JP3762489B2 - Multi-step index type plastic optical fiber and manufacturing method thereof - Google Patents

Multi-step index type plastic optical fiber and manufacturing method thereof Download PDF

Info

Publication number
JP3762489B2
JP3762489B2 JP26390296A JP26390296A JP3762489B2 JP 3762489 B2 JP3762489 B2 JP 3762489B2 JP 26390296 A JP26390296 A JP 26390296A JP 26390296 A JP26390296 A JP 26390296A JP 3762489 B2 JP3762489 B2 JP 3762489B2
Authority
JP
Japan
Prior art keywords
resin
refractive index
optical fiber
plastic optical
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26390296A
Other languages
Japanese (ja)
Other versions
JPH10111414A (en
Inventor
真一 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP26390296A priority Critical patent/JP3762489B2/en
Publication of JPH10111414A publication Critical patent/JPH10111414A/en
Application granted granted Critical
Publication of JP3762489B2 publication Critical patent/JP3762489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はグレーデッドインデックス型プラスチック光ファイバに準ずる、高帯域を有する多段階段状屈折率分布を有するマルチステップインデックス型プラスチック光ファイバとその連続的製造方法に関するものである。
【0002】
【従来の技術】
グレーデッドインデックス(GI)型光ファイバはファイバの中心の屈折率が高く、外側に行くに従って屈折率が2次分布的に低くなる光ファイバのことであり伝送帯域の広いのが特長である。
【0003】
プラスチック製のGIファイバには昭和40年代から多数の提案があるが、なかでも優れたものとして、慶応大学の大塚,小池らの開発によるものが知られている。
【0004】
これらのGI型POFは、予め屈折率分布を有するPMMA系のプリフォームと呼ばれる棒を重合によってつくり、それを熱で伸ばしてファイバにするものである。これらのプリフォームはPMMAのパイプの中でうまく屈折率勾配がつくように重合するのがポイントであり、主としてMMAモノマーと高屈折率の重合性モノマーあるいは非重合性化合物を静置、あるいは回転などの細心の注意を払いながら長時間で重合固化させて製造するものである。このプリフォームの出来具合が、GIファイバの伝送損失や伝送帯域などの重要な性能を決める。
【0005】
【発明が解決しようとする課題】
POFのメリットは大口径で扱い易いことであるが、従来のプリフォーム方式によるGI型POFは重合過程の分子の拡散状態を利用した屈折率分布形成を行ったものであるため、プリフォームロッドはあまり大きなものは製造困難であり、POFのメリットを維持するために直径が0.5mm〜1.0mm程度の比較的大口径のファイバに線引きするとすれば、プリフォームから得られるファイバ長は短いものに終わり、生産性に劣る。そして、かかるプリフォームロッドを工業的に安定した品質で量産し、しかも経済的に生産するのはまだ見通しが立っていないのが実状である。
【0006】
本発明は、従来のプリフォーム方式の欠点を解消し、安定した品質で経済的に大量生産を可能とする新規なGI型POF及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成すべく成された本発明の構成は、以下の通りである。
【0008】
すなわち、本発明の第一は、メチルメタクリレートを主体としたPMMA系樹脂を第1成分樹脂とし、該樹脂とミッシブルに混合して透明な樹脂を形成することが出来、屈折率nd20℃がPMMA系樹脂の値より絶対値において0.01以上異なる樹脂を第2成分樹脂とし、該第2成分樹脂がスチレン構造単位が78〜85重量%、アクリルニトリル構造単位が22〜15重量%の共重合体であり、これらの単独成分樹脂または混合樹脂を、中心が最も屈折率が高く、その円周外側に向かって屈折率がほぼ2次分布状に低下するように、少なくとも5層以上に同心円状に配置したことを特徴とするマルチステップインデックス型プラスチック光ファイバにある。
【0009】
