合液の重合しないままの混合液、あるいは、その単量
体混合液をある程度重合させ重合開始剤と分子量調整剤
とを含む重合率50%以下の重合体単量体混合物(この
重合体単量体混合物は、重合開始剤と分子量調整剤とを
残したままで重合を中断させたものであってもよいし、
また、重合を中断させた後に重合開始剤や分子量調整剤
を添加したものであってもよい)を導く。そして、外側
の重合体単量体混合物の粘度が10,000〜150,
000ポイズの状態で内側の(重合体)単量体混合物と
同時に口金から押し出し芯鞘状複合のロッド状物とし、
それをさらに内側混合物内の高屈折率非重合性化合物の
外周部への拡散を促しながら、または促してから熱重合
または光重合して完全な重合体とし、さらに、所望の径
になるように加熱引き延ばす方法である。
In the continuous production method, the monomer mixture is polymerized in another polymerization device or in a polymerization device continuously connected to the outer portion of the spinneret having double concentric discharge holes. The polymerization rate is 50 with the polymerization initiator and the molecular weight modifier left.
Polymerization rate of 50 to 90% without leaving a polymerization monomer mixture or a polymerization initiator and a molecular weight modifier
After the polymerization is stopped by (1), a polymer monomer mixture to which a polymerization initiator and a molecular weight modifier are further added is introduced. On the other hand, in the inner part of the same die, a mixed liquid of a monomer mixed liquid containing a high refractive index non-polymerizable compound as it is not polymerized, or the monomer mixed liquid is polymerized to some extent to cause polymerization initiator and molecular weight. Polymer monomer mixture containing a regulator and having a polymerization rate of 50% or less (this polymer monomer mixture may be one in which the polymerization was interrupted while leaving the polymerization initiator and the molecular weight regulator). Then
In addition, a polymerization initiator or a molecular weight modifier may be added after the polymerization is interrupted). And, the viscosity of the outer polymer monomer mixture is 10,000 to 150,
In the state of 000 poise, extruded from the die at the same time as the inner (polymer) monomer mixture to form a core-sheath composite rod-shaped article,
While further accelerating the diffusion of the high refractive index non-polymerizable compound in the inner mixture to the outer peripheral portion, or by further promoting the thermal polymerization or photopolymerization into a complete polymer, further, to obtain a desired diameter It is a method of heating and stretching.

【0032】本発明にいう光伝送体は、上記のように引
き延ばして得られる光ファイバで代表されるが、延伸せ
ずにロッドレンズとしてもよい。
The optical transmission body according to the present invention is represented by an optical fiber obtained by stretching as described above, but may be a rod lens without being stretched.

【0033】[0033]

【実施例】以下、実施例により本発明をさらに説明す
る。
EXAMPLES The present invention will be further described below with reference to examples.

【0034】実施例中の光ファイバの透光性能の評価は
次の方法によった。
The light transmission performance of the optical fibers in the examples was evaluated by the following method.

【0035】タングステンランプの光を回折格子で分波
し、レンズで集光した後、両端を研磨した10〜30m
の光ファイバ(ファイバ長:Ls m)の一端から入射
し、他の一端より出射した光をフォトダイオードで光電
力として検出した(Ps dBm )。次に入射端を固定した
まま入射端より約2mのところで切断したリファレンス
ファイバ(ファイバ長:Lr m)について、同様に測定
を繰り返す、いわゆるカットバック法を用いて測定した
(Pr dBm )。そして次式に従って光ファイバの透光損
失値を算出した。
The light of the tungsten lamp is demultiplexed by a diffraction grating, condensed by a lens, and then both ends are polished to 10 to 30 m.
The light incident from one end of the optical fiber (fiber length: Ls m) and emitted from the other end was detected by the photodiode as optical power (Ps dBm). Next, a reference fiber (fiber length: Lr m) cut at a distance of about 2 m from the incident end with the incident end being fixed was measured by the so-called cutback method (Pr dBm) in which the same measurement was repeated. Then, the light transmission loss value of the optical fiber was calculated according to the following equation.

