JPH0576602B2 - - Google Patents

Info

Publication number
JPH0576602B2
JPH0576602B2 JP59252880A JP25288084A JPH0576602B2 JP H0576602 B2 JPH0576602 B2 JP H0576602B2 JP 59252880 A JP59252880 A JP 59252880A JP 25288084 A JP25288084 A JP 25288084A JP H0576602 B2 JPH0576602 B2 JP H0576602B2
Authority
JP
Japan
Prior art keywords
monomer
polymerization
refractive index
container
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252880A
Other languages
Japanese (ja)
Other versions
JPS61130904A (en
Inventor
Yasuji Ootsuka
Yasuhiro Koike
Koichi Maeda
Akio Takigawa
Juichi Aoki
Ikuo Tago
Motoaki Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59252880A priority Critical patent/JPS61130904A/en
Publication of JPS61130904A publication Critical patent/JPS61130904A/en
Publication of JPH0576602B2 publication Critical patent/JPH0576602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は合成樹脂の屈折率分布型光伝送体を製
造する方法に関する。 〔発明の技術的背景〕 屈折率分布型光伝送体は周知のように光軸と直
交する方向に中心から周辺に向けて屈折率が次第
に変化する分布をもつ透明体から成り、ロツド状
のレンズ、光伝送フアイバ等として広く使用され
ている。 上記の自己集束性光伝送体は、中心軸上の屈折
率をNo,Aを定数として中心軸からXの距離に
おける屈折率Nが N−No(1−1/2AX2) (1) の式で表わされる分布をもつ。 そして定数Aが正のとき上記伝送体は凸レンズ
作用を有し、Aが負の場合には凹レンズ作用を有
する。 また中心近傍において(1)式のA>0の屈折率分
布を有し、それよりも外周側において次第に外側
に向けて屈折率が増加しているような分布をもつ
屈折率分布型光伝送体も提案されている。 〔従来技術の説明〕 このような屈折率分布型の光伝送体を合成樹脂
で製造する代表的な方法として、重合体屈折率と
単量体反応性比が互いに異なる複数の単量体の混
合物を所定の容器に充填し、容器の外側から光を
照射して容器の混合物の外層より徐々に重合反応
を進めて単量体ユニツトの共重合体分布すなわち
屈折率分布を形成させる方法がある。 以下に従来技術を詳しく説明する。 まず単量体混合物を光透過性の成形型に充填す
る。単量体混合物中の単量体相互の反応性比の関
係は次の様になる。 一般に多元共重合反応において下記生長反応 〓〓〓Mi*+Mj→〓〓〓Mj* の速度定数をKijとすれば、任意の単量体Miの単
量体Mjに対する反応性比Rijは Rij≡Kii/Kij (2) と定義される。同様に単量体Miに対する単量体
Mjの反応性比Rjiは Rji≡Kjj/Kji (3) と定義される。X元共重合にはX(X−1)個の
反応性比がある。また単量体MiとMjの混合比を
(Mi/Mj)mとすると、このとき生成する共重
合体の単量体成分組成比(Mi/Mj)pは下記(4)
式で表わされることが知られている。 (Mi/Mj)p=(Mi/Mj)mRij(Mi/Mj)m+1/
(Mi/Mj)m+Rji(4) ここで Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji≡Q (5) とおくと、Q>1であれば常に下記(6)式が成立す
る。 (Mi/Mj)p>(Mi/Mj)m (6) すなわち生成する共重合体中のMi成分の含有
比は単量体混合物中のMiの混合比よりも常に高
くなるがQ≧1.1であることが好ましい。重合時
間とともに残存している単量体混合物中のMiの
混合比は次第に減少し、逆にMjの混合比は次第
に増加する。したがつて重合初期に生成する共重
合体中のMi成分の含有比は高いが、重合時間と
共にその時点で生成する共重合体のMi成分の含
有比は減少する。逆に生成する共重合体中のMj
成分の含有比は重合の進行と共に次第に増加す
る。このようにして得られる共重合体は組成の異
なる共重合体の混合物である。 またQ<1(好ましくはQ≦0.9)であれば常に (Mi/Mj)p<(Mi/Mj)m (7) となるから、Q>1の場合とは逆に、共重合体中
のMi成分の含有比は単量体混合物中のMiの混合
比よりも常に小さくなる。 Q=1であれば (Mi/Mj)p=(Mi/Mj)m (8) となり、単量体混合比と等しい組成を持つた共重
合体が生成し、共重合体は組成分布を示さない。
従つて前記(5)式におけるQが1以外の数(好まし
くはQ≧1.1またはQ≦0.9)であつて、この様な
単量体混合物を透明管内に充填して外側から光を
照射するとき、外側から中心軸方向に向けて重合
が進行すれば反応性比の大きい単量体ほど外側へ
偏つた単量体組成分布が形成される。 例えば単量体混合物が単量体M1,M2……MX
のX種の単量体より成つており、1≦i≦j≦X
であるようなiおよびjを選んだ時に前記(5)式に
おけるQが1よりも大きい数であれば共重合体中
におけるMi成分の量が最大または極大である部
分は、Mj成分の量が最大または極大である部分
よりも先に重合した部分にある。すなわちこの場
合に共重合体の組成分布を外側から中心方向に向
けて調べた場合には、M1成分がまず最大または
極大値に達し次にM2成分、M3成分……と、順に
極大値が見られて、中心においてMx成分が極大
値をとることになる。 従つて単量体M1,M2……MXの重合P1,P2
…PXの屈折率N1,N2……NXが異なつていれば半
径方向に何らかの屈折率分布が得られる。 〔発明が解決しようとする問題点〕 しかしながら系内の温度が室温又は低温であ
り、光照射することだけにより、二成分系におい
て前記(1)式の屈折率分布を有する合成樹脂光伝送
体を得ようとすると、その中心軸近くのみが(1)式
の屈折率分布を持つていて、周辺部に行くにつれ
て、屈折率の勾配は緩やかとなつてしまう。 これは、重合と共に析出する共重合体の屈折率
は増加するが重合初期は、すなわち周辺領域に析
出する共重合体の屈折率の上昇は緩やかである
が、重合後期、すなわち中心領域では、急上昇す
るためである。以下にこの現象を説明する。系内
が室温又は低温であれば熱重合は無視できる範囲
にあり重合は光によつてのみ進行すると仮定して
もよい。光照射によつて共重合が始まり、反応系
は次第に粘稠になり、管の内壁に重合体層が形成
される。これは管の内壁に近いほど紫外線の強度
が強いから、内壁に近いほど、より多くのラジカ
ルが発生し重合が開始され、共重合体ラジカルが
生ずるためである。 しかし、最初のうちは、ラジカルは反応系中を
容易に拡散し得るから、系全体で反応が進行し、
系の粘度は一様に増大する。粘度が増大するにつ
れてラジカルの拡散は遅くなり、ラジカルは内壁
近くで成長して高分子量の共重合体となる。共重
合体層は時間と共に厚くなり遂に中心部まで固化
するようになる。 ここで上記の屈折率分布が形成される機構につ
いて説明する。 例としてMMA(メチルメタクリレート)、VB
(安息香酸ビニル)二成分系共重合(MMA/VB
=1/1)において、転化率Pの上昇に伴い析出
する共重合体屈折率変化を第6図に示す。重合初
期から中期にかけて析出する共重合体の屈折率は
あまり上昇しないが、重合後期において急激な上
昇を示す。ここで重合管内壁付近に析出する共重
合体は重合初期から中期に析出したものであるた
め、周辺領域での屈折率分布は緩やかな勾配にな
り、重合後期つまり中心領域の屈折率分布は急激
な勾配となる。このため全体に一様な屈折率分布
を有する合成樹脂光伝送体を得ることはできな
い。 〔従来の問題点を解決する手段〕 上記問題点を解決する本発明の要旨は、重合体
屈折率の異なる複数種の単量体において任意の単
量体Miの単量体Mjに対する反応性比をRij単量
体Mjの単量体Miに対する反応性比をRjiとし、
単量体MiとMjの混合モル比(Mi/Mj)mとす
れば Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji の値が1.1以上であるか又は1/1.1以下になるよ
うな複数種の単量体混合物を所定の容器に充填
し、その所定の容器に加わる温度を40℃以上望ま
しくは150℃以下にする。 上記の加熱処理は、例えば後述の実施例に示す
ように所定温度に保持した恒温室に重合容器を貫
通配置して恒温室あるいは重合容器のいずれかを
他方に対して相対移動させるなどの方法によつ
て、加熱範囲を重合容器の一部のみに限定して容
器の一端側から漸進的に加熱を進めることが望ま
しい。このような斬進加熱によつて、重合反応の
過程で容器の中心近傍の液体混合物が収縮して
も、上記加熱域外上方にある液体混合物が収縮分
を埋めるように順次流下し、容器内外周において
も容器軸線方向に漸進的に重合が進行し、容器内
外周部が全長にわたり先に固化してしまつて内部
に空洞が残るといつたこともなく、全長にわたり
空洞、気泡のない均一な屈折率分布重合体を得る
ことができる。 本発明を実施するに当り、光照射は行なつた方
が好ましいが、熱重合単独だけでも径全体に一様
な屈折率分布を有する合成樹脂光伝送体を製造す
ることができる。 また本発明において重合容器として、最も単量
体反応性比の高い単量体すなわち、容器内壁上に
析出する共重合体中に最も多く含まれている単量
体の重合体と同様又は親和性の良い合成樹脂製容
器を使用することが望ましい。このような材質の
容器を用いると親和性が良いため内壁上には親和
性が悪い容器と比べて転化率の低い状態で共重合
体が析出するため周辺の屈折率が低下するので屈
折率差が大きくなり開口数NAが大きくなる。 本発明で使用する単量体としては、本発明者ら
の先行出願特願昭50−11723、特願昭55−53920、
特願昭58−11954、特願昭58−11956に列挙した単
量体群を使用することができ、これら単量体の使
用により凸レンズ作用を有する自己集束性光伝送
体を製造することができる。一例として、二成分
系単量体混合物を用いて本発明を実施する場合の
好適な単量体M1,M2の例を以下に列記する。
M1としてメタクリル酸メチル・メタクリル酸エ