さらに、本発明の第二は、上記本発明第一のマルチステップインデックス型プラスチック光ファイバの製造方法であって、溶融状態の第1成分樹脂と第2成分樹脂を、計量性と、混合性と移送性能を有するギヤポンプを用いて両成分樹脂の混合割合を調節し、屈折率を調整し、少なくとも5層以上の「超多層複合紡糸ダイ」に供給し、中心に最も屈折率が高い混合樹脂を配置し、その円周外側に向かって、屈折率がほぼ2次分布状に低下するように多段階、同心円状に配置したマルチステップインデックス型プラスチック光ファイバの連続的製造方法にある。
【0010】
従来のグレーデッドインデックス型のプラスチック光ファイバの確立された製造方法はプリフォームと呼ばれるロッドの重合時にモノマーの拡散により屈折率勾配を付けたものであるが、本発明のマルチステップインデックス型のプラスチック光ファイバは、屈折率の異なる樹脂を多層に成形したものであり量産性のあるものである。しかし、ファイバの屈折率の勾配は階段状になる。これは必ずしも好ましいことではないが、コストパフォーマンス的に見て妥協を許すものである。階段の数が無限になれば、屈折率勾配は滑らかになるが、5層段以上とすることにより、プラスチック光ファイバとしての伝送帯域に向上が現れる。
【0011】
【発明の実施の形態】
本発明に係る第1成分樹脂としてはメチルメタクリレートのホモポリマー或はメチルメタクリレートが50重量%以上のアクリル酸エステル、メタクリル酸エステル、あるいはその他共重合可能な成分との共重合体などであり、これらのPMMA系樹脂の好ましいメルトフローインデックスは、オリフィスの直径2mm、長さ8mmで、230℃、3.8Kg荷重にて0.2〜60g/10分の範囲のものが使用でき、特に好ましくは1.0〜40g/10分のものが好ましい。その他、これらのPMMA系樹脂の中に含まれる異物を極力排除し、かつ、熱による着色を抑えるための配慮として、連続溶液重合法または連続塊状重合法により樹脂の製造を行い、後述の樹脂混合から紡糸工程を一貫した連続工程に組み込んで行うのが好ましい。
【0012】
一方、第2成分樹脂としては、前記PMMA系樹脂とはよく相溶し、分子状に混合し得るミッシブルな樹脂を選ぶ必要がある。この理由は、後述する、樹脂を混合して、屈折率を変えた層樹脂を次々に製造していくことの他に、各層の樹脂が接する面での樹脂の相溶性がよく滑らかな屈折率分布が付与できる点で重要である。しかも、溶融状態で混合したり、複合紡糸成形したりすることから、精々250℃以下でミッシブルとなる樹脂を選ばなければならない。しかも、これらの樹脂のもう一つの重要な性質として、PMMA系樹脂に比べて屈折率が異なっている必要がある。その屈折率の差の絶対値の程度は、目安としてナトリウムD線に対する屈折率nd20℃において、0.01以上ある必要がある。
【0013】
上記の第2成分樹脂としては、例えばアクリロニトリルとスチレンの共重合体であるAS樹脂がある。中でもスチレン構造単位が78〜85重量%、アクリルニトリル構造単位が22〜15重量%の共重合体であるものは、AS樹脂をPMMA系樹脂と250℃以下で混合するなどの処理を行っても、完全にミッシブルに混合できるので好ましい。その他、有効な樹脂としてはメチルメタクリレートとメタクリル酸又はアクリル酸のような不飽和カルボン酸とスチレン又はαメチルスチレンのような芳香族ビニル化合物を共重合し、加熱脱水反応により六員環環化物を含んだ共重合体も相溶性に優れる樹脂であり好ましい。さらにその他、メチルメタクリレートとスチレンと無水マレイン酸の共重合体も、PMMA系樹脂とよく相溶して透明となる樹脂であり好ましい。
【0014】
以上に述べた第2成分樹脂はいずれも、連続溶液重合または連続塊状重合法により製造することのできる樹脂であり、第1成分樹脂と第2成分樹脂を連続重合法により製造し、樹脂の重合段階から脱揮を一貫して行い、かつ樹脂を溶融状態のまま引き続き、混合や紡糸までの工程を一貫した連続工程で行うことができ、汚染と熱履歴の少ない光学的に優れた樹脂組成物が処理される点で好ましい。
【0015】
その他の第2成分樹脂としては、ビニリデンフロライド系の樹脂、例えばビニリデンフロライドとヘキサフロロアセトンの共重合体あるいは、これらの2元成分にさらに、トリフロロエチレンやテトラフロロエチレンを加えた3元以上の共重合体は非常に好ましい。さらに、ビニリデンフロライドとヘキサフロロプペンの共重合体、あるいはこれらの2元成分にさらに、トリフロロエチレンやテトラフロロエチレンを加えた3元以上の共重合体、さらにビニリデンフロライドとテトラフロロエチレンの2元共重合体、ビニリデンフロライドとトリフロロエチレンの2元共重合体などは、連続重合による一貫工程で紡糸をすることは出来ない樹脂ではあるが、第2成分樹脂として用いることができる。
【0016】
以下、特に第2成分樹脂をAS樹脂として、詳細に説明する。
【0017】
AS樹脂はアクリロニトリル成分の量により、屈折率が異なり、アクリロニトリル成分が20重量%のAS樹脂では屈折率nd20℃が1.5747、アクリロニトリル成分が25重量%だと屈折率nd20℃が1.5695である。
【0018】
一方、PMMA系樹脂の屈折率nd20℃は1.492程度であり、両者の樹脂を混合すると透明な樹脂組成物となり、屈折率は配合に比例して調節ができる。
【0019】