【0036】透光損失値(dB/km)=(Ps −Pr )/
(Ls −Lr )・1000 ここで、Ls 、Lr は、それぞれ、サンプル光ファイ
バ、リファレンスファイバのファイバ長(m)であり、
また、、Ps 、Pr は、それぞれ、サンプル光ファイ
バ、リファレンスファイバの光電力値(dBm )である。
Light transmission loss value (dB / km) = (Ps-Pr) /
(Ls−Lr) · 1000 where Ls and Lr are the fiber lengths (m) of the sample optical fiber and the reference fiber, respectively.
Further, Ps and Pr are optical power values (dBm) of the sample optical fiber and the reference fiber, respectively.

【0037】また、光ファイバの耐熱耐久性は次の方法
により評価した。
The heat resistance durability of the optical fiber was evaluated by the following method.

【0038】測定に供せられた光ファイバを所定の時
間、熱風乾燥機で加熱した後、加熱前と加熱後の透光損
失を上記方法に従って測定し、それらの値を対比させ
た。
The optical fiber used for the measurement was heated by a hot air dryer for a predetermined time, and the light transmission loss before and after the heating was measured according to the above method, and the values were compared.

【0039】[実施例1]N−イソプロピルマレイミド
30重量部、メタクリル酸メチル70重量部、アゾビス
イソブチロニトリル0.015重量部、及び、n−ブチ
ルメルカプタン0.010重量部をそれぞれ蒸留した後
に混合物を調製し、0.05μm孔のテフロン製フィル
ターで濾過してから水平に保持したガラス管に入れた。
そして両端をシールした後に回転させながら50℃で1
6時間重合した後、徐々に温度を上げて最終的に90℃
に10時間保って重合を完結させて重合体製中空管を得
た。
Example 1 30 parts by weight of N-isopropylmaleimide, 70 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile, and 0.010 parts by weight of n-butylmercaptan were respectively distilled. The mixture was later prepared, filtered through a Teflon filter having a pore size of 0.05 μm, and then placed in a glass tube held horizontally.
After sealing both ends, rotate at 50 ° C for 1
After polymerizing for 6 hours, gradually raise the temperature to finally reach 90 ° C.
The polymerization was completed by keeping the temperature for 10 hours to obtain a polymer hollow tube.

【0040】次に、この中空管の内部に、N−イソプロ
ピルマレイミド24重量部、メタクリル酸メチル56重
量部、アゾビスイソブチロニトリル0.015重量部、
n−ブチルメルカプタン0.010重量部、及び、フタ
ル酸ベンジルn−ブチル20重量部からなる混合物を充
填した後、常温で4時間放置後、50℃で16時間重合
し、徐々に温度を上げて最終的に90℃に10時間保っ
て重合し、直径20mmの無色透明なロッドを得た。外側
のガラス管は壊して取り去った。
Next, inside the hollow tube, 24 parts by weight of N-isopropylmaleimide, 56 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile,
After filling a mixture of 0.010 parts by weight of n-butyl mercaptan and 20 parts by weight of benzyl n-butyl phthalate, the mixture was allowed to stand at room temperature for 4 hours, polymerized at 50 ° C. for 16 hours, and gradually heated. Finally, the mixture was kept at 90 ° C. for 10 hours for polymerization to obtain a colorless and transparent rod having a diameter of 20 mm. The outer glass tube was broken and removed.

【0041】こうして得られたロッドを切断および粉砕
し、ロッドの中心部のみを取り出してガラス転移温度を
DSCで測定したところ、98℃であった。
The rod thus obtained was cut and pulverized, and only the central portion of the rod was taken out and the glass transition temperature was measured by DSC.

【0042】このロッドを円筒型加熱器によって230
℃で溶融引き伸ばして直径1mmの光ファイバとした。
This rod is heated by a cylindrical heater 230
It was melt-stretched at ℃ to obtain an optical fiber with a diameter of 1 mm.

