JPH09258042A - Refractive index distributed plastic optical fiber and its production - Google Patents

Refractive index distributed plastic optical fiber and its production

Info

Publication number
JPH09258042A
JPH09258042A JP8091869A JP9186996A JPH09258042A JP H09258042 A JPH09258042 A JP H09258042A JP 8091869 A JP8091869 A JP 8091869A JP 9186996 A JP9186996 A JP 9186996A JP H09258042 A JPH09258042 A JP H09258042A
Authority
JP
Japan
Prior art keywords
polymer
monomer
refractive index
optical fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8091869A
Other languages
Japanese (ja)
Other versions
JP3504065B2 (en
Inventor
Atsushi Okumura
淳 奥村
Yasushi Kawarada
泰 川原田
Yoshihiro Uozu
吉弘 魚津
Kazumi Nakamura
一己 中村
Shoji Hayashi
省治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP09186996A priority Critical patent/JP3504065B2/en
Publication of JPH09258042A publication Critical patent/JPH09258042A/en
Application granted granted Critical
Publication of JP3504065B2 publication Critical patent/JP3504065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a low loss, stability with time and thermal stability by using a specified polymer, a polymer having a high refractive index and a specified nonpolymerizable compd. SOLUTION: This fiber consists of a polymer (A) comprising a monomer expressed by formula I, a polymer (B) having higher refractive index than that of the polymer (A), and a nonpolymerizable compd. (C) having 100 to 1000mol.wt. The polymer (B) is compounded in such a blending ratio that the amt. of the polymer (B) continuously decreases from the center of the fiber to the peripheral part in the presence of the nonpolymerizable compd. In formula I, X represents formula II. In formula II, R<1> , R<2> are hydrogen atoms, alkyl groups of <=12 carbon number, etc. If the mol.wt. of the nonpolymerizable compd. (C) is too small, the effect to decrease diffusion is not enough obtd. If the mol.wt. is too large, the nonpolymerizable compd. (C) easily aggregates to increase the diffusion. The distribution of the refractive index is preferably controlled in such a manner that the refractive index can be expressed by a secondary-order decreasing function from the fiber center to the peripheral part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、大容量の光情報通
信媒体として利用可能な屈折率分布型プラスチック光フ
ァイバ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient index plastic optical fiber that can be used as a large capacity optical information communication medium and a method for manufacturing the same.

【0002】[0002]

【従来の技術】光ファイバは、伝送する光のモード数か
らシングルモードファイバ、マルチモードファイバに分
類することができ、ファイバの屈折率プロフィールから
はステップインデックス型(SI型)、グレーデッドイ
ンデックス型(GI型)に分類することもできる。ま
た、光ファイバは、その素材から石英系、プラスチック
系があり、プラスチック光ファイバは、伝送損失の点で
石英系には及ばないものの大口径のものを得ることが可
能で軸ずれに対する許容が大きいことや柔軟性に優れ取
扱い性がよいといった特徴を生かして主に短距離分野で
用いられている。
2. Description of the Related Art Optical fibers can be classified into single-mode fibers and multi-mode fibers according to the number of modes of light to be transmitted, and step index type (SI type) and graded index type (SI type) are used according to the refractive index profile of the fiber. GI type). In addition, there are silica type and plastic type optical fibers depending on the material, and it is possible to obtain plastic optical fibers with a large diameter, although it is inferior to quartz type in terms of transmission loss, and there is a large allowance for axis deviation. It is mainly used in the short-distance field because of its excellent flexibility and easy handling.

【0003】かかるプラスチック光ファイバの素材とし
ては、ポリカボネート、環状ポリオレフィン、マレイミ
ド系ポリマー等も使われるが、伝送損失の低い点からポ
リメチルメタクリレートが主流となって使われている。
また、プラスチック光ファイバにおいては、SI型が既
に工業化されているが、近年、SI型よりも大容量の情
報伝送が可能なGI型についての開発がなされている。
Polycarbonate, cyclic polyolefin, maleimide-based polymer and the like are used as materials for such plastic optical fibers, but polymethylmethacrylate is mainly used because of its low transmission loss.
As for the plastic optical fiber, the SI type has already been industrialized, but in recent years, the GI type capable of transmitting information having a larger capacity than the SI type has been developed.

【0004】GI型の光ファイバは、ファイバ中心部か
ら外周部方向に連続的に屈折率が減少する屈折率分布を
有する光ファイバであり、屈折率分布型光ファイバとも
いわれ、大容量の情報伝送に適している。プラスチック
光ファイバにおいて、かかる屈折率分布を形成する方法
としては、屈折率の異なる2種の重合体を用い、そのブ
レンド比率を連続的に変化させる方法(特開平1−26
520号公報)、重合後において屈折率が異なる2種の
単量体を用い、その共重合組成を連続的に変化させる方
法(特開平5−173025号公報、特開平5−173
026号公報)、マトリックス重合体より屈折率の高い
非重合性低分子化合物の存在比率を連続的に変化させる
方法(WO93/08488号公報)等が知られてい
る。
The GI type optical fiber is an optical fiber having a refractive index distribution in which the refractive index continuously decreases from the central part of the fiber toward the outer peripheral part, and is also called a refractive index distribution type optical fiber, which transmits a large amount of information. Suitable for As a method of forming such a refractive index distribution in a plastic optical fiber, a method of continuously changing the blending ratio thereof by using two kinds of polymers having different refractive indexes (JP-A-1-26).
520), a method of continuously changing the copolymerization composition of two kinds of monomers having different refractive indexes after polymerization (JP-A-5-173025 and JP-A-5-173).
No. 026), a method of continuously changing the abundance ratio of the non-polymerizable low molecular weight compound having a higher refractive index than the matrix polymer (WO93 / 08488), and the like.

【0005】しかしながら、2種の重合体のブレンド比
率を変化させる方法では、重合体によっては重合体間の
相分離を生じて散乱損失が大きくなり、また一方でもガ
ラス転移温度が低いと実用上十分な耐熱性を得ることが
できないことから、互いの相溶性がよく、かつ双方がガ
ラス転移温度が高い重合体の組み合わせが必要である
が、かかる重合体の組み合わせを選択することは極めて
困難である。2種の単量体を用いる方法では、共重合系
が完全にランダムな系でない限り、異種単量体の反応性
比に起因するミクロな相分離が生じ散乱損失が大きくな
り、満足すべき伝送性能の光ファイバーを得ることがで
きない。
However, in the method of changing the blending ratio of the two kinds of polymers, some polymers cause phase separation between the polymers to increase scattering loss, and on the other hand, when the glass transition temperature is low, it is practically sufficient. Since it is not possible to obtain excellent heat resistance, it is necessary to combine polymers having good compatibility with each other and high glass transition temperatures, but it is extremely difficult to select such a combination of polymers. . In the method using two kinds of monomers, unless the copolymerization system is a completely random system, microscopic phase separation due to the reactivity ratio of different kinds of monomers occurs and scattering loss becomes large. Unable to get high performance optical fiber.