これらの樹脂の混合と、複合紡糸ダイへの混合樹脂の供給はギヤポンプのような混合機能があり定量性のある供給装置が好都合である。より好ましい方法としては、PMMA系樹脂及びAS系樹脂は夫々連続重合法により製造し、連続した工程の中で未反応モノマーや溶剤等の揮発成分を脱揮し、溶融状態のまま計量装置を用いてPMMA系樹脂とAS系樹脂の混合割合を多段階に調節して屈折率の勾配が多段階になるように混合し、ギヤポンプなどの混合供給装置を介して複合紡糸ダイに供給し、中心に最もAS濃度が高く屈折率が高い混合樹脂を配置し、その周りを段階的に屈折率がほぼ2次分布状に低下するように多段階・同心円状に配置したプラスチック光ファイバを連続的に製造する。この時、ファイバ軸径方向の層幅は均等に取ってもよいし、均等でなくてもよいが、必要なことは、軸径方向の屈折率の分布が、中心が最も高く、外側に行くにつれて位置とその場所の屈折率の関係が2次分布状に減少する構造となればよい。
【0020】
AS樹脂の好ましいメルトフローインデックスは、オリフィスの直径2mm、長さ8mmで、230℃、3.8Kg荷重にて0.2〜60g/10分の範囲のものが使用でき、特に好ましくは1.0〜40g/10分のものが好ましい。
【0021】
次に、PMMA系樹脂とAS系樹脂の混合から紡糸に至る工程の一具体例を説明する。先ず、樹脂層の層数に応じた数のギヤポンプを準備し、夫々のギヤポンプの回転数を予め計算された値に設定して、溶融されたPMMA樹脂を計量する。一方、溶融されたAS樹脂は、前述のPMMA系樹脂の各ギヤポンプの吐出ラインと接続する各混合ギヤポンプにより、予め計量されたPMMA樹脂と混合する。この混合ギヤポンプの回転数は、各層の断面積に比例して制御するようにする。
【0022】
ところで、PMMA樹脂のギヤポンプの回転数の設定方法は、混合ギヤポンプで供給される混合樹脂の屈折率と量から算出される。即ち、ファイバの中心が最もAS濃度が高く、屈折率が高い混合樹脂を配置し、その円周外側に向かって、屈折率がほぼ2次分布状に低下するように屈折率分布をつけるべく、AS樹脂とPMMA樹脂の割合を求め、それらの混合樹脂の全量からPMMA樹脂の数量が求められる。もちろん、実際の操作に於いては微調整が伴うことはある。ここでAS樹脂の数量もギヤポンプを用いて計量することは可能であるが、どちらかと言えば、AS樹脂はゲル化や着色し易いため、それを避けた方が好ましい。
【0023】
このようにして各層に応じて設計された屈折率勾配のついた樹脂が、設計された断面積分だけ「超多層複合紡糸ダイ」に供給される。ここで「超多層複合紡糸ダイ」とは少なくとも中心層を含め5層以上あるダイのことである。超多層複合紡糸ダイの構造は、図2のように層の数に応じたダイプレートがあり、そのダイプレートには、対応する層の樹脂をガイドするパイプが取り付けてあるのが好ましい。ダイの層の数は多ければ多いほど、屈折率勾配がなめらかになるので好ましいが、設備費がかさむのと、1層あたりの樹脂の量が少なくなるため、樹脂の劣化が起こり易くなるという欠点も出てくるので、層の数としては5層から20層程度が好ましい。このようにして、「超多層複合紡糸ダイ」に供給され、多層構造化された樹脂は、引落しを行い延伸して、直径0.25〜2.0mm程度のファイバにする。
【0024】
【実施例】
以下、本発明の一実施例を説明する。
【0025】
図1にPMMA樹脂とAS樹脂の混合供給工程図を示し、図2に複合紡糸ダイの図を示す。
【0026】
酸素不在下に連続溶液重合したメチルメタクリレート98重量%とアクリル酸メチル2重量%の共重合体で、nd20℃が1.492、メルトフローインデックスが9g/10分のPMMA樹脂を、210℃で脱揮押出機からギヤポンプP1〜P9に供給した。ギヤポンプP1〜P9の吐出配管は、それぞれ混合ギヤポンプP11〜P19の供給側に接続されており、ギヤポンプP1〜P9で計量されたPMMA樹脂は混合ギヤポンプP11〜P19に供給される。このギヤポンプP1〜P9の吐出量はそれぞれ表1の通りとした。
【0027】
一方、酸素不在下に連続溶液重合したスチレン80重量%とアクリロニトリル20重量%の共重合体で、nd20℃が1.575、メルトフローインデックスが10g/10分の樹脂を、210℃で脱揮押出機から直接混合ギヤポンプP11〜P19に供給した。そして、P11〜P19の吐出量、すなわち混合樹脂量は表1の通り設定した。
【0028】
混合ギアポンプP11〜P19の吐出配管は、夫々図2に示される「超多層複合紡糸ダイ」の受入口H1〜H9に接続した。これらの工程中、樹脂温度は210℃に保った。「超多層複合紡糸ダイ」の出口から排出されたストランドを引き伸ばし、延伸処理を行い、9層構造を有する直径1.0mmのプラスチック光ファイバを得た。そして、本プラスチック光ファイバに黒色ポリエチレンで被覆を行い、ケーブルを得た。
【0029】
本プラスチック光ファイバを構成する各層の屈折率ndは表1に示す通りであり、これを図示すると図3のようになる。すなわち、本プラスチック光ファイバは、中心が最も屈折率が高く、その円周外側に向かって屈折率がほぼ2次分布状に低下しているものである。
【0030】
本プラスチック光ファイバの伝送損失は650nmにて300dB/kmであった。また、本プラスチック光ファイバの伝送帯域は1GHz/50m以上が認められた。
【0031】
【表1】

Figure 0003762489
【0032】