【0043】得られた光ファイバの屈折率分布をインタ
ーファコ干渉顕微鏡で測定したところ、中心から外周に
かけて屈折率が連続的に減少していた。中心部の屈折率
は1.519であり、外周部の屈折率は1.506であ
った。この光ファイバの25℃における透光損失値は、
650nmで154dB/kmであった。また、85℃で10
00時間熱処理した後の透光損失値は、650nmで15
8dB/kmと、熱処理しても殆ど変化せず良好であった。
さらに、可撓性は、巻付け径を1mmまですることができ
良好であった。
When the refractive index distribution of the obtained optical fiber was measured by an interferco interference microscope, the refractive index continuously decreased from the center to the outer periphery. The central part had a refractive index of 1.519, and the outer peripheral part had a refractive index of 1.506. The light transmission loss value at 25 ° C of this optical fiber is
It was 154 dB / km at 650 nm. Also, 10 at 85 ° C
The light loss value after heat treatment for 00 hours is 15 at 650 nm.
It was 8 dB / km, which was good with almost no change even after heat treatment.
Furthermore, the flexibility was good because the winding diameter could be up to 1 mm.

【0044】このように、得られた屈折率分布型光ファ
イバは、優れた透光性能と機械的特性を示し、しかも、
耐熱性にも優れていた。
As described above, the obtained gradient index optical fiber exhibits excellent light-transmitting performance and mechanical characteristics, and further,
It was also excellent in heat resistance.

【0045】[実施例2]N−シクロヘキシルマレイミ
ド30重量部、メタクリル酸メチル70重量部、アゾビ
スイソブチロニトリル0.015重量部、n−ブチルメ
ルカプタン0.010重量部からなる混合物をそれぞれ
蒸留して調製した後、0.05μm孔のテフロン製フィ
ルターで濾過してから水平に保持したガラス管に入れ
た。そして両端をシールした後、実施例1と同様に重合
して重合体製中空管を得た。そして、この中空管の内部
にN−シクロヘキシルマレイミド24重量部、メタクリ
ル酸メチル56重量部、アゾビスイソブチロニトリル
0.015重量部、n−ブチルメルカプタン0.010
重量部、フタル酸ベンジルn−ブチル20重量部からな
る混合物を充填した後、実施例1と同様に重合し、直径
20mmの無色透明なロッドを得た。ガラス管は壊して取
り去った。
Example 2 A mixture of 30 parts by weight of N-cyclohexylmaleimide, 70 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile and 0.010 parts by weight of n-butylmercaptan was distilled respectively. After that, it was filtered with a Teflon filter having a hole of 0.05 μm and then put into a glass tube held horizontally. After sealing both ends, polymerization was carried out in the same manner as in Example 1 to obtain a polymer hollow tube. Then, 24 parts by weight of N-cyclohexylmaleimide, 56 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile, and 0.010 of n-butylmercaptan were placed inside the hollow tube.
After charging a mixture of 20 parts by weight of benzyl n-butyl phthalate and 20 parts by weight of benzyl phthalate, the mixture was polymerized in the same manner as in Example 1 to obtain a colorless and transparent rod having a diameter of 20 mm. The glass tube was broken and removed.

【0046】得られたロッドの中心部のガラス転移温度
は104℃であった。このロッドから実施例1と同様に
して直径1mmの光ファイバを得た。
The glass transition temperature at the center of the obtained rod was 104 ° C. An optical fiber having a diameter of 1 mm was obtained from this rod in the same manner as in Example 1.

【0047】得られた光ファイバの屈折率分布は、中心
から外周にかけて屈折率が連続的に減少していた。中心
部の屈折率は1.522であり、外周部の屈折率は1.
509であった。この光ファイバの25℃における透光
損失値は、650nmで187dB/kmであった。85℃で
1000時間熱処理した後の透光損失値は650nmで1
90dB/kmと殆ど変化せず、良好であった。さらに、可
撓性は、巻付け径を1mmまですることができ良好であっ
た。
In the refractive index distribution of the obtained optical fiber, the refractive index continuously decreased from the center to the outer circumference. The refractive index of the central portion is 1.522, and the refractive index of the outer peripheral portion is 1.22.
It was 509. The light transmission loss value at 25 ° C. of this optical fiber was 187 dB / km at 650 nm. The light loss value after heat treatment at 85 ° C for 1000 hours is 1 at 650 nm.
It was good with almost no change of 90 dB / km. Furthermore, the flexibility was good because the winding diameter could be up to 1 mm.