【0006】一方、マトリックス重合体より屈折率の高
い非重合性低分子化合物の存在比率を変化させる方法で
は、重合体間の相分離、共重合でのミクロな相分離が生
じず散乱損失が小さい、伝送性能の高い光ファイバーを
得ることができるが、マトリックス中に低分子化合物を
含有するため、光ファイバーが可塑化され、ガラス転移
温度低下による耐熱性、力学特性が大幅に低下し、ま
た、長期或いは高温下での使用において低分子化合物が
マトリックス中で拡散して光ファイバーの屈折率分布が
崩れ伝送特性が劣化する等の問題を有する。
On the other hand, in the method of changing the abundance ratio of the non-polymerizable low molecular weight compound having a higher refractive index than the matrix polymer, phase separation between polymers and micro phase separation in copolymerization do not occur and scattering loss is small. Although it is possible to obtain an optical fiber having high transmission performance, since the low molecular weight compound is contained in the matrix, the optical fiber is plasticized, and the heat resistance and mechanical properties due to the glass transition temperature decrease are greatly reduced, and the long-term or When used at high temperature, a low molecular weight compound diffuses in the matrix and the refractive index distribution of the optical fiber is disturbed, resulting in deterioration of transmission characteristics.

【0007】[0007]

【発明が解決しようとする課題】本発明は、2種の重合
体を用いても、非重合性化合物を存在させるときは、相
分離に起因する散乱の低減した屈折率分布型プラスチッ
ク光ファイバの得られることを見い出したものであり、
本発明の目的は、低損失で、かつ経時安定性、熱安定性
を有する屈折率分布型プラスチック光ファイバを提供す
ることにある。
DISCLOSURE OF THE INVENTION The present invention provides a gradient index plastic optical fiber in which scattering caused by phase separation is reduced even when two polymers are used and a non-polymerizable compound is present. I have found that I can get
An object of the present invention is to provide a gradient index plastic optical fiber having low loss, stability over time, and thermal stability.

【0008】[0008]

【課題を解決するための手段】本発明は、下記式[1]
で示される単量体からなる重合体(A)、重合体(A)
よりも屈折率が高い重合体(B)及び分子量100〜
1,000の非重合性化合物(C)とから構成された光
ファイバであって、重合体(B)が、非重合性化合物
(C)の共存下に、ファイバ中心部から外周部方向に連
続的に減少するブレンド比で存在することを特徴とする
屈折率分布型プラスチック光ファイバ、
The present invention provides the following formula [1]:
Polymer (A) comprising the monomer represented by
Polymer (B) having a refractive index higher than that and a molecular weight of 100 to
An optical fiber composed of 1,000 non-polymerizable compounds (C), wherein the polymer (B) is continuous from the center of the fiber toward the outer peripheral portion in the presence of the non-polymerizable compound (C). Gradient index plastic optical fiber, characterized in that it exists in a blending ratio that decreases with time.

【0009】[0009]

【化4】 Embedded image

【0010】前記式[1]で示される単量体の重合体
(A)30〜60wt%、重合体(A)よりも屈折率が
高い重合体(B)の単量体(b)69〜10wt%及び
分子量100〜1,000の非重合性化合物(C)1〜
40wt%とからなる紡糸原液をファイバ状に賦形した
後、加温下にファイバ外周部から単量体(b)の一部を
加熱揮発させ、さらに単量体(b)を重合硬化させるこ
とを特徴とする屈折率分布型プラスチック光ファイバ及
びその製造方法、
30 to 60 wt% of the polymer (A) of the monomer represented by the above formula [1], and the monomer (b) 69 to of the polymer (B) having a higher refractive index than the polymer (A). Non-polymerizable compound (C) 1 having 10 wt% and a molecular weight of 100 to 1,000
After shaping a spinning solution containing 40 wt% into a fiber shape, a part of the monomer (b) is heated and volatilized from the outer peripheral portion of the fiber under heating, and the monomer (b) is further polymerized and cured. A gradient index plastic optical fiber and a method for manufacturing the same,

【0011】及び、前記式[1]で示される単量体の重
合体(A)30〜60wt%、重合体(A)よりも屈折
率が高い重合体(B)の単量体(b)69〜10wt%
及び分子量100〜1,000の非重合性化合物(C)
1〜40wt%とからなり、単量体(b)の組成比が異
なる複数の紡糸原液を、多層複合紡糸ノズルを用いて単
量体(b)の濃度がファイバ中心部から外周部方向に減
少するように同心円状に積層した状態で吐出し、吐出中
または吐出後に隣接する層間で単量体(b)を加温下に
拡散させた後、単量体(b)を重合硬化することを特徴
とする屈折率分布型プラスチック光ファイバの製造方
法、にある。
Further, 30 to 60 wt% of the polymer (A) of the monomer represented by the above formula [1], and the monomer (b) of the polymer (B) having a higher refractive index than the polymer (A). 69-10 wt%
And a non-polymerizable compound (C) having a molecular weight of 100 to 1,000
The concentration of the monomer (b) is reduced from the central part of the fiber toward the outer peripheral part by using a multi-layer composite spinning nozzle for a plurality of spinning stock solutions each having a composition ratio of the monomer (b) of 1 to 40 wt%. As described above, the monomer (b) is discharged in a state of being concentrically stacked, and the monomer (b) is diffused under heating between adjacent layers during or after the discharge, and then the monomer (b) is polymerized and cured. A method of manufacturing a graded index plastic optical fiber.

【0012】[0012]

【発明の実施の形態】本発明のプラスチック光ファイバ
のマトリックスを構成する重合体(A)は、前記式
[1]で示される5員環のラクトン構造を有する単量体
を主成分とする重合体である。前記式[1]で示される
単量体としては、例えばα−メチレン−γ−ブチロラク
トン、α−メチレン−4,4−ジメチル−γ−ブチロラ
クトン、α−メチレン−4−エチル−γ−ブチロラクト
ン、α−メチレン−4,4−ビス(トリフルオロメチ
ル)−γ−ブチロラクトン、α−メチレン−4−フェニ
ル−γ−ブチロラクトン、α−メチレン−4−シクロヘ
キシル−γ−ブチロラクトン等が挙げられる。これら単
量体の合成は、Angew.Chem.Ed.Eng
l、第24巻、第94頁(1985)、有機合成化学協
会誌、第39巻、第58頁(1981)等にて公知の方
法にて行われる。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer (A) constituting the matrix of the plastic optical fiber of the present invention is a polymer containing a monomer having a 5-membered ring lactone structure represented by the above formula [1] as a main component. It is united. Examples of the monomer represented by the formula [1] include α-methylene-γ-butyrolactone, α-methylene-4,4-dimethyl-γ-butyrolactone, α-methylene-4-ethyl-γ-butyrolactone and α. -Methylene-4,4-bis (trifluoromethyl) -γ-butyrolactone, α-methylene-4-phenyl-γ-butyrolactone, α-methylene-4-cyclohexyl-γ-butyrolactone and the like. The synthesis of these monomers is described in Angew. Chem. Ed. Eng
1, Vol. 24, page 94 (1985), Journal of Organic Synthetic Chemistry, Vol. 39, page 58 (1981) and the like.