【発明の効果】
以上説明したように、本発明によれば、グレーデッドインデックス型プラスチック光ファイバに準ずるマルチステップインデックス型プラスチック光ファイバを、安定した品質で経済的に大量生産することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るPMMA樹脂とAS樹脂の混合供給工程を説明するための図である。
【図2】本発明の実施例に係る「超多層複合紡糸ダイ」を概略的に示した断面図である。
【図3】本発明の実施例に係るプラスチック光ファイバを構成する各層の屈折率を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-step index type plastic optical fiber having a multi-step graded refractive index distribution having a high band and a continuous manufacturing method thereof, in accordance with a graded index type plastic optical fiber.
[0002]
[Prior art]
A graded index (GI) optical fiber is an optical fiber having a high refractive index at the center of the fiber and a refractive index that decreases in a second order distribution toward the outside, and is characterized by a wide transmission band.
[0003]
There have been many proposals for plastic GI fiber since the Showa 40's. Among them, the excellent ones developed by Keio University's Otsuka and Koike et al. Are known.
[0004]
These GI POFs are made by polymerizing a rod called a PMMA-based preform having a refractive index distribution in advance, and stretching it with heat to form a fiber. The point is that these preforms are polymerized in a PMMA pipe so that a refractive index gradient can be obtained, and mainly MMA monomer and a high refractive index polymerizable monomer or non-polymerizable compound are allowed to stand or rotate. It is produced by polymerizing and solidifying for a long time while paying close attention. The performance of this preform determines important performance such as transmission loss and transmission band of the GI fiber.
[0005]
[Problems to be solved by the invention]
The advantage of POF is that it has a large diameter and is easy to handle, but GI-type POF by the conventional preform method is the one in which the refractive index distribution is formed using the diffusion state of the molecules in the polymerization process. Too large ones are difficult to manufacture, and if a fiber with a relatively large diameter of about 0.5 mm to 1.0 mm is drawn to maintain the merit of POF, the fiber length obtained from the preform is short. Inferior to productivity. In fact, there is no prospect of mass production of such preform rods with industrially stable quality and economical production.