【0048】このように、実施例1と同様に、透光性
能、機械的特性及び耐熱性に優れた屈折率分布型光ファ
イバとすることができた。
Thus, as in Example 1, a gradient index optical fiber having excellent light-transmitting performance, mechanical characteristics and heat resistance could be obtained.

【0049】[実施例3]メタクリル酸メチルを蒸留
し、アゾビスイソブチロニトリル及びn−ブチルメルカ
プタンを混合して単量体混合物を調製した後、0.05
μm孔のテフロン製フィルターで濾過してから水平に保
持したガラス管中に入れた。そして両端をシールした後
に回転させながら常法に従い熱重合して重合体製中空管
を得た。そして、この重合管の内部にN−イソプロピル
マレイミド24重量部、メタクリル酸メチル56重量
部、アゾビスイソブチロニトリル0.015重量部、n
−ブチルメルカプタン0.010重量部、フタル酸ベン
ジルn−ブチル20重量部からなる混合物を充填した
後、実施例1と同様に重合し、直径20mmの無色透明な
ロッドを得た。ガラス管は壊して取り去った得られたロ
ッド中心部のガラス転移温度は98℃であった。このロ
ッドから実施例1と同様にして直径1mmの光ファイバを
得た。
[Example 3] Methyl methacrylate was distilled, and azobisisobutyronitrile and n-butyl mercaptan were mixed to prepare a monomer mixture.
The mixture was filtered with a Teflon filter having a pore size of μm and then placed in a glass tube held horizontally. Then, after sealing both ends, the polymer was thermally polymerized according to a conventional method while rotating to obtain a polymer hollow tube. Inside the polymerization tube, 24 parts by weight of N-isopropylmaleimide, 56 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile, n
After filling a mixture of 0.010 parts by weight of -butyl mercaptan and 20 parts by weight of benzyl n-butyl phthalate, the mixture was polymerized in the same manner as in Example 1 to obtain a colorless and transparent rod having a diameter of 20 mm. The glass transition temperature of the obtained rod central part obtained by breaking and removing the glass tube was 98 ° C. An optical fiber having a diameter of 1 mm was obtained from this rod in the same manner as in Example 1.

【0050】得られた光ファイバの屈折率分布は、中心
から外周にかけて屈折率が連続的に減少していた。中心
部の屈折率は1.517であり、外周部の屈折率は1.
494であった。この光ファイバの25℃における透光
損失値は、650nmで153dB/kmであった。85℃で
1000時間熱処理した後の透光損失値は650nmで1
60dB/kmと殆ど変化せず、良好であった。さらに、可
撓性は、巻付け径を1mmまでとすることができ良好であ
った。
In the refractive index distribution of the obtained optical fiber, the refractive index continuously decreased from the center to the outer periphery. The central portion has a refractive index of 1.517, and the outer peripheral portion has a refractive index of 1.
It was 494. The light transmission loss value at 25 ° C. of this optical fiber was 153 dB / km at 650 nm. The light loss value after heat treatment at 85 ° C for 1000 hours is 1 at 650 nm.
It was good with almost no change of 60 dB / km. Further, the flexibility was good because the winding diameter could be up to 1 mm.

【0051】このように、実施例1、2と同様に、透光
性能、機械的特性及び耐熱性に優れた屈折率分布型光フ
ァイバとすることができた。
As described above, similar to Examples 1 and 2, it was possible to obtain a gradient index optical fiber having excellent light-transmitting performance, mechanical characteristics and heat resistance.

