JPH0340362B2 - - Google Patents

Info

Publication number
JPH0340362B2
JPH0340362B2 JP58011956A JP1195683A JPH0340362B2 JP H0340362 B2 JPH0340362 B2 JP H0340362B2 JP 58011956 A JP58011956 A JP 58011956A JP 1195683 A JP1195683 A JP 1195683A JP H0340362 B2 JPH0340362 B2 JP H0340362B2
Authority
JP
Japan
Prior art keywords
monomer
refractive index
monomers
mixture
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58011956A
Other languages
Japanese (ja)
Other versions
JPS59137906A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58011956A priority Critical patent/JPS59137906A/en
Priority to US06/533,532 priority patent/US4521351A/en
Publication of JPS59137906A publication Critical patent/JPS59137906A/en
Publication of JPH0340362B2 publication Critical patent/JPH0340362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は屈折率が次第に変化するような屈折率
分布を有する光伝送損失の小さい合成樹脂光伝送
体を製造する方法に関するものである。 屈折率分布が(1)式で示される合成樹脂光伝送体
は特公昭54−30301(特願昭50−11723)および特
開昭56−149004(特願昭55−53920)に提案されて
いる。 N=N0(1−1/2Ar2) (1) こでN0は中心軸の屈折率、Nは中心軸からr
の距離にある点の屈折率で、Aは屈折率分布の定
数である。 前記特許は重合の進行とともに共重合体の組成
が変動することを利用し、単量体M1およびM2
してそれが重合体になつたときの屈折率の値が互
に異なり、しかも透明な共重合体を形成するもの
を選び、所定の形状に保つた単量体混合物体の所
定の一部分から共重合が開始し、ついで生成共重
合体を反応系内で連続的に析出させるように共重
合条件を選ぶことによつて、屈折率勾配を有する
光伝送体を製造するものである。 前記特許には、屈折率勾配を有する合成樹脂光
伝送体の製造法として、重合体になつたときの屈
折率の差が0.005またはそれよりも大きくなるよ
うな2種の単量体(単量体混合物を含む)M1
よびM2であつて、かつ単量体M1およびM2のそ
れらの共重合反応における単量体反応性比をそれ
ぞれr1およびr2とし、単量体M1と単量体M2との
混合モル比を(M1/M2nとすれば、 r1(M1/M2n+1/(M1/M2n+r2 (2) の値が1.1以上であるかまたは1/1.1以下になるよ うな単量体M1と単量体M2との混合物を所定の形
状たとえば円柱状に保持すること、その所定形状
の混合物体に対して場所的に不均一な共重合条件
を付与することによつて最初に前記混合物体のう
ちの所定の部分たとえば円柱形状の混合物体の外
周部分のみが前記混合比とは異なるM1成分とM2
成分の比の共重合体を局部的に形成しついでその
部分から他の部分たとえば中心部分に向かつて
徐々に共重合が進行するようにして共重合物体の
内部において、前記所定の部分から他の部分に向
かつて、M1成分とM2成分との含有比が次第に変
化するような濃度勾配を持たせることからなる屈
折率勾配を有する合成樹脂光伝送体を製造する方
法が記載されている。 そして単量体M1とM2の組合せの例として、メ
タクリル酸モチルと安息香酸ビニルその他、およ
びメタクリル酸アルキルエステルとフエニル酢酸
ビニル類が挙げられている。しかしながら、これ
らに挙げられている単量体の組合せから得られる
光伝送体は、その中心軸近くのみが(1)式の屈折率
分布を持つていて、周辺部にゆくにつれて屈折率
の勾配は非常に緩やかとなつてしまう。第1図の
曲線ABCのような分布となる。なおrpは光伝送
体の半径である。これは、重合ととも共重合体の
屈折率は増加するが、最初のうちはその上昇は緩
やかであるが、重合の後半では急上昇するためで
ある。この方法によつて棒状凸レンズを得るには
半径rcとなるまで周辺部を削つて使用する必要が
あつた。 本発明は、周辺部まで(1)式の分布に従う光伝送
体を提供するものである。すなわち、下記の条件
を満足するような3種類の単量体M1,M2および
M3(それぞれの単独重合体の屈折率をn1,n2およ
びn3とする)の混合物を上記特許に記載の重合方
法によつて重合して光伝送体とする。 一般に三元共重合反応では次の9種類の生長反
応が競合しておこる。 M1 *+M1→M1 *(速度定数k11) M1 *+M2→M2 *( 〃 k12) M1 *+M3→M3 *( 〃 k13) M2 *+M1→M1 *( 〃 k21) M2 *+M2→M2 *( 〃 k22) M2 *+M3→M3 *( 〃 k23) M3 *+M1→M1 *( 〃 k31) M3 *+M2→M2 *( 〃 k32) M3 *+M3→M3 *( 〃 k33) 単量体反応性比は(3)式によつて定義される。 r12≡k11/k12 r21=k22/k21 r13=k11/k13 r31=k33/k31 r23=k22/k23 r32=k33/k32 (3) 本発明の単量体M1,M2,M3の組合せが満た
すべき条件は (1) 反応性比に関して (r12(M1/M2n+1)/{(M1/M2n+r21}>1.1(4
) (r13(M1/M3n+1)/{(M1/M3n+r31}>1.1(5
) (r23(M2/M3n+1)/{(M2/M3+r32}>1.1 (6) ここで(Mi/Mj)nは単量体Miと単量体Mj
の混合モル比である。 (2) 屈折率に関して n1<n3<n2 (7) である。ここで(n2−n1)の値は、すくなくと
も0.005であり(n2−n3)の値はすくなくとも
0.001であることが好ましい。 条件(1)は三元共重合の進行とともに最初単量体
M1が急速に重合し、次いで単量体M2が重合し、
単量体M3が最も遅れて重合することを示してい
る。言い換えれば重合初期に生成する共重合体は
単量体M1を多量に含んでいるが、重合の進行に
つれてM1の含有量は急速に低下し、かわつて単
量体M2の含有量が増加する。更に重合が進行す
ればM2の含有量も低下し、単量体M3の含有量が
増加することとなる。ここで条件(2)が満足されて
おれば重合初期に生成する共重合体の屈折率は最
も低く、重合中期に生成する共重合体の屈折率は
最も高く、重合後期に生成する共重合体の屈折率
は中位となる。M1−M3系でも前記特許の条件を
満足しているので屈折率分布は第1図のABC曲
線型となつている。この系にM2単量体が加わる
と、B付近の屈折率は高くなる。M1,M2,M3
の組合せ、仕込比を調節すればBをDまで押し上
げ図の直線ADCに示すように周辺部まで二乗分
布とすることができる。 本発明に用いられる三元系単量体の組合せの例
を次に挙げる。 (A) M2に安息香酸ビニルを、M3にフエニル酢酸
ビニルを、M1に次の単量体を用いる。 (A1) CH2=C(CH3)COOR R=−CoH2o+1(n=1〜10),−C6H11,フ
ルフリル基(C5H5O)、または (A2) CH2=CHCOOR R=CoH2o+1(n=1〜6)、または−