[0006]
An object of the present invention is to provide a novel GI-type POF that eliminates the disadvantages of the conventional preform method and enables mass production economically with stable quality and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
The configuration of the present invention made to achieve the above object is as follows.
[0008]
That is, the first aspect of the present invention, a PMMA resin consisting mainly of methyl methacrylate as a first component resin, is mixed to the resin and Misshiburu can form a transparent resin, refractive index nd20 ° C. is the PMMA A resin whose absolute value is 0.01 or more different from the value of the resin is used as the second component resin, and the second component resin has a styrene structural unit of 78 to 85% by weight and an acrylonitrile structural unit of 22 to 15% by weight. a coalescing, these single component resins or mixed resins, the center has the highest refractive index, so that the refractive index towards its circumference outside is reduced almost secondary distribution shape, concentrically over at least 5 layers The multi-step index type plastic optical fiber is characterized in that it is arranged in the above.
[0009]
Further, a second aspect of the present invention is a method for producing the first multi-step index type plastic optical fiber according to the first aspect of the present invention, wherein the first component resin and the second component resin in a molten state are measured and mixed. Adjust the mixing ratio of both component resins using a gear pump with transfer performance, adjust the refractive index, and supply it to the “super multi-layer composite spinning die” with at least five layers. This is a continuous manufacturing method of multi-step index type plastic optical fibers which are arranged and arranged in multi-stages and concentric circles so that the refractive index decreases substantially in a quadratic distribution toward the outer circumference.
[0010]
The conventional manufacturing method of a graded index type plastic optical fiber is a method in which a refractive index gradient is given by diffusion of a monomer during polymerization of a rod called a preform, but the multi-step index type plastic optical fiber of the present invention is used. A fiber is a product in which resins having different refractive indexes are molded into multiple layers and is mass-productive. However, the refractive index gradient of the fiber is stepped. This is not always desirable, but it allows a compromise in terms of cost performance. If the number of steps is infinite, the refractive index gradient becomes smooth, but by using five or more steps, an improvement appears in the transmission band as a plastic optical fiber.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The first component resin according to the present invention is a homopolymer of methyl methacrylate or a copolymer with 50 wt% or more of acrylic acid ester, methacrylic acid ester, or other copolymerizable component. The preferred melt flow index of the PMMA-based resin is that the orifice diameter is 2 mm, the length is 8 mm, and the range of 0.2-60 g / 10 min at 230 ° C. and 3.8 kg load can be used. The thing of 0.0-40 g / 10min is preferable. In addition, as a consideration for eliminating foreign substances contained in these PMMA resins as much as possible and suppressing coloring due to heat, the resin is produced by a continuous solution polymerization method or a continuous bulk polymerization method, and the resin mixing described later is performed. It is preferable that the spinning process is incorporated into a continuous process.
[0012]
On the other hand, as the second component resin, it is necessary to select a miscible resin that is compatible with the PMMA resin and can be mixed in a molecular form. The reason for this is that, as will be described later, the resin layer is mixed and the refractive index is changed one after another, and the resin has good compatibility and smooth refractive index on the contact surface of each layer. This is important in that a distribution can be given. In addition, a resin that becomes miscible at 250 ° C. or lower must be selected because it is mixed in a molten state or is formed by composite spinning. Moreover, as another important property of these resins, the refractive index needs to be different from that of the PMMA resin. The absolute value of the difference in refractive index needs to be 0.01 or more at a refractive index nd20 ° C. with respect to the sodium D line as a guide.
[0013]
Examples of the second component resin include AS resin which is a copolymer of acrylonitrile and styrene. In particular, a copolymer having 78 to 85% by weight of styrene structural units and 22 to 15% by weight of acrylonitrile structural units may be subjected to a treatment such as mixing AS resin with PMMA resin at 250 ° C. or lower. It is preferable because it can be mixed completely miscible. In addition, as an effective resin, methyl methacrylate, unsaturated carboxylic acid such as methacrylic acid or acrylic acid, and aromatic vinyl compound such as styrene or α-methylstyrene are copolymerized, and a six-membered cyclized product is obtained by heat dehydration reaction. The contained copolymer is also preferably a resin having excellent compatibility. In addition, a copolymer of methyl methacrylate, styrene, and maleic anhydride is also preferable because it is a resin that is well compatible with the PMMA resin and becomes transparent.