【0013】前記式[1]で示される単量体からなる重
合体(A)は、そのガラス転移温度が、例えばα−メチ
レン−γ−ブチロラクトン単独重合体が190℃、α−
メチレン−4,4−ジメチル−γ−ブチロラクトン単独
重合体が180℃、α−メチレン−4−エチル−γ−ブ
チロラクトン単独重合体が160℃であり、マトリック
ス中に非重合性化合物を含有しても、光ファイバは、1
00℃以上のガラス転移温度を維持し、実用上の耐熱性
を有する。重合体は、前記式[1]で示される単量体の
単独重合体或いは共重合体若しくはこれらのブレンド重
合体であってもよい。
The polymer (A) comprising the monomer represented by the above formula [1] has a glass transition temperature of, for example, α-methylene-γ-butyrolactone homopolymer of 190 ° C. and α-
The methylene-4,4-dimethyl-γ-butyrolactone homopolymer has a temperature of 180 ° C. and the α-methylene-4-ethyl-γ-butyrolactone homopolymer has a temperature of 160 ° C. Even if the matrix contains a non-polymerizable compound. , The optical fiber is 1
Maintains a glass transition temperature of 00 ° C. or higher and has practical heat resistance. The polymer may be a homopolymer or copolymer of the monomer represented by the above formula [1], or a blend polymer thereof.

【0014】前記式[1]で示される単量体からなる重
合体(A)は、前記式[1]で示される単量体をラジカ
ル重合することにより得ることができ、重合に際しては
アゾ系、パーオキサイド系等の熱重合開始剤またはベン
ゾフェノン系、フェニルケトン系等の光重合開始剤等を
用いることが好ましく、また所望の分子量に調整するた
め、n−ブチルメルカプタン、t−ブチルメルカプタ
ン、n−オクチルメルカプタン、n−ドデシルメルカプ
タン、t−ドデシルメルカプタン等の連鎖移動剤やハイ
ドロキノン等の重合禁止剤を用いることもできる。ま
た、光重合させる際の光源としては、炭素アーク灯、低
圧水銀灯、高圧水銀灯、ケミカルランプ、キセノンラン
プ、メタルハライドランプ、レーザー光等が用いられ
る。
The polymer (A) comprising the monomer represented by the above formula [1] can be obtained by radical polymerization of the monomer represented by the above formula [1]. , It is preferable to use a thermal polymerization initiator such as a peroxide type or a photopolymerization initiator such as a benzophenone type or a phenyl ketone type. Further, in order to adjust to a desired molecular weight, n-butyl mercaptan, t-butyl mercaptan, n A chain transfer agent such as -octyl mercaptan, n-dodecyl mercaptan or t-dodecyl mercaptan or a polymerization inhibitor such as hydroquinone may be used. A carbon arc lamp, a low pressure mercury lamp, a high pressure mercury lamp, a chemical lamp, a xenon lamp, a metal halide lamp, a laser beam or the like is used as a light source for photopolymerization.

【0015】また、重合体(A)とともにマトリックス
を構成する重合体(B)は、重合体(A)よりも屈折率
が高い重合体であり、重合体(B)としては、好ましく
はメタクリル酸ベンジルの単独重合体または共重合体が
挙げられる。例えばα−メチレン−4,4−ジメチル−
γ−ブチロラクトン単独重合体の屈折率は1.504で
あるが、メタクリル酸ベンジルの単独重合体の屈折率は
1.568である。また、相分離による散乱損失をより
低減させるため、重合体(B)が、メタクリル酸ベンジ
ルと前記式[1]で示される単量体との共重合体である
ことがより好ましい。
The polymer (B) forming a matrix together with the polymer (A) is a polymer having a higher refractive index than the polymer (A), and the polymer (B) is preferably methacrylic acid. Examples include benzyl homopolymers or copolymers. For example, α-methylene-4,4-dimethyl-
The refractive index of γ-butyrolactone homopolymer is 1.504, while the refractive index of benzyl methacrylate homopolymer is 1.568. Further, in order to further reduce the scattering loss due to phase separation, the polymer (B) is more preferably a copolymer of benzyl methacrylate and the monomer represented by the above formula [1].

【0016】非重合性化合物(C)は、分子量100〜
1,000の非重合性の化合物であり、2種の重合体を
用いる際の散乱低減効果を与える。分子量が小さすぎる
と、散乱低減効果の発現が不十分であり、また、分子量
が大きすぎると、非重合性化合物(C)の凝集が生じ易
くなり、逆に散乱を増加させる。
The non-polymerizable compound (C) has a molecular weight of 100 to 100.
It is a non-polymerizable compound of 1,000 and gives a scattering reduction effect when two kinds of polymers are used. When the molecular weight is too small, the effect of reducing scattering is insufficiently expressed, and when the molecular weight is too large, aggregation of the non-polymerizable compound (C) is likely to occur and conversely increases scattering.

【0017】かかる非重合性化合物(C)としては、例
えば安息香酸ベンジル等の安息香酸エステル類、フタル
酸ジフェニル等のフタル酸エステル類、リン酸トリフェ
ニル等のリン酸エステル類、亜リン酸トリクレジル等の
亜リン酸エステル類等が挙げられ、用いる重合体(A)
に対応させて重合体(A)と相溶性を有するものが好ま
しく用いられる。
Examples of the non-polymerizable compound (C) include benzoic acid esters such as benzyl benzoate, phthalic acid esters such as diphenyl phthalate, phosphoric acid esters such as triphenyl phosphate, and tricresyl phosphite. Polymers (A) used include phosphorous acid esters such as
Corresponding to the above, those having compatibility with the polymer (A) are preferably used.

【0018】本発明の屈折率分布型プラスチック光ファ
イバにおける屈折率分布は、非重合性化合物(C)の共
存下に、高屈折率の重合体(B)がファイバ中心部から
外周部方向に連続的に減少するブレンド比で存在するこ
とにより形成されている。この屈折率分布は、光ファイ
バの伝送帯域を広くするためには、光ファイバ中での屈
折率がファイバ中心部から外周部方向に二次の減少関数
で表される分布であることが好ましい。
The refractive index distribution in the gradient index plastic optical fiber of the present invention is such that the polymer (B) having a high refractive index is continuous from the center of the fiber toward the outer peripheral portion in the presence of the non-polymerizable compound (C). It is formed by the presence of a blending ratio that decreases with time. In order to widen the transmission band of the optical fiber, this refractive index distribution is preferably a distribution in which the refractive index in the optical fiber is represented by a quadratic decreasing function from the central part of the fiber toward the outer peripheral part.