C2H4Cl (A3) CH2=C(Cl)COOR R=CoH2o+1(n=1〜6) または (A4)
The present invention relates to a method for manufacturing a synthetic resin optical transmitter having a refractive index distribution in which the refractive index gradually changes and has a low optical transmission loss. A synthetic resin optical transmitter whose refractive index distribution is expressed by equation (1) has been proposed in Japanese Patent Publication No. 54-30301 (Patent Application No. 11723, No. 50) and Japanese Patent Application No. 149004 (No. 56, No. 55). . N=N 0 (1-1/2Ar 2 ) (1) Here, N 0 is the refractive index of the central axis, and N is the distance r from the central axis.
is the refractive index of a point at a distance of , where A is a constant of the refractive index distribution. The patent utilizes the fact that the composition of a copolymer changes as the polymerization progresses, and monomers M 1 and M 2 have different refractive index values when they become a polymer, and are transparent. Copolymerization is started from a predetermined portion of the monomer mixture kept in a predetermined shape, and then copolymerization is carried out so that the formed copolymer is continuously precipitated within the reaction system. By selecting polymerization conditions, an optical transmission body having a refractive index gradient can be manufactured. The patent describes a method for producing a synthetic resin light transmitting material having a refractive index gradient, in which two types of monomers (monomeric M 1 and M 2 (including a mixture of monomers), and the monomer reactivity ratios of the monomers M 1 and M 2 in their copolymerization reactions are r 1 and r 2 , respectively, and the monomer M 1 If the mixing molar ratio of monomer M 2 and monomer M 2 is (M 1 /M 2 ) n , then r 1 (M 1 /M 2 ) n + 1/(M 1 /M 2 ) n + r 2 (2) Holding a mixture of monomer M 1 and monomer M 2 such that the value is 1.1 or more or 1/1.1 or less in a predetermined shape, such as a cylinder, and for a mixed object of the predetermined shape. By applying copolymerization conditions that are locally nonuniform, first, only a predetermined portion of the mixture, for example, the outer peripheral portion of a cylindrical mixture, has a mixture ratio of M1 and M that differs from the above mixing ratio. 2
A copolymer having the same ratio of components is formed locally, and the copolymerization is gradually progressed from that part to other parts, such as the central part, so that the copolymerization is carried out from the predetermined part to other parts inside the copolymerized body. A method for producing a synthetic resin light transmitting body having a refractive index gradient is described, which includes providing a concentration gradient such that the content ratio of the M 1 component and the M 2 component gradually changes toward a certain area. Examples of combinations of monomers M 1 and M 2 include motyl methacrylate, vinyl benzoate and others, and alkyl methacrylate and phenyl vinyl acetate. However, the optical transmission material obtained from the monomer combinations listed above has a refractive index distribution expressed by equation (1) only near its central axis, and the gradient of the refractive index decreases toward the periphery. It becomes very gradual. The distribution will look like curve ABC in Figure 1. Note that r p is the radius of the optical transmission body. This is because the refractive index of the copolymer increases with polymerization, but the increase is gradual at first, but sharply increases in the latter half of polymerization. In order to obtain a rod-shaped convex lens using this method, it was necessary to shave off the peripheral portion until the radius r c was reached. The present invention provides an optical transmission body that follows the distribution of equation (1) up to the peripheral portion. That is, three types of monomers M 1 , M 2 and