チル・メタクリル酸トルフロロエチルなどのチタ
クリル酸脂肪族エステル、無水メタクリル酸、ジ
メタクリル酸エチレン又はこれらの混合物。M2
として安息香酸ビニル・O−クロル安息香酸ビニ
ル・P−クロル安息香酸ビニル・α−ナフトエ酸
ビニル・β−ナフトエ酸ビニルなどの芳香族カル
ボン酸ビニル・アクリロニトリル・ぺンタクロル
スチレン又はこれらの混合物。 M1としてアクリル酸メチル・アクリル酸エチ
ルなどのアクリル酸エステルまたはこれらと上記
のメタクリル酸エステルの混合物。M2として上
記の芳香族カルボン酸ビニル・スチレン又はこれ
らの混合物。 M1としてメタクリル酸メチル・メタクリロニ
トリル。M2としてα−メチルスチレン。 上記のM1−M2の組み合わせの例は低屈折率ポ
リマーとなる単量体をM1、高屈折率ポリマーと
なる単量体ををM2としてある。 これらの組合せの中から選んだ2種の単量体の
組み合わせについて、その単量体反応性比、重合
体の屈折率、上記Qの値が1.1以上または1/1.1
以下になるような混合比の範囲を例示すると第1
表の通りである。 〔発明の効果〕 二成分系において重合系の温度を40℃以上に上
限させて行くと、熱重合の効果が大きくなるの
で、ラジカルが発生してから反応系の粘度が急上
昇して、共重合体ラジカルの拡散が困難となるま
でが短時間となる。更に容器内壁付近から単量体
反応性比の高い単量体を多く含む共重合体が生成
するが、その時、熱重合の効果により、残りの単
量体混合物の転化率も上昇している。そしてその
転化率は時間と共に上昇する。すなわち前述のよ
うに熱重合が無視できる場合とは異なり、重合管
内壁付近に析出する共重合体は既に第6図中の屈
折率が急上昇する転化率に到達している。従つて
[Technical Field of the Invention] The present invention relates to a method for manufacturing a gradient index optical transmission body made of synthetic resin. [Technical Background of the Invention] As is well known, a gradient index optical transmission body consists of a transparent body with a distribution in which the refractive index gradually changes from the center to the periphery in a direction perpendicular to the optical axis, and is composed of a rod-shaped lens. It is widely used as optical transmission fiber. The above self-focusing optical transmitter has a refractive index N at a distance of X from the central axis, where the refractive index on the central axis is No and A is a constant, as expressed by the formula N-No (1-1/2AX 2 ) (1) It has a distribution expressed as . When the constant A is positive, the transmitter has a convex lens effect, and when A is negative, the transmitter has a concave lens effect. In addition, a refractive index distribution type optical transmission body having a refractive index distribution of A>0 in equation (1) near the center, and a distribution in which the refractive index gradually increases outwards at the outer periphery side. has also been proposed. [Description of Prior Art] A typical method for producing such a gradient index optical transmission body using synthetic resin is to use a mixture of a plurality of monomers having different polymer refractive indexes and monomer reactivity ratios. There is a method in which a predetermined container is filled with the mixture, and light is irradiated from the outside of the container to gradually advance the polymerization reaction from the outer layer of the mixture in the container to form a copolymer distribution of monomer units, that is, a refractive index distribution. The prior art will be explained in detail below. First, a light-transmissive mold is filled with a monomer mixture. The relationship between the reactivity ratios of the monomers in the monomer mixture is as follows. Generally, in a multicomponent copolymerization reaction, if the rate constant of the following growth reaction 〓〓〓Mi * +Mj→〓〓〓Mj * is Kij, then the reactivity ratio Rij of any monomer Mi to monomer Mj is Rij≡Kii /Kij (2). Similarly, monomer for monomer Mi
The reactivity ratio Rji of Mj is defined as Rji≡Kjj/Kji (3). There are X (X-1) reactivity ratios in the X element copolymerization. Furthermore, if the mixing ratio of monomers Mi and Mj is (Mi/Mj)m, the monomer component composition ratio (Mi/Mj)p of the copolymer produced at this time is as follows (4)
It is known that it can be expressed by the formula. (Mi/Mj)p=(Mi/Mj)mRij(Mi/Mj)m+1/
(Mi/Mj)m+Rji(4) Here, Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji≡Q (5) If Q>1, the following equation (6) always holds true. (Mi/Mj)p>(Mi/Mj)m (6) In other words, the content ratio of Mi component in the resulting copolymer is always higher than the mixing ratio of Mi in the monomer mixture, but if Q≧1.1. It is preferable that there be. As the polymerization time increases, the mixing ratio of Mi in the remaining monomer mixture gradually decreases, and conversely, the mixing ratio of Mj gradually increases. Therefore, the content ratio of the Mi component in the copolymer produced at the initial stage of polymerization is high, but as the polymerization time increases, the content ratio of the Mi component in the copolymer produced at that point decreases. Conversely, Mj in the copolymer produced
The content ratio of the components gradually increases as the polymerization progresses. The copolymer thus obtained is a mixture of copolymers having different compositions. Also, if Q<1 (preferably Q≦0.9), (Mi/Mj)p<(Mi/Mj)m (7), so contrary to the case of Q>1, the The content ratio of the Mi component is always smaller than the mixing ratio of Mi in the monomer mixture. If Q=1, (Mi/Mj)p=(Mi/Mj)m (8), a copolymer with a composition equal to the monomer mixing ratio is produced, and the copolymer shows a composition distribution. do not have.