【0019】本発明の屈折率分布型プラスチック光ファ
イバは、以下説明する方法で製造することができる。例
えば、その一つは、(1)前記式[1]で示される単量
体の重合体(A)30〜60wt%、重合体(A)より
も屈折率が高い重合体(B)の単量体(b)69〜10
wt%及び分子量100〜1,000の非重合性化合物
(C)1〜40wt%とからなり合計100wt%の紡
糸原液を、紡糸ノズルを用いて吐出してファイバ状に賦
形した後、ファイバを加熱してファイバ外周部から単量
体(b)の一部を揮発させることにより、単量体(b)
の存在比率をファイバ中心部から外周部方向に減少さ
せ、さらに単量体(b)を重合硬化させる方法である。
この単量体(b)の加熱揮発処理の際、非重合性化合物
(C)の一部を同時に揮発させ非重合性化合物(C)の
濃度勾配を形成してもよい。
The gradient index plastic optical fiber of the present invention can be manufactured by the method described below. For example, one of them is (1) 30 to 60 wt% of a polymer (A) of a monomer represented by the above formula [1], and a polymer (B) having a higher refractive index than the polymer (A). Quantity (b) 69-10
A total of 100 wt% of a spinning dope, which is composed of 1 wt% and 1 to 40 wt% of a non-polymerizable compound (C) having a molecular weight of 100 to 1,000, is discharged using a spinning nozzle to form a fiber, and then the fiber is formed. The monomer (b) is heated by evaporating a part of the monomer (b) from the outer peripheral portion of the fiber.
Is decreased from the central portion of the fiber toward the outer peripheral portion, and the monomer (b) is further polymerized and cured.
During the heating and volatilization treatment of the monomer (b), a part of the non-polymerizable compound (C) may be volatilized at the same time to form a concentration gradient of the non-polymerizable compound (C).

【0020】また、(2)前記式[1]で示される単量
体の重合体(A)30〜60wt%、重合体(A)より
も屈折率が高い重合体(B)の単量体(b)69〜10
wt%及び分子量100〜1,000の非重合性化合物
(C)1〜40wt%とからなり合計100wt%であ
って、単量体(b)の組成比が異なる複数の紡糸原液
を、多層複合紡糸ノズルを用いて単量体(b)の濃度が
ファイバ中心部から外周部方向に減少するように同心円
状に積層した状態で吐出し、吐出中または吐出後に隣接
する層間で単量体(b)を加温下に拡散させた後、単量
体(b)を重合硬化する方法である。また、各紡糸原液
においては、非重合性化合物(C)の濃度が同じでもよ
いし、ファイバ中心部から外周部方向に減少するように
してもよく、さらに単量体(b)を拡散させる際、非重
合性化合物(C)を拡散させ濃度勾配を形成してもよ
い。
(2) 30 to 60 wt% of the polymer (A) of the monomer represented by the above formula [1], and the monomer of the polymer (B) having a higher refractive index than the polymer (A). (B) 69-10
wt% and a non-polymerizable compound (C) having a molecular weight of 100 to 1,000 (1 to 40 wt%), a total of 100 wt%, and a plurality of spinning dope solutions having different composition ratios of the monomer (b) are combined into a multilayer composite. Using a spinning nozzle, the monomers (b) are discharged in a state where they are concentrically laminated so that the concentration of the monomer (b) decreases from the central part of the fiber toward the outer peripheral part. ) Is diffused under heating, and then the monomer (b) is polymerized and cured. Further, in each spinning solution, the concentration of the non-polymerizable compound (C) may be the same, or the concentration may be decreased from the central portion of the fiber toward the outer peripheral portion, and when the monomer (b) is further diffused. Alternatively, the non-polymerizable compound (C) may be diffused to form a concentration gradient.

【0021】(1)及び(2)の方法において、紡糸原
液は、前記式[1]で示される単量体を非重合性化合物
(C)の存在下で重合した重合体(A)を、重合体
(B)の単量体(b)と非重合性化合物(C)に溶解さ
せることにより調製できる。
In the methods (1) and (2), the spinning dope contains the polymer (A) obtained by polymerizing the monomer represented by the above formula [1] in the presence of the non-polymerizable compound (C). It can be prepared by dissolving the monomer (b) of the polymer (B) and the non-polymerizable compound (C).

【0022】紡糸原液における重合体(A)が30wt
%未満では、紡糸時の安定性が低下し、60wt%を超
えると、単量体(b)の拡散或いは揮発が十分に起こら
ず好ましい屈折率分布が得られない。紡糸原液における
単量体(b)が10wt%未満では、屈折率分布の連続
性を維持することが困難となり、69wt%を超える
と、賦形後の重合で未反応の単量体が残存し易く伝送特
性が低下する。また、紡糸原液における非重合性化合物
(C)が1wt%未満では、散乱低減効果が少なく、4
0wt%を超えると、光ファイバの機械的強度が低下す
る。紡糸原液は、紡糸性の点から、好ましくは粘度10
3〜108ポイズとする。
30 wt% of polymer (A) in the spinning dope
If it is less than%, the stability during spinning is lowered, and if it exceeds 60 wt%, diffusion or volatilization of the monomer (b) does not sufficiently occur and a preferable refractive index distribution cannot be obtained. If the monomer (b) in the spinning dope is less than 10 wt%, it becomes difficult to maintain the continuity of the refractive index distribution, and if it exceeds 69 wt%, unreacted monomer remains in the polymerization after shaping. Transmission characteristics are easily degraded. Further, if the non-polymerizable compound (C) in the stock solution for spinning is less than 1 wt%, the effect of reducing scattering is small, and
If it exceeds 0 wt%, the mechanical strength of the optical fiber is lowered. The stock solution for spinning preferably has a viscosity of 10 from the viewpoint of spinnability.
3 to 10 8 poise.

【0023】(1)の方法では、紡糸は、単一の紡糸原
液を用い、中実繊維用の紡糸ノズルを用いて行うが、
(2)の方法では、紡糸は、複数の紡糸原液を用い、同
心円状に吐出スリットを有する多層複合紡糸ノズルを用
いて中心部側から単量体(b)の含有量の多い順に各紡
糸原液を配置して吐出する。
In the method (1), spinning is performed using a single spinning dope and a spinning nozzle for solid fibers.
In the method (2), a plurality of spinning stock solutions are used for spinning, and a multi-layer composite spinning nozzle having concentric discharge slits is used to spin each of the spinning stock solutions in the order of increasing content of the monomer (b) from the center side. Are arranged and discharged.

【0024】また、(2)の方法での紡糸における吐出
中または吐出後に、加温により形成中の或いは形成後の
隣接する層間で単量体(b)を拡散させ、さらに単量体
(b)を熱または光重合硬化させてファイバ内の屈折率
分布を固定する。この単量体(b)の拡散は、得られる
ファイバ内のでの単量体(b)の重合体(B)のファイ
バ中心部から外周部方向に連続的に減少するブレンド比
を滑らかなものとする。また、この単量体(b)を拡散
させる際、非重合性化合物(C)も拡散させ非重合性化
合物(C)のファイバ中心部から外周部方向に減少する
濃度勾配を形成することもできる。
Further, during or after the ejection in the spinning by the method (2), the monomer (b) is diffused between the adjacent layers during or after the formation by heating, and the monomer (b) is further added. ) Is cured by heat or photopolymerization to fix the refractive index distribution in the fiber. The diffusion of the monomer (b) is such that the blend ratio of the polymer (B) of the monomer (b) in the obtained fiber, which continuously decreases from the fiber central portion toward the outer peripheral portion, is smooth. To do. Further, when the monomer (b) is diffused, the non-polymerizable compound (C) can also be diffused to form a concentration gradient in which the non-polymerizable compound (C) decreases from the central portion of the fiber toward the outer peripheral portion. .