[0014]
All of the second component resins described above are resins that can be produced by continuous solution polymerization or continuous bulk polymerization, and the first component resin and second component resin are produced by continuous polymerization. It is an optically superior resin composition that can be devolatilized from stage to stage, and can continue to the process of mixing and spinning in a continuous process while the resin is in a molten state, and has little contamination and heat history. Is preferable in that is processed.
[0015]
Other second component resins include vinylidene fluoride resins such as vinylidene fluoride-hexafluoroacetone copolymers, or ternary components obtained by adding trifluoroethylene or tetrafluoroethylene to these binary components. The above copolymers are very preferred. Further, a copolymer of vinylidene fluoride and hexafluoropropylene, or a ternary copolymer obtained by adding trifluoroethylene or tetrafluoroethylene to these binary components, and further vinylidene fluoride and tetrafluoroethylene. Binary copolymers, such as binary copolymers of vinylidene fluoride and trifluoroethylene, are resins that cannot be spun in a consistent process by continuous polymerization, but can be used as a second component resin. .
[0016]
Hereinafter, the second component resin will be described in detail as an AS resin.
[0017]
The refractive index of the AS resin varies depending on the amount of the acrylonitrile component. The AS resin having an acrylonitrile component of 20% by weight has a refractive index of nd20 ° C. of 1.5747, and the acrylonitrile component of 25% by weight has a refractive index of nd20 ° C. of 1.5695. is there.
[0018]
On the other hand, the refractive index nd20 ° C. of the PMMA resin is about 1.492. When both resins are mixed, a transparent resin composition is obtained, and the refractive index can be adjusted in proportion to the blending.
[0019]
The mixing of these resins and the supply of the mixed resin to the composite spinning die are advantageous in that they have a mixing function such as a gear pump and are quantitative. As a more preferable method, the PMMA resin and AS resin are each produced by a continuous polymerization method, and volatile components such as unreacted monomers and solvents are devolatilized in a continuous process, and a measuring device is used in a molten state. The mixing ratio of the PMMA resin and AS resin is adjusted in multiple stages so that the gradient of the refractive index is mixed in multiple stages, and is supplied to the composite spinning die via a mixing supply device such as a gear pump. Continuously manufactures plastic optical fibers that are arranged in multiple stages and concentric circles in such a way that the mixed resin with the highest AS concentration and the highest refractive index is placed, and the refractive index gradually decreases to a quadratic distribution. To do. At this time, the layer width in the fiber axial direction may or may not be uniform, but what is necessary is that the refractive index distribution in the axial direction is the highest in the center and goes outward. Accordingly, a structure in which the relationship between the position and the refractive index of the place decreases in a quadratic distribution form is sufficient.
[0020]
The preferred melt flow index of the AS resin is that the diameter of the orifice is 2 mm, the length is 8 mm, and the range of 0.2 to 60 g / 10 min at 230 ° C. and 3.8 kg load can be used. Those of ˜40 g / 10 min are preferred.
[0021]
Next, a specific example of a process from mixing of PMMA resin and AS resin to spinning will be described. First, the number of gear pumps corresponding to the number of resin layers is prepared, the number of rotations of each gear pump is set to a pre-calculated value, and the melted PMMA resin is weighed. On the other hand, the molten AS resin is mixed with the PMMA resin weighed in advance by each mixing gear pump connected to the discharge line of each gear pump of the PMMA resin. The rotation speed of the mixing gear pump is controlled in proportion to the cross-sectional area of each layer.
[0022]
By the way, the setting method of the rotation speed of the gear pump of PMMA resin is calculated from the refractive index and amount of the mixed resin supplied by the mixed gear pump. That is, a mixed resin having the highest AS concentration and a high refractive index is disposed at the center of the fiber, and the refractive index distribution is set so that the refractive index decreases in a substantially quadratic distribution toward the outer circumference. The ratio of AS resin and PMMA resin is calculated | required, and the quantity of PMMA resin is calculated | required from the whole quantity of those mixed resin. Of course, the actual operation may involve fine adjustment. Here, the quantity of AS resin can also be measured using a gear pump. However, it is preferable to avoid AS resin because it is easily gelled or colored.