Therefore, when Q in the above formula (5) is a number other than 1 (preferably Q≧1.1 or Q≦0.9) and such a monomer mixture is filled in a transparent tube and irradiated with light from the outside. If polymerization proceeds from the outside toward the central axis, a monomer composition distribution will be formed that is more biased toward the outside as the monomer has a larger reactivity ratio. For example, if a monomer mixture contains monomers M 1 , M 2 ... M
It is composed of X types of monomers, and 1≦i≦j≦X
When i and j are selected such that if Q in the above formula (5) is a larger number than 1, the portion where the amount of the Mi component in the copolymer is maximum or maximum is the amount of the Mj component. It is located in the part that polymerized earlier than the part that is the largest or local maximum. In other words, in this case, when the composition distribution of the copolymer is investigated from the outside toward the center, the M1 component reaches its maximum or local maximum value first, then the M2 component, the M3 component, and so on. The Mx component takes a maximum value at the center. Therefore, polymerization of monomers M 1 , M 2 ...M X P 1 , P 2 ...
...If the refractive indices N 1 , N 2 ...N X of P X are different, some kind of refractive index distribution can be obtained in the radial direction. [Problem to be solved by the invention] However, when the temperature inside the system is room temperature or low temperature, it is possible to create a synthetic resin optical transmitter having the refractive index distribution of formula (1) in a two-component system by simply irradiating light. However, only the area near the central axis has the refractive index distribution expressed by equation (1), and the gradient of the refractive index becomes gentler toward the periphery. This is because the refractive index of the copolymer that precipitates with polymerization increases, but at the beginning of polymerization, the refractive index of the copolymer that precipitates in the peripheral region increases slowly, but in the late stage of polymerization, that is, in the central region, the refractive index increases rapidly. This is to do so. This phenomenon will be explained below. It may be assumed that if the inside of the system is at room temperature or low temperature, thermal polymerization is negligible and polymerization proceeds only by light. Copolymerization begins upon irradiation with light, and the reaction system gradually becomes viscous, forming a polymer layer on the inner wall of the tube. This is because the intensity of the ultraviolet rays is stronger the closer you get to the inner wall of the tube, so the closer you get to the inner wall, the more radicals are generated and polymerization is initiated, producing copolymer radicals. However, at first, the radicals can easily diffuse through the reaction system, so the reaction proceeds throughout the system.
The viscosity of the system increases uniformly. As the viscosity increases, the diffusion of radicals slows down, and the radicals grow near the inner walls, resulting in a high molecular weight copolymer. The copolymer layer becomes thicker over time until it solidifies to the center. Here, the mechanism by which the above-mentioned refractive index distribution is formed will be explained. Examples include MMA (methyl methacrylate), VB
(vinyl benzoate) binary copolymerization (MMA/VB
Figure 6 shows the change in the refractive index of the precipitated copolymer as the conversion rate P increases. The refractive index of the precipitated copolymer does not increase much from the early stage to the middle stage of polymerization, but shows a sharp increase in the late stage of polymerization. Here, the copolymer precipitated near the inner wall of the polymerization tube was precipitated during the early to middle stages of polymerization, so the refractive index distribution in the peripheral region has a gentle slope, and the refractive index distribution in the late stage of polymerization, that is, the central region, is steep. It becomes a gradient. Therefore, it is impossible to obtain a synthetic resin optical transmission body having a uniform refractive index distribution throughout. [Means for Solving the Conventional Problems] The gist of the present invention for solving the above problems is to improve the reactivity ratio of any monomer Mi to the monomer Mj among multiple types of monomers having different polymer refractive indexes. Let Rji be the reactivity ratio of monomer Mj to monomer Mi,