【0025】単量体(b)の重合は、前記式[1]で示
される単量体の重合と同様に、ラジカル重合により行う
ことができ、熱重合、光重合等の重合方式に応じて熱ま
たは光重合開始剤等の重合開始剤を紡糸原液に予め適宜
添加しておくことが好ましく、また所望の分子量に調整
するため連鎖移動剤や重合禁止剤を添加しておくことも
できる。
The polymerization of the monomer (b) can be carried out by radical polymerization in the same manner as the polymerization of the monomer represented by the above formula [1], and depending on the polymerization method such as thermal polymerization and photopolymerization. A polymerization initiator such as a heat or photopolymerization initiator is preferably added in advance to the spinning dope, and a chain transfer agent or a polymerization inhibitor may be added in order to adjust the molecular weight to a desired value.

【0026】[0026]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0027】(実施例1)ポリ(α−メチレン−γ−ブ
チロラクトン)60重量部、メタクリル酸ベンジル20
重量部、安息香酸ベンジル20重量部、1−ヒドロキシ
シクロヘキシルフェニルケトン0.2重量部、ハイドロ
キノン0.1重量部を70℃で加熱混練し、紡糸原液と
なる重合体混合物を調製した。この重合体混合物を、ス
クリュー型押出機に供給し70℃で円形紡糸ノズルから
吐出し、直径1mmのストランドファイバに賦形した。
重合体混合物の吐出時の粘度は5.2×104ポイズで
あった。引き続き、このファイバを75℃で40分加熱
してファイバ外周部からメタクリル酸ベンジルと安息香
酸ベンジルを拡散揮発させた後、ケミカルランプ12本
を円状に配置して形成した長さ120cmの紫外線照射
域を通過させメタクリル酸ベンジルを重合硬化させて光
ファイバを得た。
Example 1 60 parts by weight of poly (α-methylene-γ-butyrolactone), benzyl methacrylate 20
By weight, 20 parts by weight of benzyl benzoate, 0.2 parts by weight of 1-hydroxycyclohexyl phenyl ketone, and 0.1 parts by weight of hydroquinone were heated and kneaded at 70 ° C. to prepare a polymer mixture as a spinning dope. This polymer mixture was supplied to a screw type extruder, discharged from a circular spinning nozzle at 70 ° C., and shaped into a strand fiber having a diameter of 1 mm.
The viscosity of the polymer mixture upon discharge was 5.2 × 10 4 poise. Subsequently, this fiber was heated at 75 ° C. for 40 minutes to diffuse and volatilize benzyl methacrylate and benzyl benzoate from the outer circumference of the fiber, and then 12 chemical lamps were arranged in a circle to irradiate ultraviolet rays having a length of 120 cm. It was passed through the zone to polymerize and cure benzyl methacrylate to obtain an optical fiber.

【0028】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.532、
外周部の屈折率が1.510であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が1
85dB/km(波長650nm)、伝送帯域が1.9
GHzであった。この光ファイバを85℃雰囲気下で3
ヶ月暴露したが、伝送損失が187dB/km(波長6
50nm)、伝送帯域が1.9GHzであり、初期性能
を維持していた。
The refractive index distribution of the cross section of the obtained optical fiber was measured by an interferco interference microscope, and it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.532.
The refractive index of the outer peripheral portion was 1.510. Moreover, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 1
85 dB / km (wavelength 650 nm), transmission band 1.9
It was GHz. This optical fiber is 3
Although it was exposed for 6 months, the transmission loss was 187 dB / km (wavelength 6
50 nm), the transmission band was 1.9 GHz, and the initial performance was maintained.

【0029】なお、伝送損失の測定は50m〜5mカッ
トバック法、励振NA=0.1で行い、伝送帯域の測定
は浜松ホトニクス社製サンプリングオシロスコープ、東
芝社製半導体レーザーTOLD9410を用い、波長6
50nm、励振NA=0.65、ファイバ長100mの
条件で、インパルス応答法により−3dB帯域を求め
た。
The transmission loss is measured with a cutback method of 50 m to 5 m and an excitation NA of 0.1. The transmission band is measured with a sampling oscilloscope manufactured by Hamamatsu Photonics and a semiconductor laser TOLD9410 manufactured by Toshiba.
The -3 dB band was obtained by the impulse response method under the conditions of 50 nm, excitation NA = 0.65, and fiber length 100 m.

【0030】(実施例2)ポリ(α−メチレン−γ−ブ
チロラクトン)45重量部、α−メチレン−γ−ブチロ
ラクトン15重量部、メタクリル酸ベンジル20重量
部、安息香酸ベンジル20重量部、1−ヒドロキシシク
ロヘキシルフェニルケトン0.2重量部、ハイドロキノ
ン0.1重量部を70℃で加熱混練し、紡糸原液となる
重合体混合物を調製した。この重合体混合物を、スクリ
ュー型押出機に供給し70℃で円形紡糸ノズルから吐出
し、直径1mmのストランドファイバに賦形した。重合
体混合物の吐出時の粘度は3.3×104ポイズであっ
た。引き続き、このファイバを75℃で40分加熱して
ファイバ外周部からメタクリル酸ベンジルと安息香酸ベ
ンジルを拡散揮発させた後、ケミカルランプ12本を円
状に配置して形成した長さ120cmの紫外線照射域を
通過させメタクリル酸ベンジルを重合硬化させて光ファ
イバを得た。
Example 2 Poly (α-methylene-γ-butyrolactone) 45 parts by weight, α-methylene-γ-butyrolactone 15 parts by weight, benzyl methacrylate 20 parts by weight, benzyl benzoate 20 parts by weight, 1-hydroxy 0.2 parts by weight of cyclohexyl phenyl ketone and 0.1 parts by weight of hydroquinone were heated and kneaded at 70 ° C. to prepare a polymer mixture as a spinning stock solution. This polymer mixture was supplied to a screw type extruder, discharged from a circular spinning nozzle at 70 ° C., and shaped into a strand fiber having a diameter of 1 mm. The viscosity of the polymer mixture upon discharge was 3.3 × 10 4 poise. Subsequently, this fiber was heated at 75 ° C. for 40 minutes to diffuse and volatilize benzyl methacrylate and benzyl benzoate from the outer circumference of the fiber, and then 12 chemical lamps were arranged in a circle to irradiate ultraviolet rays having a length of 120 cm. It was passed through the zone to polymerize and cure benzyl methacrylate to obtain an optical fiber.

【0031】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.535、
外周部の屈折率が1.508であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が1
70dB/km(波長650nm)、伝送帯域が2.1
GHzであった。この光ファイバを85℃雰囲気下で3
ヶ月暴露したが、伝送損失が170dB/km(波長6
50nm)、伝送帯域が2.1GHzであり、初期性能
を維持していた。
The obtained optical fiber was measured for the refractive index distribution in the cross section of the optical fiber with an interphaco interference microscope, and it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.535,
The refractive index of the outer peripheral portion was 1.508. Moreover, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 1
70 dB / km (wavelength 650 nm), transmission band 2.1
It was GHz. This optical fiber is 3
Although it was exposed for a month, the transmission loss was 170 dB / km (wavelength 6
50 nm), the transmission band was 2.1 GHz, and the initial performance was maintained.