【0052】[比較例1]メタクリル酸メチルを蒸留し
て、アゾビスイソブチロニトリル及びn−ブチルメルカ
プタンを混合して単量体混合物を調製した後、0.05
μm孔のテフロン製フィルターで濾過してから水平に保
持したガラス管に入れた。そして両端をシールした後に
回転させながら常法に従い熱重合して重合体製中空管を
得た。そして、この中空管の内部にメタクリル酸メチル
80重量部、アゾビスイソブチロニトリル0.015重
量部、n−ブチルメルカプタン0.010重量部、フタ
ル酸ベンジルn−ブチル20重量部からなる混合物を充
填した後、実施例1と同様に重合し、直径20mmの無色
透明なロッドを得た。ガラス管は壊して取り去った。得
られたロッド中心部のガラス転移温度は78℃と低かっ
た。このロッドから実施例1と同様にして直径1mmの光
ファイバを得た。
Comparative Example 1 Methyl methacrylate was distilled, and azobisisobutyronitrile and n-butyl mercaptan were mixed to prepare a monomer mixture.
The mixture was filtered through a Teflon filter having a hole of μm and then put into a glass tube held horizontally. Then, after sealing both ends, the polymer was thermally polymerized according to a conventional method while rotating to obtain a polymer hollow tube. A mixture of 80 parts by weight of methyl methacrylate, 0.015 parts by weight of azobisisobutyronitrile, 0.010 parts by weight of n-butyl mercaptan, and 20 parts by weight of benzyl n-butyl phthalate was placed inside the hollow tube. After filling, was polymerized in the same manner as in Example 1 to obtain a colorless and transparent rod having a diameter of 20 mm. The glass tube was broken and removed. The glass transition temperature of the obtained central part of the rod was as low as 78 ° C. An optical fiber having a diameter of 1 mm was obtained from this rod in the same manner as in Example 1.

【0053】得られた光ファイバの屈折率分布は、中心
から外周にかけて屈折率が連続的に減少していた。中心
部の屈折率は1.510であり、外周部の屈折率は1.
494であった。この光ファイバの25℃における透光
損失値は、650nmで126dB/kmであり、85℃で1
000時間熱処理した後の透光損失値は、650nmで2
10dB/km と大幅に悪化した。さらに、屈折率分布の形
状にも変化がみられた。
In the refractive index distribution of the obtained optical fiber, the refractive index continuously decreased from the center to the outer periphery. The refractive index of the central portion is 1.510, and the refractive index of the outer peripheral portion is 1.10.
It was 494. The optical transmission loss value at 25 ° C of this optical fiber is 126 dB / km at 650 nm and is 1 at 85 ° C.
The light loss value after heat treatment for 000 hours is 2 at 650 nm.
It was significantly deteriorated to 10 dB / km. Furthermore, the shape of the refractive index distribution was also changed.

【0054】[0054]

【発明の効果】本発明の、中心部から外周部へ連続的に
低下する屈折率分布を有するプラスチック光伝送体は、
優れた透光性能や機械的特性を保持するとともに、耐熱
耐久性にも優れ、実用的な耐熱温度85℃で長期間に亘
って使用できる実用信頼性を具備している。
Industrial Applicability According to the present invention, there is provided a plastic optical transmission body having a refractive index distribution which continuously decreases from the central portion to the outer peripheral portion.
In addition to maintaining excellent light-transmitting performance and mechanical properties, it also has excellent heat resistance and durability, and has practical reliability that can be used for a long period of time at a practical heat resistant temperature of 85 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光伝送体を構成する重合体と相溶性が
ありかつ該重合体よりも高屈折率を有する無色透明の非
重合性化合物が、光伝送体の中心部から外周部へと連続
的に減少する濃度分布で分散され、中心部から外周部へ
と連続的に低下する屈折率分布を有するプラスチック光
伝送体であって、前記重合体が脂肪族系のN−置換マレ
イミドモノマ単位を共重合成分として含む無色透明な重
合体であることを特徴とする屈折率分布型プラスチック
光伝送体。
1. A colorless and transparent non-polymerizable compound which is compatible with a polymer constituting an optical transmission medium and has a higher refractive index than the polymer is continuous from the central portion to the outer peripheral portion of the optical transmission member. A plastic optical transmission medium having a refractive index distribution that is dispersed in a concentration distribution that is gradually reduced and that continuously decreases from a central portion to an outer peripheral portion, wherein the polymer comprises an aliphatic N-substituted maleimide monomer unit. A gradient index plastic optical transmission material, which is a colorless and transparent polymer containing as a copolymerization component.
【請求項2】 光伝送体の中心部における重合体のガ
ラス転移温度が、90℃以上であることを特徴とする請
求項1記載の屈折率分布型プラスチック光伝送体。
2. The gradient index plastic optical transmission article according to claim 1, wherein the glass transition temperature of the polymer in the central portion of the optical transmission article is 90 ° C. or higher.
JP4340742A 1992-12-21 1992-12-21 Distributed refractive index type plastic optical transmission body Pending JPH06186442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4340742A JPH06186442A (en) 1992-12-21 1992-12-21 Distributed refractive index type plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4340742A JPH06186442A (en) 1992-12-21 1992-12-21 Distributed refractive index type plastic optical transmission body