If the mixing molar ratio of monomers Mi and Mj is (Mi/Mj)m, then the value of Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji is 1.1 or more or 1/1.1 or less. A mixture of multiple types of monomers is filled into a predetermined container, and the temperature applied to the predetermined container is set to 40° C. or higher, preferably 150° C. or lower. The above heat treatment can be carried out, for example, by placing the polymerization container through a thermostatic chamber maintained at a predetermined temperature and moving either the thermostatic chamber or the polymerization container relative to the other, as shown in the Examples below. Therefore, it is desirable to limit the heating range to only a portion of the polymerization container and to gradually advance the heating from one end of the container. Due to such progressive heating, even if the liquid mixture near the center of the container contracts during the polymerization reaction process, the liquid mixture above the heating area flows down one after another to fill the shrinkage, and the inner and outer peripheries of the container shrink. Even in cases where polymerization progresses gradually in the axial direction of the container, the inner and outer peripheries of the container solidify first over the entire length of the container, leaving no voids inside. A rate distribution polymer can be obtained. In carrying out the present invention, it is preferable to carry out light irradiation, but it is also possible to produce a synthetic resin optical transmission body having a uniform refractive index distribution over the entire diameter by thermal polymerization alone. In addition, in the present invention, as a polymerization container, a monomer with the highest monomer reactivity ratio, that is, a monomer that is the same as or has affinity with the polymer of the monomer that is most contained in the copolymer precipitated on the inner wall of the container. It is desirable to use containers made of synthetic resin with good quality. If a container made of such a material is used, the copolymer will precipitate on the inner wall at a lower conversion rate than in a container with poor affinity due to its good affinity, and the refractive index of the surrounding area will decrease, resulting in a refractive index difference. becomes larger and the numerical aperture NA becomes larger. The monomers used in the present invention include prior patent applications filed by the present inventors, such as Japanese Patent Application No. 11723/1986, Japanese Patent Application No. 53920/1983,
The monomer groups listed in Japanese Patent Application No. 58-11954 and Japanese Patent Application No. 58-11956 can be used, and by using these monomers, a self-focusing optical transmission body having a convex lens action can be manufactured. . As an example, examples of suitable monomers M 1 and M 2 when carrying out the present invention using a binary monomer mixture are listed below.
M 1 is an aliphatic titacrylic ester such as methyl methacrylate, ethyl methacrylate, torfluoroethyl methacrylate, methacrylic anhydride, ethylene dimethacrylate, or a mixture thereof. M2
Vinyl aromatic carboxylates such as vinyl benzoate, vinyl O-chlorobenzoate, vinyl P-chlorobenzoate, vinyl α-naphthoate, vinyl β-naphthoate, acrylonitrile, pentachlorostyrene, or mixtures thereof. M 1 is an acrylic ester such as methyl acrylate or ethyl acrylate, or a mixture of these and the above methacrylic ester. Vinyl styrene aromatic carboxylates or mixtures thereof as M 2 above. Methyl methacrylate/methacrylonitrile as M1 . α-methylstyrene as M2 . In the above example of the combination of M 1 -M 2 , M 1 is a monomer that becomes a low refractive index polymer, and M 2 is a monomer that becomes a high refractive index polymer. For the combination of two types of monomers selected from these combinations, the monomer reactivity ratio, the refractive index of the polymer, and the above Q value are 1.1 or more or 1/1.1
To give an example of a range of mixing ratios as follows,
As shown in the table. [Effects of the invention] In a two-component system, when the temperature of the polymerization system is increased to 40°C or higher, the effect of thermal polymerization increases, and after radicals are generated, the viscosity of the reaction system increases rapidly, causing copolymerization. It takes a short time for the combined radicals to become difficult to diffuse. Furthermore, a copolymer containing a large amount of monomers with a high monomer reactivity ratio is produced near the inner wall of the container, but at this time, the conversion rate of the remaining monomer mixture is also increased due to the effect of thermal polymerization. And the conversion rate increases with time. That is, unlike the case where thermal polymerization is negligible as described above, the copolymer precipitated near the inner wall of the polymerization tube has already reached a conversion rate at which the refractive index in FIG. 6 rises rapidly. Accordingly