A mixture of M 3 (the refractive index of each homopolymer is n 1 , n 2 and n 3 ) is polymerized to obtain a light transmitting material by the polymerization method described in the above patent. Generally, in a ternary copolymerization reaction, the following nine types of growth reactions occur in competition. M 1 * +M 1 →M 1 * (rate constant k 11 ) M 1 * +M 2 →M 2 * (〃 k 12 ) M 1 * +M 3 →M 3 * (〃 k 13 ) M 2 * +M 1 →M 1 * (〃k 21 ) M 2 * +M 2 →M 2 * (〃 k 22 ) M 2 * +M 3 →M 3 * (〃 k 23 ) M 3 * +M 1 →M 1 * (〃 k 31 ) M 3 * +M 2 →M 2 * (〃 k 32 ) M 3 * +M 3 →M 3 * (〃 k 33 ) The monomer reactivity ratio is defined by equation (3). r 12 ≡k 11 /k 12 r 21 =k 22 /k 21 r 13 =k 11 /k 13 r 31 =k 33 /k 31 r 23 =k 22 /k 23 r 32 =k 33 /k 32 (3 ) The conditions that the combination of monomers M 1 , M 2 , and M 3 of the present invention must satisfy are (1) Regarding the reactivity ratio (r 12 (M 1 /M 2 ) n + 1)/{(M 1 /M 2 ) n + r 21 }>1.1(4
) (r 13 (M 1 /M 3 ) n + 1)/{(M 1 /M 3 ) n + r 31 }>1.1(5
) (r 23 (M 2 /M 3 ) n +1)/{(M 2 /M 3 +r 32 }>1.1 (6) where (Mi / Mj) n is monomer Mi and monomer Mj
The mixing molar ratio of (2) Regarding the refractive index, n 1 < n 3 < n 2 (7). Here, the value of (n 2n 1 ) is at least 0.005 and the value of (n 2 − n 3 ) is at least
Preferably it is 0.001. Condition (1) is that as the terpolymerization progresses, the initial monomer
M 1 rapidly polymerizes, then monomer M 2 polymerizes,
It shows that monomer M 3 polymerizes most slowly. In other words, the copolymer formed at the initial stage of polymerization contains a large amount of monomer M1 , but as the polymerization progresses, the content of M1 rapidly decreases until the content of monomer M2 decreases. To increase. As the polymerization progresses further, the content of M 2 also decreases, and the content of monomer M 3 increases. If condition (2) is satisfied, the refractive index of the copolymer produced in the early stage of polymerization is the lowest, the refractive index of the copolymer produced in the middle stage of polymerization is the highest, and the refractive index of the copolymer produced in the late stage of polymerization is the lowest. has a medium refractive index. Since the M 1 -M 3 system also satisfies the conditions of the patent, the refractive index distribution is of the ABC curve type shown in FIG. When M 2 monomer is added to this system, the refractive index near B increases. M1 , M2 , M3
By adjusting the combination and the preparation ratio, it is possible to push B up to D and create a square distribution to the periphery as shown by the straight line ADC in the figure. Examples of combinations of ternary monomers used in the present invention are listed below. (A) Vinyl benzoate is used for M 2 , vinyl phenyl acetate is used for M 3 , and the following monomers are used for M 1 . (A1) CH 2 =C (CH 3 )COOR R = -C o H 2o+1 (n = 1 to 10), -C 6 H 11 , furfuryl group (C 5 H 5 O), or (A2) CH 2 = CHCOOR R = C o H 2o+1 (n = 1 to 6), or -
C 2 H 4 Cl (A3) CH 2 =C(Cl)COOR R=C o H 2o+1 (n=1~6) or (A4)