Publications (1)

Publication Number Publication Date
JPH06186442A true JPH06186442A (en) 1994-07-08

Family

ID=18339870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4340742A Pending JPH06186442A (en) 1992-12-21 1992-12-21 Distributed refractive index type plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPH06186442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5938986A (en) * 1997-03-17 1999-08-17 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing a graded refractive index plastic optical-fiber
US6013205A (en) * 1997-03-07 2000-01-11 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing distributed refractive index plastic optical-fiber
US6054069A (en) * 1997-10-14 2000-04-25 Sumitomo Wiring Systems, Ltd. Method of manufacturing a preform for a refractive index distributed type plastic optical fiber
US6132650A (en) * 1997-03-07 2000-10-17 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing distributed refractive index plastic optical-fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013205A (en) * 1997-03-07 2000-01-11 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing distributed refractive index plastic optical-fiber
US6132650A (en) * 1997-03-07 2000-10-17 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing distributed refractive index plastic optical-fiber
US5938986A (en) * 1997-03-17 1999-08-17 Sumitomo Wiring Systems, Ltd. Method and apparatus for manufacturing a graded refractive index plastic optical-fiber
US6054069A (en) * 1997-10-14 2000-04-25 Sumitomo Wiring Systems, Ltd. Method of manufacturing a preform for a refractive index distributed type plastic optical fiber

Similar Documents

Publication Publication Date Title
CA2098604C (en) Optical resin materials with distributed refractive index, process for producing the materials, and optical conductors using the materials
JPS6410019B2 (en)
JP3719733B2 (en) Gradient index type optical resin material and manufacturing method thereof
EP0606598A2 (en) Shaped articles of graduated refractive index exhibiting low dispersion
EP0844501A2 (en) Plastic optical fibre with two cores
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
KR100387096B1 (en) Process for the preparation and apparatus of plastic optical fiber preform having refractive index grade and optical fiber preform and optical fiber obtained therefrom
US5153288A (en) Cladding material for optical fiber and method for its manufacture
KR910005547B1 (en) Heat resisting plastic optical fiber and method for its manufacture
JPS6157908A (en) Optical resin composition
KR100460720B1 (en) Plastic optical fiber preform and method for preparing the same
JPH0727928A (en) Production of plastic optical transmission body
JP3504064B2 (en) Graded-index plastic optical fiber and method of manufacturing the same
JPS6389806A (en) Plastic optical fiber
US20050062180A1 (en) Method for making a plastic optical fiber, and resulting plastic optical fiber
JPH0355801B2 (en)
KR100327867B1 (en) The preparing method of preform for plastic optical fiber
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JPS63208805A (en) Production of optical fiber
JP2006106779A (en) Optical plastic material, graded-refractive-index optical fiber and method for manufacturing graded-refractive-index optical plastic material
JPS62208005A (en) Optical fiber
JPH06186441A (en) Production of distributed refractive index plastic light transmission body
JPH08334604A (en) Plastic light transmission body and its production
JPS61141405A (en) Plastic fiber
JPH09258042A (en) Refractive index distributed plastic optical fiber and its production