【表】【table】

〔発明の実施例〕[Embodiments of the invention]

まず、所定量の単量体M1,M2,M3……を混
合しこれに所定量の重合開始剤(例えば過酸化ベ
ンゾイル(BPO)、ベンゾインメチルエーテルな
ど)を溶解し、これを所定の内径(たとえば約
2.9mm)を有し一端を閉じた重合管に満たし第1
図に示す装置によつて光共重合する。 重合管1は隔室2を上下方向に貫いて設置さ
れ、駆動機構3によつて自転しつつ上下方向に一
低速度で移動する。隔室2の天井壁及び底壁には
貫通孔6が設けられてありこれらには内径を重合
管1の外径とほぼ一致させたガイドチユーブ7,
7が設置されており、このガイドチユーブ7,7
内を重合管1が移動する。ガイドチユーブの隔室
内の突出長さを調整することにより重合管1に対
する光照射範囲を重合管長さ方向一定長lに限定
する役目を果たす。隔室2の内部は透光窓8を有
する隔壁によつて恒温室2Aと光源収容室2Bと
に仕切られており、恒温室2Aを貫通移動する重
合管1に対し、光源収容室内の光源ランプ10か
らの光束が透光窓8を照射されるようになつてい
る。恒温室2Aの一方の側壁にはエアコン装置1
3が送気管14と吸気管15とを介して接続され
ており、恒温室2A内から吸気管15で回収され
た後エアコン装置13で一定温度に制御された気
体が送気管14を通じて恒温室2A内に送り込ま
れ、これにより光照射範囲において重合管1を取
り囲む雰囲気が常時40℃以上の一定温度に保持さ
れる。 上記装置において重合管1は恒温室2Aを通し
て上方から下方に向けて一定速度で送られ、これ
により管1内の単量体混合物は下端から漸進的に
加熱および光照射を受ける。共重合は重合管1の
底部よりおこる。 重合によつて体積が収縮するが、重合管の上部
にある重合していない部分から単量体混合物が常
に供給されるので重合体内部に空隙が生じること
はない。重合管1の移動とともに重合する部分は
次第に上部に移動し、遂に重合管4内の単量体混
合物がすべて固化する。加熱および照射開始して
から所定時間たとえば約10時間後に重合管4を装
置より取り外し、たとえば80℃に24時間加熱して
残存単量体をできるだけ重合させておく。つい
で、共重合体ロツドを取り出す。ロツドは両端の
部分を除き、ロツド全体に亘つて屈折率分布定数
Aは一定値を示す。 上記実施例では加熱と光照射を併用しているが
光源ランプ10による重合管4への光照射を省略
して加熱のみでもよい。 次に第2図に原理を示した熱延伸装置によつて
延伸する。すなわち上記の合成樹脂ロツドをプリ
フオーム21として支持部材22に装着し速度
V1(mm/sec)で降下させ、一定温度Tdの定温加
熱器23の間を通過させ、下方のドライブロール
24により速度V2mm/secで引張り、延伸する。
V2/V1が延伸率となる。得られた合成樹脂光学
繊維25を切断研磨して長さ1〜2mmのロツドレ
ンズに仕上げ、そのレンズ作用から(1)式の屈折率
分布定数Aを求める。また、合成樹脂光学繊維を
ドラムに巻きつけ、一端より6328Åのレーザー光
を入射させ、他端より射出する光の強度を測定す
る。繊維の長さと射出光の強度の関係から伝送損
失を求める。 次に本発明の数値実施例について説明する。 (実施例 1) 単量体としてMMA(メタクリル酸メチル)、
VPAC(フエニル酢酸ビニル)を5対1の重量比
で混合し、これに重合開始剤として0.5wt%の
BPOを浴解し、これを内径5.3mmを有し一端を閉
じたアクリル樹脂(PMMA)の透明重合管1に
満たし、第1図に示す装置によつて系内の温度を
三種類変えて光共重合した。 遮光板の間隙は70mm、紫外線ランプ10から重
合管1までの距離は10cm、重合管回転速度は
40rpm、ランプ上昇速度は0.3mm/ninとして恒温
室2A内の温度を30℃、50℃、60℃一定の三種類
の場合において実験した。 三種類の温度条件によつて得られた合成樹脂光
伝送体の屈折率分布を干渉顕微鏡により測定する
と第3図のようになる。ここで縦軸は中心軸の屈
折率からの屈折率差、横軸は規格化された半径で
ある。第3図から明らかなように、系内の温度を
高くするにつれて、(1)式に相当する一様な屈折率
分布を示す領域がほぼ径全体に広がることがわか
る。 (実施例 2) MMA,VPACを4対1の重量比で混合し、重
合開始剤として0.5wt%のBPOを溶解し、これを
内径7mmのパイレツクスガラス重合管に満たし
た。今回は紫外線照射を行なわず、熱重合のみに
よつて共重合させた。恒温室2Aの温度は60℃、
重合時間は20時間その他の条件は実施例1と同様
である。 得られた合成樹脂光伝送体の屈折率分布を第4
図に示す。系内の温度を60℃にすることにより、
(1)式に相当する屈折率分布を有する領域を拡大す
ることができた。ただし、パイレツクスガラス管
は単量体反応性比の高いMMAと親和性が悪いた
め、管内で析出したMMAを多く含む共重合体が
なかなか重合管中に析出せず、ある程度集合した
上で析出するため、周辺の屈折率が上昇するので
屈折率差は小さくなつた。 (実施例 3) MMA,VPACを8対1の重量比で混合し、重
合開始剤として0.5wt%のBPOを溶解し、これを
内径14.3mmのアクリル樹脂製の重合管に満たし
た。今回も紫外線照射を行なわず、熱重合のみに
よつて共重合させた。恒温室2A内の温度は60
℃、重合時間は24時間、その他の条件は実施例1
と同様である。 得られた合成樹脂伝送体の屈折率分布を第5図
に示す。系内の温度を60℃と高くすることによ
り、径全体に(1)式に相当する屈折率の分布を得る
ことができた。しかも単量体反応性比の高い
MMAと同一材質の重合管を使用したので、
MMAと親和性が良いため内壁上には親和性が悪
いパイレツクスガラス管の場合に比べて転化率の
低い状態で共重体が析出し、周辺の屈折率が低下
したので、屈折率差が大きくなつた。従つて開口
数NAは0.22と以前よりも高い値が得られた。
First, a predetermined amount of monomers M 1 , M 2 , M 3 . inside diameter (e.g. approx.
2.9mm) and fill it into a polymerization tube with one end closed.
Photocopolymerization is carried out using the apparatus shown in the figure. The polymerization tube 1 is installed vertically passing through the compartment 2, and is rotated by a drive mechanism 3 while moving vertically at a low speed. A through hole 6 is provided in the ceiling wall and bottom wall of the compartment 2, and a guide tube 7 whose inner diameter approximately matches the outer diameter of the polymerization tube 1 is inserted into these holes.
7 is installed, and this guide tube 7,7
The polymerization tube 1 moves inside. By adjusting the length of the guide tube protruding into the compartment, it serves to limit the light irradiation range to the polymerization tube 1 to a constant length l in the length direction of the polymerization tube. The interior of the compartment 2 is partitioned into a thermostatic chamber 2A and a light source housing chamber 2B by a partition wall having a transparent window 8, and the light source lamp inside the light source housing chamber is The light beam from 10 is arranged to illuminate the transparent window 8. Air conditioner device 1 is installed on one side wall of constant temperature room 2A.