【式】【formula】

【式】【formula】

【式】またはCH2 =C(CH3)CN (B) M2にアクリル酸ベンジル又はアクリル酸ク
ロロエチルを、M3にクロル酢酸ビニルを、M1
に次の単量体を用いる。 (B1) CH2=C(CH3)COOR R=CoH2o+1(n=1〜10)、または−
C6H11 (B2)
[Formula] or CH 2 = C (CH 3 ) CN (B) M 2 is benzyl acrylate or chloroethyl acrylate, M 3 is vinyl chloroacetate, M 1
The following monomers are used. (B1) CH 2 = C (CH 3 ) COOR R = C o H 2o+1 (n = 1 to 10), or -
C 6 H 11 (B2)

【式】 R=CoH2o+1 (n=1〜6) または (B3)[Formula] R=C o H 2o+1 (n=1 to 6) or (B3)

【式】(C) 表に示すM1, M2,M3の組合せ。 各単量体の混合割合は、単量体の種類、光伝送
体の直径、屈折率分布、重合条件などによつて異
なるが、通常はM140〜80,M25〜30,M3=10〜
40各重量%の範囲内から選ばれる。 本発明によれば周辺部までパラボリツクの屈折
率分布を有する光伝送体が製造され、また本発明
[Formula] (C) Combination of M 1 , M 2 , and M 3 shown in the table. The mixing ratio of each monomer varies depending on the type of monomer, the diameter of the optical transmitter, the refractive index distribution, polymerization conditions, etc., but usually M 1 40-80, M 2 5-30, M 3 =10~
Selected from a range of 40% by weight. According to the present invention, an optical transmission body having a parabolic refractive index distribution up to the peripheral portion is manufactured, and the present invention