[0023]
In this way, the resin with the refractive index gradient designed for each layer is supplied to the “super multilayer composite spinning die” by the designed cross-sectional integral. Here, the “super multi-layer composite spinning die” is a die having five or more layers including at least a central layer. The super multi-layer composite spinning die has a die plate corresponding to the number of layers as shown in FIG. 2, and a pipe for guiding the resin of the corresponding layer is preferably attached to the die plate. The larger the number of layers of the die, the more preferable the refractive index gradient becomes smoother, but the disadvantage is that the equipment cost is increased and the amount of resin per layer is reduced, so that the resin is easily deteriorated. The number of layers is preferably about 5 to 20 layers. In this way, the resin that has been supplied to the “ultra-multilayer composite spinning die” and has a multilayer structure is drawn down and drawn into a fiber having a diameter of about 0.25 to 2.0 mm.
[0024]
【Example】
An embodiment of the present invention will be described below.
[0025]
FIG. 1 shows a mixed supply process diagram of PMMA resin and AS resin, and FIG. 2 shows a composite spinning die.
[0026]
A copolymer of 98% by weight methyl methacrylate and 2% by weight methyl acrylate, polymerized continuously in the absence of oxygen, with a nd20 ° C. of 1.492 and a melt flow index of 9 g / 10 min was removed at 210 ° C. It supplied to the gear pumps P1-P9 from the volatile extruder. The discharge pipes of the gear pumps P1 to P9 are connected to the supply sides of the mixing gear pumps P11 to P19, respectively, and the PMMA resin measured by the gear pumps P1 to P9 is supplied to the mixing gear pumps P11 to P19. The discharge amounts of the gear pumps P1 to P9 are as shown in Table 1, respectively.
[0027]
On the other hand, 80% by weight styrene copolymer and 20% by weight acrylonitrile copolymerized by continuous solution polymerization in the absence of oxygen were devolatilized and extruded at 210 ° C with a nd20 ° C of 1.575 and a melt flow index of 10g / 10min. Supplied directly from the machine to the mixing gear pumps P11 to P19. And the discharge amount of P11-P19, ie, the amount of mixed resin, was set as Table 1.
[0028]
The discharge pipes of the mixing gear pumps P11 to P19 were connected to the receiving ports H1 to H9 of the “super multilayer composite spinning die” shown in FIG. The resin temperature was kept at 210 ° C. during these steps. The strand discharged from the exit of the “ultra-multilayer composite spinning die” was stretched and stretched to obtain a plastic optical fiber having a 9-layer structure and a diameter of 1.0 mm. And this plastic optical fiber was coat | covered with black polyethylene, and the cable was obtained.
[0029]
The refractive index nd of each layer constituting the plastic optical fiber is as shown in Table 1, and this is shown in FIG. In other words, the present plastic optical fiber has the highest refractive index at the center, and the refractive index decreases in a substantially quadratic distribution toward the outer circumference.
[0030]
The transmission loss of this plastic optical fiber was 300 dB / km at 650 nm. The transmission band of this plastic optical fiber was found to be 1 GHz / 50 m or more.
[0031]
[Table 1]
Figure 0003762489
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to mass-produce multi-step index type plastic optical fibers according to graded index type plastic optical fibers with stable quality and economically.
[Brief description of the drawings]
FIG. 1 is a view for explaining a mixed supply process of PMMA resin and AS resin according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing an “super multilayer composite spinning die” according to an embodiment of the present invention.
FIG. 3 is a diagram showing the refractive index of each layer constituting the plastic optical fiber according to the embodiment of the present invention.

Claims (2)

メチルメタクリレートを主体としたPMMA系樹脂を第1成分樹脂とし、該樹脂とミッシブルに混合して透明な樹脂を形成することが出来、屈折率nd20℃がPMMA系樹脂の値より絶対値において0.01以上異なる樹脂を第2成分樹脂とし、該第2成分樹脂がスチレン構造単位が78〜85重量%、アクリルニトリル構造単位が22〜15重量%の共重合体であり、これらの単独成分樹脂または混合樹脂を、中心が最も屈折率が高く、その円周外側に向かって屈折率がほぼ2次分布状に低下するように、少なくとも5層以上に同心円状に配置したことを特徴とするマルチステップインデックス型プラスチック光ファイバ。The PMMA resin consisting mainly of methyl methacrylate as a first component resin, is mixed to the resin and Misshiburu can form a transparent resin, refractive index nd20 ° C. is in absolute value than the value of the PMMA resin 0 A resin having a difference of 0.01 or more is used as a second component resin, and the second component resin is a copolymer having a styrene structural unit of 78 to 85% by weight and an acrylonitrile structural unit of 22 to 15% by weight. Alternatively, the mixed resin is arranged in a concentric manner in at least five layers or more so that the center has the highest refractive index and the refractive index decreases in a quadratic distribution toward the outer circumference. Step index type plastic optical fiber. 請求項1に記載のマルチステップインデックス型プラスチック光ファイバの製造方法であって、
溶融状態の第1成分樹脂と第2成分樹脂を、計量性と、混合性と移送性能を有するギヤポンプを用いて両成分樹脂の混合割合を調節し、屈折率を調整し、少なくとも5層以上の「超多層複合紡糸ダイ」に供給し、中心に最も屈折率が高い混合樹脂を配置し、その円周外側に向かって、屈折率がほぼ2次分布状に低下するように多段階、同心円状に配置したマルチステップインデックス型プラスチック光ファイバの連続的製造方法。
A method for producing a multi-step index plastic optical fiber according to claim 1 ,
The first component resin and the second component resin in the molten state are adjusted to a refractive index by adjusting the mixing ratio of the two component resins using a gear pump having meterability, mixing property and transfer performance, and at least five layers or more. Supply to the “ultra-multilayer composite spinning die”, arrange the mixed resin with the highest refractive index in the center, and multi-stage, concentric circles so that the refractive index decreases to a secondary distribution toward the outer circumference Manufacturing method of multi-step index type plastic optical fiber placed in
JP26390296A 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof Expired - Lifetime JP3762489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26390296A JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26390296A JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10111414A JPH10111414A (en) 1998-04-28
JP3762489B2 true JP3762489B2 (en) 2006-04-05

Family

ID=17395855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26390296A Expired - Lifetime JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3762489B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226497B2 (en) 2004-03-08 2009-02-18 富士フイルム株式会社 Multi-step index optical fiber
JP2006343455A (en) * 2005-06-08 2006-12-21 Fujifilm Holdings Corp Manufacturing method of plastic optical material
JP5665162B2 (en) * 2008-03-07 2015-02-04 東レ株式会社 Optical waveguide film and manufacturing method thereof

Also Published As

Publication number Publication date
JPH10111414A (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US5593621A (en) Method of manufacturing plastic optical transmission medium
KR100443223B1 (en) Distributed Refractive Index Optical Fiber and Method of Manufacturing the Same
US5916495A (en) Plastic optical fiber preform, and process and apparatus for producing the same
US5614253A (en) Plastic optical fiber preform, and process and apparatus for producing the same
JP3762489B2 (en) Multi-step index type plastic optical fiber and manufacturing method thereof
JPH10133036A (en) Multistep index type plastic optical fiber and its production
JPH11505628A (en) Method of manufacturing graded index polymer optical fiber
DE3144658C2 (en)
JP3258605B2 (en) Multi-step refractive index distribution plastic optical fiber
JP2000501196A (en) Method of manufacturing graded index polymer optical fiber
JP3504065B2 (en) Graded-index plastic optical fiber and method of manufacturing the same
JPH09218312A (en) Production of preform for graded index plastic optical fiber
JP3444317B2 (en) Plastic optical fiber
JPH08304634A (en) Production of plastic optical fiber preform and plastic optical fiber
JPH08334605A (en) Plastic light transmission body and melt spinning device
JPH09243835A (en) Distributed refractive index plastic optical fiber and its production
JPH0915431A (en) Production of optical fiber
JPH0854520A (en) Production of plastic optical fiber preform
EP0662620A1 (en) Production method and apparatus for plastic optical fiber base material
JPH09258041A (en) Distributed refractive index type plastic optical fiber and its production
JPH075331A (en) Production of plastic optical fiber preform
JPH08334604A (en) Plastic light transmission body and its production
JPH11153717A (en) Production of graded index optical fiber
JPH08334635A (en) Plastic light transmission body and its production
JPH0225481B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term