【0032】(実施例3)下記の重合体、重合性単量体
及び非重合性化合物を下記の組成比で70℃で加熱混練
し、第1〜第3紡糸原液を調製した。 第1紡糸原液:ポリ(α−メチレン−γ−ブチロラクトン)50重量部 メタクリル酸ベンジル30重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部 第2紡糸原液:ポリ(α−メチレン−γ−ブチロラクトン)60重量部 メタクリル酸ベンジル20重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部 第3紡糸原液:ポリ(α−メチレン−γ−ブチロラクトン)60重量部 メタクリル酸ベンジル20重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部
(Example 3) The following polymers, polymerizable monomers and non-polymerizable compounds were heated and kneaded at the following composition ratios at 70 ° C to prepare first to third spinning dope. First spinning dope: Poly (α-methylene-γ-butyrolactone) 50 parts by weight Benzyl methacrylate 30 parts by weight Benzyl benzoate 20 parts by weight 1-Hydroxycyclohexyl phenyl ketone 0.2 parts by weight Hydroquinone 0.1 parts by weight Second spinning Stock solution: poly (α-methylene-γ-butyrolactone) 60 parts by weight benzyl methacrylate 20 parts by weight benzyl benzoate 20 parts by weight 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight hydroquinone 0.1 parts by weight Third spinning solution: poly (Α-Methylene-γ-butyrolactone) 60 parts by weight Benzyl methacrylate 20 parts by weight Benzyl benzoate 20 parts by weight 1-Hydroxycyclohexyl phenyl ketone 0.2 parts by weight Hydroquinone 0.1 parts by weight

【0033】これら3種の紡糸原液を、スリットが同心
円状に配置の多層複合紡糸ノズルを用い、中心部に第1
紡糸原液、最外周部に第3紡糸原液になるように吐出
し、さらに75℃に保った長さ90cmの保温筒を通過
させることによりストランドファイバ中の隣接する層間
でメタクリル酸ベンジル、安息香酸ベンジルを相互拡散
させ、その後 ケミカルランプ12本を円状に配置して
形成した長さ120cmの紫外線照射域を通過させメタ
クリル酸ベンジルを光重合させ、ニップローラーで0.
5m/分の速度で巻き取って直径1mmの光ファイバを
得た。なお、各紡糸原液の吐出時の粘度は、第1紡糸原
液が4.2×104ポイズ、第2紡糸原液が3.5×1
4ポイズ、第3紡糸原液が2.2×104ポイズであっ
た。
These three kinds of spinning dope were prepared by using a multi-layer composite spinning nozzle having slits arranged concentrically, with
The spinning dope was discharged to the outermost periphery so as to become the third spinning dope, and further passed through a 90 cm long heat-retaining tube kept at 75 ° C. to thereby cause benzyl methacrylate and benzyl benzoate to separate between adjacent layers in the strand fiber. Of 12 chemical lamps arranged in a circle, and then passed through an ultraviolet irradiation area of 120 cm in length to photopolymerize benzyl methacrylate.
An optical fiber having a diameter of 1 mm was obtained by winding at a speed of 5 m / min. The viscosities of the respective spinning stock solutions at the time of discharge were 4.2 × 10 4 poise for the first spinning stock solution and 3.5 × 1 for the second spinning stock solution.
0 4 poise, third spinning solution is was 2.2 × 10 4 poise.

【0034】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.537、
外周部の屈折率が1.523であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が1
75dB/km(波長650nm)、伝送帯域が3.3
GHzであった。この光ファイバを85℃雰囲気下で3
ヶ月暴露したが、伝送損失が178dB/km(波長6
50nm)、伝送帯域が3.2GHzであり、初期性能
を維持していた。
The refractive index distribution of the cross section of the obtained optical fiber was measured by an interferco interference microscope, and it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.537,
The refractive index of the outer peripheral portion was 1.523. Moreover, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 1
75 dB / km (wavelength 650 nm), transmission band 3.3
It was GHz. This optical fiber is 3
Although it was exposed for 6 months, the transmission loss was 178 dB / km (wavelength 6
50 nm), the transmission band was 3.2 GHz, and the initial performance was maintained.

【0035】(実施例4)下記の重合体、重合性単量体
及び非重合性化合物を下記の組成比で70℃で加熱混練
し、第1〜第3紡糸原液を調製した。 第1紡糸原液:ポリ(α−メチレン−4,4−ジメチル−ブチロラクトン) 40重量部 α−メチレン−4,4−ジメチル−ブチロラクトン10重量部 メタクリル酸ベンジル30重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部 第2紡糸原液:ポリ(α−メチレン−4,4−ジメチル−ブチロラクトン) 50重量部 α−メチレン−4,4−ジメチル−ブチロラクトン10重量部 メタクリル酸ベンジル20重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部 第3紡糸原液:ポリ(α−メチレン−4,4−ジメチル−ブチロラクトン) 60重量部 α−メチレン−4,4−ジメチル−ブチロラクトン10重量部 メタクリル酸ベンジル10重量部 安息香酸ベンジル20重量部 1−ヒドロキシシクロヘキシルフェニルケトン0.2重量部 ハイドロキノン0.1重量部
Example 4 The following polymers, polymerizable monomers and non-polymerizable compounds were kneaded by heating at 70 ° C. in the following composition ratios to prepare first to third spinning dope. First spinning dope: poly (α-methylene-4,4-dimethyl-butyrolactone) 40 parts by weight α-methylene-4,4-dimethyl-butyrolactone 10 parts by weight benzyl methacrylate 30 parts by weight benzyl benzoate 20 parts by weight 1- Hydroxycyclohexyl phenyl ketone 0.2 part by weight Hydroquinone 0.1 part by weight Second spinning dope: Poly (α-methylene-4,4-dimethyl-butyrolactone) 50 parts by weight α-methylene-4,4-dimethyl-butyrolactone 10 parts by weight Parts benzyl methacrylate 20 parts by weight benzyl benzoate 20 parts by weight 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight hydroquinone 0.1 parts by weight Third spinning dope: poly (α-methylene-4,4-dimethyl-butyrolactone) 60 Parts by weight α-methylene-4,4-dimethyl-butyrolac Ton 10 parts by weight benzyl methacrylate 10 parts by weight benzyl benzoate 20 parts by weight 1-hydroxycyclohexyl phenyl ketone 0.2 parts by weight hydroquinone 0.1 parts by weight