3 are connected via an air supply pipe 14 and an intake pipe 15, and the gas that is collected from the temperature controlled room 2A through the intake pipe 15 and then controlled to a constant temperature by the air conditioner 13 passes through the air supply pipe 14 to the temperature controlled room 2A. As a result, the atmosphere surrounding the polymerization tube 1 in the light irradiation range is always maintained at a constant temperature of 40° C. or higher. In the above apparatus, the polymerization tube 1 is fed from above to below at a constant speed through the thermostatic chamber 2A, whereby the monomer mixture within the tube 1 is gradually heated and irradiated with light from the lower end. Copolymerization occurs from the bottom of the polymerization tube 1. Although the volume contracts during polymerization, no voids are created inside the polymer because the monomer mixture is always supplied from the unpolymerized portion at the top of the polymerization tube. As the polymerization tube 1 moves, the portion to be polymerized gradually moves upward, and finally all of the monomer mixture in the polymerization tube 4 solidifies. The polymerization tube 4 is removed from the apparatus after a predetermined period of time, for example, about 10 hours, from the start of heating and irradiation, and heated to, for example, 80° C. for 24 hours to polymerize as much of the remaining monomer as possible. Then, the copolymer rod is taken out. The refractive index distribution constant A exhibits a constant value throughout the rod except for the ends thereof. Although heating and light irradiation are used in combination in the above embodiment, the light irradiation of the polymerization tube 4 by the light source lamp 10 may be omitted and only heating may be used. Next, it is stretched using a hot stretching device whose principle is shown in FIG. That is, the above synthetic resin rod is attached to the support member 22 as a preform 21, and the speed
The film is lowered at a speed of V 1 (mm/sec), passed through a constant temperature heater 23 at a constant temperature Td, and pulled and stretched by a lower drive roll 24 at a speed of V 2 mm/sec.
V 2 /V 1 is the stretching ratio. The obtained synthetic resin optical fiber 25 is cut and polished to form a rod lens having a length of 1 to 2 mm, and the refractive index distribution constant A of equation (1) is determined from the lens action. In addition, a synthetic resin optical fiber is wrapped around a drum, a 6328 Å laser beam is applied from one end, and the intensity of the light emitted from the other end is measured. Transmission loss is determined from the relationship between the length of the fiber and the intensity of the emitted light. Next, numerical examples of the present invention will be described. (Example 1) MMA (methyl methacrylate) as a monomer,
VPAC (phenyl vinyl acetate) was mixed at a weight ratio of 5:1, and 0.5wt% was added as a polymerization initiator.
BPO was dissolved in a bath, filled into a transparent polymerization tube 1 made of acrylic resin (PMMA) with an inner diameter of 5.3 mm and closed at one end, and the system was heated to three different temperatures using the apparatus shown in Figure 1. Copolymerized. The gap between the light shielding plates is 70 mm, the distance from the ultraviolet lamp 10 to the polymerization tube 1 is 10 cm, and the rotation speed of the polymerization tube is