【表】 によれば棒状または繊維状の光伝送体を容易に製
造することができ、これを加熱延伸することによ
つて直径の小さい繊維状光伝送体が製造できる。 次に本発明の実施例について詳細を説明する。
まず、単量体M1,M2およびM3を混合し、これ
に所定量の光重合開始剤(例えば、過酸化ベンゾ
イル(BPO)、ベンゾインメチルエーテルなど)
を溶解し、これを所定の内径(たとえば約2.9mm)
を有し一端を閉じたガラス管に満たし第2図に示
す装置によつて光共重合する。管状の紫外線ラン
プ1が装置中心にあり、ランプ1の上部と下部に
は円筒状の遮光板2が取り付けてあつて、管の中
心部の部分から放出される紫外線のみによつてガ
ラス管4内の混合物が照射されるようにしてあ
る。なお11は、ランプ1からの光が遮光板2の
間隔(たとえば70mm)だけに放出するように設け
たつば状の遮光補助板である。紫外線強度はシリ
コンフオトセル3でモニターされている。 紫外線ランプ1から特定距離たとえば10cmの距
離に上記単量体混合物を満たした複数本のガラス
管4を支持部材5に装着し、モーター6でたとえ
ば毎分40回転で回転させておく。最初紫外線ラン
プ1をガラス管4の下端より低い位置に置き、ラ
ンプ1をモーター7によつて一定速度V(mm/
min)で上方に移動させながら紫外線を照射す
る。装置内部には一定温度の空気を入口8からフ
アン9で送り込み排出口10より排出している
が、ランプ1の発熱のために温度は上昇するが、
送入空気温度より或る程度高い温度で一定となつ
ている。光共重合はガラス管4の底部よりおこ
る。 重合によつて体積が収縮するが、ガラス管の上
部にある重合していない部分から単量体混合物が
常に供給されるので重合体内部に空隙が生じるこ
とはない。ランプ1の移動とともに重合する部分
は次第に上部に移動し、遂にガラス管4内の単量
体混合物がすべて固化する。照射開始してから所
定時間たとえば約10時間後に照射終了後ガラス管
4を装置より取り外し、たとえば80℃に24時間加
熱して残存単量体をできるだけ重合させておく。
ついでガラス管4を破砕し、共重合体ロツドを取
り出す。ロツドは両端の部分を除き、ロツド全体
に亘つて屈折率分布定数Aが一定の光伝送体とな
つている。 ロツドの加熱延伸するには、まずロツドに微量
含まれている揮発性物質を除去するために10-3
10-4mmHgの減圧下に50℃3〜4日間おく。 次に第3図に原理を示した熱延伸装置によつて
延伸する。すなわち上記の合成樹脂ロツドをプリ
フオーム21として支持部材22に装着し速度
V1(mm/min)で降下させ、一定温度Tdの定温加
熱器23の間を通過させ、下方のドライブロール
24により速度V2mm/secで引張り、延伸する。
V2/V1が延伸率となる。得られた合成樹脂光学
繊維25を切断研磨して長さ1〜2mmのロツドレ
ンズに仕上げ、そのレンズ作用から(1)式の屈折率
分布定数Aを定める。また、合成樹脂光学繊維を
ドラムに巻きつけ、一端より6328Åのレーザー光
を入射させ、他端より射出する光の強度を測定す
る。繊維の長さと射出光の強度の関係から伝送損
失を求める。 実施例を次に示す。 M1として1.492の屈折率を有するメタクリル酸
メチル30部、M2として1.578の屈折率を有する安
息香酸ビニル6部、M3として1.567の屈折率を有
するフエニル酢酸ビニル10部の混合物に過酸化ベ
ンゾイル0.46部を溶解して上記の方法で光共重合
する。各単量体の反応性比は、r12=8.30,r21
0.049,r13=22.76,r31=0.00494,r23=4.54,r32
=0.17であり、前記(4),(5),(6)式の左辺の値はそ
れぞれ、8.32,22.9,4.82であり各式を満足する。
UVランプ送り速度は0.6mm/分である。透明なロ
ツド(半径1.45mm)が得られた。屈折率分布定数
A=2.6×10-3mm-2で、屈折率は周辺部まで二次
分布であつた。開口数は0.113である。 ロツドを220℃で100倍に熱延伸して直径0.29mm
のフアイバーを得た。伝送損失は0.8dB/mであ
つた。
According to [Table], a rod-shaped or fibrous optical transmission body can be easily manufactured, and by heating and stretching it, a fibrous optical transmission body with a small diameter can be manufactured. Next, details of embodiments of the present invention will be described.
First, monomers M 1 , M 2 and M 3 are mixed, and a predetermined amount of a photopolymerization initiator (for example, benzoyl peroxide (BPO), benzoin methyl ether, etc.) is mixed.
and melt it to a specified inner diameter (for example, about 2.9 mm).
A glass tube with one end closed was filled with the above-mentioned mixture, and photocopolymerization was carried out using the apparatus shown in FIG. A tubular ultraviolet lamp 1 is located at the center of the device, and cylindrical light-shielding plates 2 are attached to the upper and lower parts of the lamp 1. A mixture of these is irradiated. Reference numeral 11 denotes a brim-shaped auxiliary light-shielding plate provided so that the light from the lamp 1 is emitted only at an interval of 70 mm between the light-shielding plates 2. The ultraviolet light intensity is monitored with a silicon photocell 3. A plurality of glass tubes 4 filled with the monomer mixture are mounted on a support member 5 at a specific distance, for example, 10 cm from the ultraviolet lamp 1, and are rotated by a motor 6 at, for example, 40 revolutions per minute. First, the ultraviolet lamp 1 is placed at a position lower than the lower end of the glass tube 4, and the lamp 1 is moved at a constant speed V (mm/mm/mm) by the motor 7.
irradiate with ultraviolet rays while moving upward at a speed of min). Air at a constant temperature is fed into the device from an inlet 8 by a fan 9 and is discharged from an outlet 10, but the temperature rises due to the heat generated by the lamp 1.