【0036】これら3種の紡糸原液を、スリットが同心
円状に配置の多層複合紡糸ノズルを用い、中心部に第1
紡糸原液、最外周部に第3紡糸原液になるように吐出
し、さらに75℃に保った長さ90cmの保温筒を通過
させることによりストランドファイバ中の隣接する層間
でα−メチレン−γ−ブチロラクトン、メタクリル酸ベ
ンジル、安息香酸ベンジルを相互拡散させ、その後 ケ
ミカルランプ12本を円状に配置して形成した長さ12
0cmの紫外線照射域を通過させα−メチレン−γ−ブ
チロラクトン、メタクリル酸ベンジルを光重合させ、ニ
ップローラーで0.5m/分の速度で巻き取って直径1
mmの光ファイバを得た。なお、各紡糸原液の吐出時の
粘度は、第1紡糸原液が2.9×104ポイズ、第2紡
糸原液が1.9×104ポイズ、第3紡糸原液が1.1
×104ポイズであった。
These three kinds of spinning dope were prepared by using a multi-layer composite spinning nozzle having slits arranged concentrically, with
The spinning stock solution was discharged to the outermost peripheral portion so as to become the third spinning stock solution, and further passed through a heat-retaining tube having a length of 90 cm and kept at 75 ° C. to form α-methylene-γ-butyrolactone between adjacent layers in the strand fiber. , Benzyl methacrylate, benzyl benzoate interdiffuse, then 12 chemical lamps arranged in a circle to form a length 12
Pass through a 0 cm ultraviolet irradiation area to photopolymerize α-methylene-γ-butyrolactone and benzyl methacrylate, and wind with a nip roller at a speed of 0.5 m / min to give a diameter of 1
mm optical fiber was obtained. The viscosities of the respective spinning stock solutions at the time of discharge are 2.9 × 10 4 poise for the first spinning stock solution, 1.9 × 10 4 poise for the second spinning stock solution, and 1.1 for the third spinning stock solution.
It was × 10 4 poise.

【0037】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.541、
外周部の屈折率が1.522であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が1
59dB/km(波長650nm)、伝送帯域が2.6
GHzであった。この光ファイバを85℃雰囲気下で3
ヶ月暴露したが、伝送損失が161dB/km(波長6
50nm)、伝送帯域が2.7GHzであり、初期性能
を維持していた。
The refractive index distribution of the cross section of the obtained optical fiber was measured by an interferco interference microscope, and it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.541,
The refractive index of the outer peripheral portion was 1.522. Moreover, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 1
59 dB / km (wavelength 650 nm), transmission band 2.6
It was GHz. This optical fiber is 3
Although it was exposed for 6 months, the transmission loss was 161 dB / km (wavelength 6
50 nm), the transmission band was 2.7 GHz, and the initial performance was maintained.

【0038】(比較例1)実施例4において、第1〜第
3紡糸原液に安息香酸ベンジルを用いず、その分をα−
メチレン−4,4−ジメチル−γ−ブチロラクトンにそ
れぞれ代える以外は、実施例4と同様にして直径1mm
の光ファイバを得た。なお、各紡糸原液の吐出時の粘度
は、第1紡糸原液が2.1×104ポイズ、第2紡糸原
液が1.2×104ポイズ、第3紡糸原液が0.7×1
4ポイズであった。
(Comparative Example 1) In Example 4, benzyl benzoate was not used in the first to third spinning stock solutions, and the amount was α-.
A diameter of 1 mm was obtained in the same manner as in Example 4, except that methylene-4,4-dimethyl-γ-butyrolactone was used instead.
Was obtained. The viscosities at the time of discharging each spinning dope are 2.1 × 10 4 poise for the first spinning dope, 1.2 × 10 4 poise for the second spinning dope, and 0.7 × 1 for the third spinning dope.
0 was 4 poise.

【0039】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.533、
外周部の屈折率が1.510であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が2
05dB/km(波長650nm)、伝送帯域が2.5
GHzであり、非重合性化合物の安息香酸ベンジルを含
んでいないため実施例4で得た光ファイバに比べ伝送損
失が劣っていた。
The optical fiber obtained was measured for the refractive index distribution in the cross section of the optical fiber with an interferco interference microscope. As a result, it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.533,
The refractive index of the outer peripheral portion was 1.510. Also, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 2
05dB / km (wavelength 650nm), transmission band is 2.5
Since it is GHz and does not contain the non-polymerizable compound benzyl benzoate, the transmission loss was inferior to that of the optical fiber obtained in Example 4.

【0040】(比較例2)実施例4において、ポリ(α
−メチレン−4,4−ジメチル−γ−ブチロラクトン)
をポリ(メチルメタクリレート)に、α−メチレン−
4,4−ジメチル−γ−ブチロラクトンをメチルメタク
リレートにそれぞれ代える以外は、実施例4と同様にし
て直径1mmの光ファイバを得た。なお、各紡糸原液の
吐出時の粘度は、第1紡糸原液が3.2×104ポイ
ズ、第2紡糸原液が2.3×104ポイズ、第3紡糸原
液が1.5×104ポイズであった。
Comparative Example 2 In Example 4, poly (α
-Methylene-4,4-dimethyl-γ-butyrolactone)
To poly (methyl methacrylate), α-methylene-
An optical fiber having a diameter of 1 mm was obtained in the same manner as in Example 4 except that methyl methacrylate was used instead of 4,4-dimethyl-γ-butyrolactone. The viscosity at the discharge of the spinning solution, first spinning solution is 3.2 × 10 4 poises, the second spinning solution is 2.3 × 10 4 poises, the third spinning solution is 1.5 × 10 4 poises Met.

【0041】得られた光ファイバをインターファコ干渉
顕微鏡により光ファイバ断面の屈折率分布を測定したと
ころ、屈折率が中心部から外周部方向に連続的に減少し
ていることが確認され、中心部の屈折率が1.539、
外周部の屈折率が1.520であった。また、得られた
光ファイバの伝送特性を測定したところ、伝送損失が1
62dB/km(波長650nm)、伝送帯域が2.2
GHzであった。この光ファイバを85℃雰囲気下で3
ヶ月暴露したところ、伝送損失が186dB/km(波
長650nm)、伝送帯域が0.6GHzであり、実施
例4で得た光ファイバに比べ伝送損失、伝送帯域の低下
が大きかった。
The refractive index distribution of the obtained optical fiber was measured by an interferco interference microscope, and it was confirmed that the refractive index continuously decreased from the central portion toward the outer peripheral portion. The refractive index of the part is 1.539,
The refractive index of the outer peripheral portion was 1.520. Moreover, when the transmission characteristics of the obtained optical fiber were measured, the transmission loss was 1
62 dB / km (wavelength 650 nm), transmission band 2.2
It was GHz. This optical fiber is 3
After exposure for a month, the transmission loss was 186 dB / km (wavelength 650 nm) and the transmission band was 0.6 GHz, and the transmission loss and the decrease in the transmission band were larger than those of the optical fiber obtained in Example 4.