Experiments were conducted under three conditions: 40 rpm, ramp rising speed 0.3 mm/nin, and constant temperature in constant temperature room 2A at 30°C, 50°C, and 60°C. When the refractive index distribution of the synthetic resin light transmitting body obtained under three types of temperature conditions is measured using an interference microscope, the result is as shown in FIG. 3. Here, the vertical axis is the refractive index difference from the refractive index of the central axis, and the horizontal axis is the normalized radius. As is clear from FIG. 3, as the temperature inside the system increases, the region exhibiting a uniform refractive index distribution corresponding to equation (1) spreads over almost the entire diameter. (Example 2) MMA and VPAC were mixed at a weight ratio of 4:1, 0.5 wt% BPO was dissolved as a polymerization initiator, and a Pyrex glass polymerization tube with an inner diameter of 7 mm was filled with the mixture. This time, copolymerization was carried out only by thermal polymerization without UV irradiation. The temperature of constant temperature room 2A is 60℃,
The polymerization time was 20 hours, and the other conditions were the same as in Example 1. The refractive index distribution of the obtained synthetic resin optical transmission body was
As shown in the figure. By setting the temperature in the system to 60℃,
We were able to expand the region with a refractive index distribution corresponding to equation (1). However, since the Pyrex glass tube has a poor affinity with MMA, which has a high monomer reactivity ratio, the copolymer containing a large amount of MMA that precipitates inside the tube does not easily precipitate into the polymerization tube, and only aggregates to a certain extent and then precipitates. Therefore, the refractive index of the periphery increases, and the refractive index difference becomes smaller. (Example 3) MMA and VPAC were mixed at a weight ratio of 8:1, 0.5 wt% BPO was dissolved as a polymerization initiator, and an acrylic resin polymerization tube with an inner diameter of 14.3 mm was filled with the mixture. This time as well, copolymerization was carried out only by thermal polymerization without UV irradiation. The temperature inside constant temperature room 2A is 60
℃, polymerization time was 24 hours, other conditions were as in Example 1.
It is similar to The refractive index distribution of the obtained synthetic resin transmission body is shown in FIG. By increasing the temperature in the system to 60°C, we were able to obtain a refractive index distribution corresponding to equation (1) over the entire diameter. Moreover, it has a high monomer reactivity ratio.
Since we used a polymer tube made of the same material as MMA,
Because it has good affinity with MMA, the copolymer precipitates on the inner wall at a lower conversion rate than in the case of Pyrex glass tubes, which have poor affinity, and the refractive index of the surrounding area decreases, resulting in a large refractive index difference. Summer. Therefore, the numerical aperture NA was 0.22, which is higher than before.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の一例を示す縦
断面図、第2図は第1図の装置で得られる母材ロ
ツドを熱延伸して屈折率分布型光学繊維を成形す
る工程を示す縦断面図、第3図、第4図、第5図
は本発明方法で得られた光伝送体における半径方
向の屈折率分布状態の種々の例を示すグラフ、第
6図は従来方法による光伝送体の屈折率分布状態
を示すグラフである。 1……重合管、2……隔室、2A……恒温室、
2B……光源収容室、3……重合管駆動機構、6
……貫通孔、7……ガイドチユーブ、8……透光
窓、10……光源ランプ、13……エアコン装
置、14……送気管、15……吸気管。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for carrying out the present invention, and FIG. 2 shows a step of hot-stretching a base material rod obtained by the apparatus of FIG. 1 to form a gradient index optical fiber. The vertical cross-sectional views, FIGS. 3, 4, and 5 are graphs showing various examples of radial refractive index distribution states in optical transmission bodies obtained by the method of the present invention, and FIG. It is a graph showing a refractive index distribution state of a transmission body. 1... Polymerization tube, 2... Compartment, 2A... Temperature chamber,
2B...Light source storage chamber, 3...Polymerization tube drive mechanism, 6
...Through hole, 7...Guide tube, 8...Translucent window, 10...Light source lamp, 13...Air conditioner device, 14...Air supply pipe, 15...Intake pipe.

Claims (1)

【特許請求の範囲】 1 重合体屈折率の異なる複数種の単量体におい
て任意の単量体Miの単量体Mjに対する反応性比
をRij、単量体Mjの単量体Miに対する反応性比
をRjiとし、単量体MiとMjの混合モル比を
(Mi/Mj)mとすれば Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji の値が1.1以上であるか又は1/1.1以下になるよ
うな複数種の単量体混合物を所定の容器に充填
し、前記容器を40℃以上に加熱することにより容
器中の混合物の外層から内部に向けて重合反応を
進めることを特徴とする合成樹脂光伝送体を製造
する方法。 2 特許請求の範囲第1項記載の方法において、
使用する容器として単量体混合物の中で最も単量
体反応性比の高い、すなわち単量体混合物の最も
外層において多く重合する単量体Mkの重合体と
同一又は親和性の良いものとすることを特徴とす
る合成樹脂光伝送体の製造方法。 3 特許請求の範囲第1項記載の方法において、
加熱は前記容器の一端側から漸進的に行なうこと
を特徴とする合成樹脂光伝送体の製造方法。
[Claims] 1. Rij is the reactivity ratio of any monomer Mi to monomer Mj among multiple types of monomers having different polymer refractive indexes, and Rij is the reactivity ratio of monomer Mj to monomer Mi. If the ratio is Rji and the mixing molar ratio of monomers Mi and Mj is (Mi/Mj)m, then the value of Rij(Mi/Mj)m+1/(Mi/Mj)m+Rji is 1.1 or more or 1/ 1.1 or less is filled into a predetermined container, and the container is heated to 40°C or higher to advance the polymerization reaction from the outer layer of the mixture in the container to the inside. A method of manufacturing a synthetic resin optical transmission body. 2. In the method described in claim 1,
The container to be used should be one that has the highest monomer reactivity ratio in the monomer mixture, that is, one that is the same as or has good affinity with the polymer of monomer Mk that polymerizes in the outermost layer of the monomer mixture. A method for manufacturing a synthetic resin optical transmission body, characterized by: 3. In the method described in claim 1,
A method for manufacturing a synthetic resin light transmitting body, characterized in that heating is performed gradually from one end side of the container.
JP59252880A 1984-11-30 1984-11-30 Method for producing opticalt ransmission body consisting of synthetic resin Granted JPS61130904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252880A JPS61130904A (en) 1984-11-30 1984-11-30 Method for producing opticalt ransmission body consisting of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252880A JPS61130904A (en) 1984-11-30 1984-11-30 Method for producing opticalt ransmission body consisting of synthetic resin

Publications (2)

Publication Number Publication Date
JPS61130904A JPS61130904A (en) 1986-06-18
JPH0576602B2 true JPH0576602B2 (en) 1993-10-25

Family

ID=17243444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252880A Granted JPS61130904A (en) 1984-11-30 1984-11-30 Method for producing opticalt ransmission body consisting of synthetic resin

Country Status (1)

Country Link
JP (1) JPS61130904A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3010369B2 (en) * 1990-08-16 2000-02-21 康博 小池 Method of manufacturing synthetic resin optical transmission body
WO1994029758A1 (en) * 1993-06-16 1994-12-22 Sumitomo Electric Industries, Ltd. Plastic optical fiber base material, production method therefor, and apparatus therefor
US5639512A (en) * 1993-06-18 1997-06-17 Sumitomo Electric Industries, Ltd. Plastic optical fiber preform, and process and apparatus for producing the same
JPH11119035A (en) * 1997-10-14 1999-04-30 Sumitomo Wiring Syst Ltd Production of preform of distributed refractive index plastic optical fiber
JP2004240122A (en) 2003-02-05 2004-08-26 Fuji Photo Film Co Ltd Plastic optical fiber cable and manufacturing method
US7590319B2 (en) 2004-02-06 2009-09-15 Fujifilm Corporation Preform for plastic optical material, production method thereof, optical coupling method of plastic optical fiber and connector used for optical coupling
JP4018071B2 (en) 2004-03-30 2007-12-05 富士フイルム株式会社 Optical fiber defect detection apparatus and method
JP2005292180A (en) 2004-03-31 2005-10-20 Fuji Photo Film Co Ltd Plastic optical fiber and its manufacturing method
KR20070054680A (en) * 2004-09-22 2007-05-29 후지필름 가부시키가이샤 Plastic optical fiber preform and method for manufacturing the same
WO2006046749A1 (en) * 2004-10-28 2006-05-04 Fujifilm Corporation Plastic optical member and producing method thereof
US7701641B2 (en) * 2006-03-20 2010-04-20 Ophthonix, Inc. Materials and methods for producing lenses

Also Published As

Publication number Publication date
JPS61130904A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
US3955015A (en) Method of manufacturing a transparent light conducting element of synthetic resin having refractive index gradient
US5298327A (en) High temperature plastic light conduit and composition of matter therefor
JP3010369B2 (en) Method of manufacturing synthetic resin optical transmission body
JPH0576602B2 (en)
US4521351A (en) Process for producing light-transmitting element of synthetic resin
EP0606598A2 (en) Shaped articles of graduated refractive index exhibiting low dispersion
US6166107A (en) Method for producing an optical rod-shaped graded-index polymer preform, preform obtained in accordance with this method and optical lens and optical fibre obtained by using same
US6013205A (en) Method and apparatus for manufacturing distributed refractive index plastic optical-fiber
KR100460720B1 (en) Plastic optical fiber preform and method for preparing the same
JPH0429043B2 (en)
JP3217975B2 (en) Method for producing rod-shaped member made of polymer compound and polymerization apparatus used in the method
JPH09218312A (en) Production of preform for graded index plastic optical fiber
JPH09218311A (en) Production of preform for graded index plastic optical fiber and apparatus therefor
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
JPH0259961B2 (en)
JPS62125302A (en) Preparation of plastic light transmitting body
JPH0437962B2 (en)
JPH11153717A (en) Production of graded index optical fiber
JPS60211404A (en) Manufacture of synthetic resin optical transmitter
JPH0233104A (en) Manufacture of plastic optical transmission body
JPH09230146A (en) Production of distributed refractive index plastic optical fiber
JPH06100690B2 (en) Method for manufacturing synthetic resin optical transmitter
JPH0340362B2 (en)
JPS6012507A (en) Manufacture of synthetic resin optical transmission body
JPH05173025A (en) Production of synthesized resin light transmission body