The temperature is kept constant at a certain level higher than the inlet air temperature. Photocopolymerization occurs from the bottom of the glass tube 4. Although the volume shrinks during polymerization, no voids are created inside the polymer because the monomer mixture is always supplied from the unpolymerized portion at the top of the glass tube. As the lamp 1 moves, the portion to be polymerized gradually moves upward, and finally all of the monomer mixture in the glass tube 4 solidifies. After a predetermined period of time, for example about 10 hours, from the start of irradiation, the glass tube 4 is removed from the apparatus and heated to, for example, 80° C. for 24 hours to polymerize as much of the remaining monomer as possible.
Then, the glass tube 4 is crushed and the copolymer rod is taken out. The rod is an optical transmission body with a constant refractive index distribution constant A over the entire rod except for the ends. To heat and stretch the rod, first the rod is heated to 10 -3 to 10 -3 to remove trace amounts of volatile substances contained in the rod.
Place at 50°C under reduced pressure of 10 -4 mmHg for 3 to 4 days. Next, it is stretched using a hot stretching device whose principle is shown in FIG. That is, the above synthetic resin rod is attached to the support member 22 as a preform 21, and the speed
The film is lowered at a speed of V 1 (mm/min), passed through a constant temperature heater 23 at a constant temperature Td, and pulled and stretched by a lower drive roll 24 at a speed of V 2 mm/sec.
V 2 /V 1 is the stretching ratio. The obtained synthetic resin optical fiber 25 is cut and polished to form a rod lens having a length of 1 to 2 mm, and the refractive index distribution constant A of equation (1) is determined from the lens action. In addition, a synthetic resin optical fiber is wrapped around a drum, a 6328 Å laser beam is applied from one end, and the intensity of the light emitted from the other end is measured. Transmission loss is determined from the relationship between the length of the fiber and the intensity of the emitted light. Examples are shown below. Benzoyl peroxide in a mixture of 30 parts of methyl methacrylate with a refractive index of 1.492 as M 1 , 6 parts of vinyl benzoate with a refractive index of 1.578 as M 2 , and 10 parts of phenyl vinyl acetate with a refractive index of 1.567 as M 3 . Dissolve 0.46 parts and photocopolymerize using the method described above. The reactivity ratio of each monomer is r 12 = 8.30, r 21 =
0.049, r 13 = 22.76, r 31 = 0.00494, r 23 = 4.54, r 32
=0.17, and the values on the left side of equations (4), (5), and (6) are 8.32, 22.9, and 4.82, respectively, and satisfy each equation.
The UV lamp feed speed is 0.6 mm/min. A transparent rod (radius 1.45 mm) was obtained. The refractive index distribution constant A=2.6×10 -3 mm -2 , and the refractive index had a quadratic distribution up to the periphery. The numerical aperture is 0.113. The rod is hot-stretched 100 times at 220℃ and has a diameter of 0.29mm.
obtained fibers. Transmission loss was 0.8 dB/m.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関する屈折率分布を説明する
グラフ、第2図は本発明を実施例を示す1部断面
の側面図、第3図は本発明を第2図に続いて実施
する1例を示す側面図である。
FIG. 1 is a graph explaining the refractive index distribution according to the present invention, FIG. 2 is a partially cross-sectional side view showing an embodiment of the present invention, and FIG. 3 is an example of implementing the present invention following FIG. 2. FIG.

Claims (1)

【特許請求の範囲】 1 重合体になつたときに互に屈折率が異なる3
種の単量体(単量体混合物を含む)M1,M2およ
びM3の混合物を所定の形状に保持することと、
その所定形状の混合物体に対して場所的に不均一
な共重合条件を付与することによつて最初に前記
混合物体のうちの所定の部分のみが前記混合比と
は異なる単量体成分の共重合体を局部的に形成し
ついでその部分から他の部分に向かつて徐々に共
重合が進行するようにして、共重合物体の内部に
おいて、前記所定の部分から他の部分に向かつ
て、単量体成分が次第に変化するような濃度勾配
を持たせる屈折率勾配を有する合成樹脂光伝送体
を製造する方法において、単量体の単独重合体の
屈折率をnpとすれば、npが最も低い単量体が最も
共重合し易く、npが最も高い単量体が二番目に共
重合し易く、npが中位の単量体が最も共重合し難
いような単量体の組合せを選ぶことにより、光伝
送体全体に亘つて屈折率が中心軸からの距離の二
乗に比例して減少している合成樹脂光伝送体を製
造する方法。 2 前記の3種の単量体の混合物は、Miに対す
るMjの単量体反応性比(i,j=1,2,3)
をrijで表わし、MiとMjとの混合モル比を
(Mi/Mj)nで表わすとき、前記単量体の混合物は {r12(M1/M2n+1}/{(M1/M2n+r21}>1.1 {r13(M1/M3n+1}/{(M1/M3n+r31}>1.1 {r23(M2/M3n+1}/{(M2/M3n+r32}>1.1 の式のすべてを満足するものである特許請求の範
囲第1項記載の合成樹脂光伝送体を製造する方
法。
[Claims] 1. Different refractive indexes when formed into polymers 3.
holding a mixture of seed monomers (including monomer mixtures) M 1 , M 2 and M 3 in a predetermined shape;
By applying copolymerization conditions that are locally non-uniform to the mixed body of a predetermined shape, only a predetermined portion of the mixed body is initially copolymerized with monomer components different from the mixing ratio. By forming a polymer locally, and then gradually copolymerizing it from that part to other parts, the monomer is In a method for manufacturing a synthetic resin optical transmitter having a refractive index gradient that has a concentration gradient in which the body components gradually change, if the refractive index of a monomer homopolymer is n p , then n p is the highest value. A combination of monomers such that a monomer with a low n p is the easiest to copolymerize, a monomer with the highest n p is the second easiest to copolymerize, and a monomer with an intermediate n p is the most difficult to copolymerize. A method of manufacturing a synthetic resin optical transmitter in which the refractive index decreases over the entire optical transmitter in proportion to the square of the distance from the central axis. 2 The mixture of the three types of monomers described above has a monomer reactivity ratio of Mj to Mi (i, j = 1, 2, 3)
is expressed as rij, and the mixing molar ratio of Mi and Mj is expressed as (Mi/Mj) n , then the mixture of monomers is {r 12 (M 1 /M 2 ) n +1}/{(M 1 / M 2 ) n + r 21 }>1.1 {r 13 (M 1 /M 3 ) n +1}/{(M 1 /M 3 ) n +r 31 }>1.1 {r 23 (M 2 /M 3 ) n +1} A method for manufacturing a synthetic resin optical transmission body according to claim 1, which satisfies all of the following expressions: /{(M 2 /M 3 ) n + r 32 }>1.1.
JP58011956A 1983-01-27 1983-01-27 Method for producing plastic optical transmission body Granted JPS59137906A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58011956A JPS59137906A (en) 1983-01-27 1983-01-27 Method for producing plastic optical transmission body
US06/533,532 US4521351A (en) 1983-01-27 1983-09-16 Process for producing light-transmitting element of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011956A JPS59137906A (en) 1983-01-27 1983-01-27 Method for producing plastic optical transmission body

Publications (2)

Publication Number Publication Date
JPS59137906A JPS59137906A (en) 1984-08-08
JPH0340362B2 true JPH0340362B2 (en) 1991-06-18

Family

ID=11792066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011956A Granted JPS59137906A (en) 1983-01-27 1983-01-27 Method for producing plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPS59137906A (en)

Also Published As

Publication number Publication date
JPS59137906A (en) 1984-08-08

Similar Documents

Publication Publication Date Title
US4521351A (en) Process for producing light-transmitting element of synthetic resin
JPH08244130A (en) Manufacture of transparent article with refractive index gradient
KR950001049B1 (en) Optical transmission medium and process for producing the same
JP2914486B2 (en) Optical fiber and manufacturing method thereof
JP2001059912A (en) Production of optical plastic fiber with grated index
EP0606598A2 (en) Shaped articles of graduated refractive index exhibiting low dispersion
JPH0576602B2 (en)
EP0835744B1 (en) Process for gradient refractive index optical objects
JPH0340362B2 (en)
JPH0437962B2 (en)
JPH0429043B2 (en)
JPH0340361B2 (en)
GB636379A (en) Production of shaped optical elements
JPH0355801B2 (en)
JPS62108208A (en) Plastic optical transmission body and its production
JPH0854521A (en) Plastic optical fiber
JPH09138313A (en) Production of distributed refractive index plastic optical fiber
JPH10245410A (en) Production of plastic optical fiber, and plastic optical fiber produced thereby
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH09174581A (en) Production of rod-shaped member composed of polymeric compound and polymerization apparatus used therein
JPH0233104A (en) Manufacture of plastic optical transmission body
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JPH0237561B2 (en)
JPH05173025A (en) Production of synthesized resin light transmission body