【0042】[0042]

【発明の効果】本発明の屈折率分布型プラスチック光フ
ァイバは、2種の重合体を用いていながら、非重合性化
合物が散乱低減効果を与え、広帯域で損失が少ない光フ
ァイバであり、大容量の光情報通信媒体として好適なる
ものであり、また、実用上十分な耐熱性を有し、伝送特
性の経時安定性、熱安定性を有するものである。
EFFECT OF THE INVENTION The gradient index plastic optical fiber of the present invention is an optical fiber having a wide band and a low loss even though two kinds of polymers are used, and the non-polymerizable compound has a scattering reducing effect. It is suitable as the optical information communication medium, and has sufficient heat resistance for practical use, and has stability over time of transmission characteristics and thermal stability.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 37/00 LJX C08L 37/00 LJX G02B 6/18 G02B 6/18 (72)発明者 中村 一己 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 林 省治 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location C08L 37/00 LJX C08L 37/00 LJX G02B 6/18 G02B 6/18 (72) Inventor Kazumi Nakamura 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Rayon Co., Ltd. Central Technology Research Institute (72) Inventor Shoji Hayashi 20-1 Miyuki-cho, Otake-shi, Hiroshima Mitsubishi Central Research Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記式[1]で示される単量体からなる
重合体(A)、重合体(A)よりも屈折率が高い重合体
(B)及び分子量100〜1,000の非重合性化合物
(C)とから構成された光ファイバであって、重合体
(B)が、非重合性化合物(C)の共存下に、ファイバ
中心部から外周部方向に連続的に減少するブレンド比で
存在することを特徴とする屈折率分布型プラスチック光
ファイバ。 【化1】
1. A polymer (A) comprising a monomer represented by the following formula [1], a polymer (B) having a higher refractive index than the polymer (A), and a non-polymerized polymer having a molecular weight of 100 to 1,000. A blend ratio in which an optical fiber composed of a polymerizable compound (C) and a polymer (B) continuously decreases in the co-existence of a non-polymerizable compound (C) from the central part of the fiber toward the outer peripheral part. A graded-index plastic optical fiber characterized by being present in. Embedded image
【請求項2】 重合体(B)がメタクリル酸ベンジルの
単独重合体または共重合体である請求項1記載の屈折率
分布型プラスチック光ファイバ。
2. The gradient index plastic optical fiber according to claim 1, wherein the polymer (B) is a homopolymer or a copolymer of benzyl methacrylate.
【請求項3】 下記式[1]で示される単量体の重合体
(A)30〜60wt%、重合体(A)よりも屈折率が
高い重合体(B)の単量体(b)69〜10wt%及び
分子量100〜1,000の非重合性化合物(C)1〜
40wt%とからなる紡糸原液をファイバ状に賦形した
後、加温下にファイバ外周部から単量体(b)の一部を
揮発させ、さらに単量体(b)を重合硬化させることを
特徴とする屈折率分布型プラスチック光ファイバ及びそ
の製造方法。 【化2】
3. A monomer (b) of the polymer (B) having a refractive index higher than that of the polymer (A), which is 30 to 60 wt% of the polymer (A) of the monomer represented by the following formula [1]. 69-10 wt% and a non-polymerizable compound (C) 1 having a molecular weight of 100-1,000
After shaping a spinning solution containing 40 wt% into a fiber shape, a part of the monomer (b) is volatilized from the outer peripheral portion of the fiber under heating, and the monomer (b) is further polymerized and cured. A characteristic gradient index plastic optical fiber and a method for manufacturing the same. Embedded image
【請求項4】 下記式[1]で示される単量体の重合体
(A)30〜60wt%、重合体(A)よりも屈折率が
高い重合体(B)の単量体(b)69〜10wt%及び
分子量100〜1,000の非重合性化合物(C)1〜
40wt%とからなり、単量体(b)の組成比が異なる
複数の紡糸原液を、多層複合紡糸ノズルを用いて単量体
(b)の濃度がファイバ中心部から外周部方向に減少す
るように同心円状に積層した状態で吐出し、吐出中また
は吐出後に隣接する層間で単量体(b)を加温下に拡散
させた後、単量体(b)を重合硬化することを特徴とす
る屈折率分布型プラスチック光ファイバの製造方法。 【化3】
4. A monomer (b) of the polymer (B) having a refractive index higher than that of the polymer (A), which is 30 to 60 wt% of the polymer of the monomer represented by the following formula [1]. 69-10 wt% and a non-polymerizable compound (C) 1 having a molecular weight of 100-1,000
40 wt% of different spinning stock solutions having different composition ratios of the monomer (b) so that the concentration of the monomer (b) is decreased from the central part of the fiber toward the outer peripheral part by using a multi-layer composite spinning nozzle. Is ejected in a state of being laminated concentrically with each other, the monomer (b) is diffused under heating during or after the ejection, and then the monomer (b) is polymerized and cured. Method for manufacturing graded index plastic optical fiber. Embedded image
JP09186996A 1996-03-22 1996-03-22 Graded-index plastic optical fiber and method of manufacturing the same Expired - Fee Related JP3504065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09186996A JP3504065B2 (en) 1996-03-22 1996-03-22 Graded-index plastic optical fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09186996A JP3504065B2 (en) 1996-03-22 1996-03-22 Graded-index plastic optical fiber and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH09258042A true JPH09258042A (en) 1997-10-03
JP3504065B2 JP3504065B2 (en) 2004-03-08

Family

ID=14038573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09186996A Expired - Fee Related JP3504065B2 (en) 1996-03-22 1996-03-22 Graded-index plastic optical fiber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3504065B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107402A (en) * 1997-11-17 2000-08-22 Samsung Electronics Co., Ltd. Optical polymer composition
US6794460B2 (en) 1998-12-09 2004-09-21 Nippon Shokubai Co., Ltd. Production process and use for transparent heat-resistant resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107402A (en) * 1997-11-17 2000-08-22 Samsung Electronics Co., Ltd. Optical polymer composition
US6794460B2 (en) 1998-12-09 2004-09-21 Nippon Shokubai Co., Ltd. Production process and use for transparent heat-resistant resin

Also Published As

Publication number Publication date
JP3504065B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
JP3437848B2 (en) Graded-index optical fiber and method for producing the same
EP0615141A1 (en) Method of manufacturing plastic light transmitters
JP4276342B2 (en) Graded index plastic optical fiber and method for continuously producing graded index plastic optical fiber
JPH1195045A (en) Refractive index distribution optical fiber
JP3504065B2 (en) Graded-index plastic optical fiber and method of manufacturing the same
JP3504064B2 (en) Graded-index plastic optical fiber and method of manufacturing the same
US6054069A (en) Method of manufacturing a preform for a refractive index distributed type plastic optical fiber
JP3762489B2 (en) Multi-step index type plastic optical fiber and manufacturing method thereof
JPH09243835A (en) Distributed refractive index plastic optical fiber and its production
JP2000193839A (en) Distributed refraction factor optical fiber, optical fiber cable, optical fiber with plug, and manufacture of distributed refraction factor optical fiber
JPH10133036A (en) Multistep index type plastic optical fiber and its production
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH0915431A (en) Production of optical fiber
JPH06297596A (en) Refractive index distribution type plastic optical fiber
JP3444317B2 (en) Plastic optical fiber
JPH09269425A (en) Distributed refractive index optical fiber
JPH08304634A (en) Production of plastic optical fiber preform and plastic optical fiber
JPH09325224A (en) Production of distributed refractive index-type plastic optical fiber
JPH09265015A (en) Refractive index distributed plastic optical fiber and its production
JPH0243506A (en) Plastic optical fiber
JPH09230146A (en) Production of distributed refractive index plastic optical fiber
JP2001040038A (en) Methacrylic copolymer and its production, plastic optical fiber, optical fiber cable and flugged optical fiber cable
JPH08106016A (en) Production of plastic optical fiber
JPH08106019A (en) Plastic optical fiber and its production
JPH11153717A (en) Production of graded index optical fiber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees