JPS62108208A - Plastic optical transmission body and its production - Google Patents

Plastic optical transmission body and its production

Info

Publication number
JPS62108208A
JPS62108208A JP60248643A JP24864385A JPS62108208A JP S62108208 A JPS62108208 A JP S62108208A JP 60248643 A JP60248643 A JP 60248643A JP 24864385 A JP24864385 A JP 24864385A JP S62108208 A JPS62108208 A JP S62108208A
Authority
JP
Japan
Prior art keywords
copolymer
monomer
hexafluoroacetone
vinylidene fluoride
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60248643A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Yoshihiko Mishina
三品 義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60248643A priority Critical patent/JPS62108208A/en
Publication of JPS62108208A publication Critical patent/JPS62108208A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Abstract

PURPOSE:To produce the titled body having a wide use by a simple process with a good productivity by forming the titled body composed of a mixture contg. specific two kinds of copolymers and by forming a distribution of said components in such a way that the mixing ratio of both components changes continuously from an inner part of the titled body to a surface thereof. CONSTITUTION:The copolymer A composed of vinylidene fluoride and hexafluoroacetone, the copolymer B composed of a polymethylmethacrylate or a methylmethacrylate unit as a main component, and the monomer mixture C composed of a methylmethacrylate monomer as the main component, or the copolymer a and the monomer mixture C are fed to a cylinder 1 and are extruded quantitatively by a piston 4 while heating it with a heater 3 followed by mixing it in a kneading part 2 and then by producing a strend fiber 6 from a nozzle 5. The obtd. fiber 6 is introduced to a vaporizing part 7 and is vaporized the monomer C from the surface of said strand by an air or an another gas led from a gas inlet pipe 9 whereby the prescribed distribution of the concentration of said components from the inner part of the strand to the surface thereof is obtained. the obtd. strand is solidified by polymerizing said components in the irradiating part 8 of an active ray, followed by winding up it on a drum 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面から内部に連続的な屈折率分布を有するプ
ラスチック光伝送体及びその製造法に関するものである
。さらに詳述するならば、光集束性レンズ、光集束性光
ファイバ、光IC等に使用される光伝送路など各種の光
伝送路及びその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a plastic optical transmission body having a continuous refractive index distribution from the surface to the inside, and a method for manufacturing the same. More specifically, the present invention relates to various optical transmission lines such as light-focusing lenses, light-focusing optical fibers, optical transmission lines used in optical ICs, etc., and methods for manufacturing the same.

〔従来の技術〕[Conventional technology]

表面から内部に連続的な屈折率分布を有する光伝体はす
でに特公昭47−816号においてガラス製のものが提
案されている。しかしながらかかるガラス製の光伝送体
は生産性が低く、高価なものとなり、かつ屈曲性も乏し
いという問題点を有している。
A photoconductor having a continuous refractive index distribution from the surface to the inside has already been proposed in Japanese Patent Publication No. 47-816, which is made of glass. However, such optical transmission bodies made of glass have problems in that they have low productivity, are expensive, and have poor flexibility.

このようなガラス製光伝送体に対し、グラスチック製の
光伝送体を製造する方式がいくつか提案されている。こ
れらの表面から内部に連続的な屈折率分布を有するプラ
スチック光伝送体を大別すると、(1)イオン架橋重合
体よりなる合成樹脂体の中心軸よりその表面に向って金
属イオンを連続的に濃度変化をもたせるようにしたもの
(特公昭47−26915号)、(2)屈折率の異なる
二種以上の透明な重合体の混合物より製造された合成樹
脂体を特定の溶剤で処理し、前記合成樹脂体の構成成分
の少なくとも一つを部分的に溶解除去することによって
製造されるもの(特公昭47−28059号) 、(3
) 2種の屈折率の異なる化ツマ−を、重合方式を工夫
して、表面から内部にわたり連続的に屈折率分布ができ
るようにして作成したもの(特公昭54−3030” 
1号)、(4)架橋重合体の表面より重合体より屈折率
の低いモノマーを拡散させて、表面より内部にわたり、
該化ツマ−の含有率が連続的に変化するよう配置せしめ
た後、重合して屈折率分布をもたせたもの(特公昭52
−5857号、特公昭56−37521号)、および(
5)反応性を有する重合体の表面より、重合体よシも低
い屈折率を有する低分子化合物を拡散、反応させて表面
より内部にわたシ連続的に屈折率分布をもたせるように
したもの(特公昭57−29682号)等である。
Several methods of manufacturing a glass optical transmission body have been proposed for such a glass optical transmission body. These plastic optical transmitters that have a continuous refractive index distribution from the surface to the inside can be roughly divided into: (1) metal ions that are continuously directed from the central axis of the synthetic resin body made of an ionically crosslinked polymer toward the surface; (Japanese Patent Publication No. 47-26915), (2) A synthetic resin body made from a mixture of two or more transparent polymers with different refractive indices is treated with a specific solvent, Products manufactured by partially dissolving and removing at least one of the constituent components of a synthetic resin body (Japanese Patent Publication No. 47-28059), (3
) Two types of polymers with different refractive indexes were created by devising a polymerization method to create a continuous refractive index distribution from the surface to the inside (Japanese Patent Publication No. 54-3030)
No. 1), (4) Diffusing a monomer with a lower refractive index than the polymer from the surface of the crosslinked polymer, extending from the surface to the inside,
After arranging the compound so that the content thereof changes continuously, it is polymerized to give a refractive index distribution (Japanese Patent Publication No. 52
-5857, Special Publication No. 56-37521), and (
5) A low-molecular compound having a refractive index lower than that of the polymer is diffused and reacted with the surface of a reactive polymer to create a continuous refractive index distribution from the surface to the inside ( Special Publication No. 57-29682) etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これら従来法の共通した問題点としては、拡散あるいは
抽出などの工程に長時間を要すること、あるいは長さが
限定されるなどから生産工程は断続的であり換言すれば
バッチ式生産方法であシ、生産性が極めて悪いのと同時
に製造条件の選定が極めて難しかったり、再現性が得ら
れない等、工業化技術としてはそれぞれ問題点を有する
製造方式である。
A common problem with these conventional methods is that processes such as diffusion or extraction take a long time, or that the length is limited, so the production process is intermittent.In other words, it is a batch-type production method. These manufacturing methods each have their own problems as an industrialization technology, such as extremely poor productivity, extremely difficult selection of manufacturing conditions, and inability to achieve reproducibility.

本発明は、上記従来技術がかかえていた断続的な生産工
程による不合理性を解決し、ガヲヌあるいはプラスチッ
ク光ファイバと同様な連続生産を可能とするものである
The present invention solves the irrationality caused by the intermittent production process that the above-mentioned prior art had, and enables continuous production similar to that of optical fibers or plastic optical fibers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は弗化ビニリデンとヘキサフルオロアセトンの共
重合体(A)とポリメチルメタクリV −トまたはメチ
ルメタクリレート単位を主成分とする共重合体(B)と
の混合物からなる光伝送体であって、(A)成分と(B
)成分の辰合比がその内部から表面に向って連続的に変
化して分布されてなることを特徴とするプラスチック光
伝送体を第1の発明とし、弗化ビニリデンとヘキサフル
オロアセトンの共重合体(A)とポリメチルメタクリレ
ートまたはメチルメタクリレート単位を主成分とする共
重合体(B)およびメチルメタクリレート単量体を主成
分とする単量体混合物(C)を溶解混合してなる組成物
、あるいは弗化ビニlJデンとヘキサフルオロアセトン
の共重合体(A)とメチルメタクリレート単量体を主成
分とする単量体混合物(C)を溶解混合してなる組成物
を所望の形に成形し、成形後、該成形物の表面より単量
体を揮発させ、内部から表面に向って連続的な濃度分布
を与えた後、あるいは与えながら未重合単撞体を重合せ
゛しめることを特徴とするプラスチック光伝送体の製造
方法を第2の発明とするものである。
The present invention is an optical transmission material comprising a mixture of a copolymer (A) of vinylidene fluoride and hexafluoroacetone and a copolymer (B) whose main component is polymethyl methacrylate or methyl methacrylate units. , (A) component and (B
) The first invention is a plastic optical transmitter characterized by the composition ratio of components being distributed while changing continuously from the inside toward the surface, and the first invention is a plastic optical transmitter characterized by a copolymerization of vinylidene fluoride and hexafluoroacetone. A composition obtained by dissolving and mixing the aggregate (A), a copolymer (B) containing polymethyl methacrylate or methyl methacrylate units as a main component, and a monomer mixture (C) containing a methyl methacrylate monomer as a main component, Alternatively, a composition obtained by dissolving and mixing a copolymer of vinyl fluoride and hexafluoroacetone (A) and a monomer mixture containing methyl methacrylate monomer as a main component (C) is molded into a desired shape. , after molding, the monomer is volatilized from the surface of the molded product, and after or while giving a continuous concentration distribution from the inside to the surface, the unpolymerized single rods are polymerized. A second invention is a method for manufacturing a plastic optical transmission body.

本発明において用いられる弗化ビニリデンとヘキサフル
オロアセトンの共重合体の組成比は、特に規制すること
はないが、ポリメチルメタクリレートまたはメチルメタ
クリレート単位を主成分とする共重合体との相溶性を考
慮した場合、ヘキサフルオロアセトンの組成比は、少な
くとも1モ/l/チ以上が好ましい。また、本発明の製
造方法により、得られるプラスチック光伝送体の耐熱性
、機械的特性、加工性、屈折率パヲンス等、実質的性能
を考慮した場合、弗化ビニjJデンの含有量は、少なく
とも50モ/L/%であることが好ましい。弗化ビニリ
デン含有量が75モ/I/4以下の場合には、共重合体
は、ゴム状の非品性重合体となるため、特に屈曲性に富
んだプラスチック光伝送体が得られる。
The composition ratio of the copolymer of vinylidene fluoride and hexafluoroacetone used in the present invention is not particularly limited, but compatibility with polymethyl methacrylate or a copolymer mainly composed of methyl methacrylate units is taken into consideration. In this case, the composition ratio of hexafluoroacetone is preferably at least 1 mo/l/ti or more. Furthermore, when considering the substantial performance such as heat resistance, mechanical properties, workability, refractive index power, etc. of the plastic optical transmitter obtained by the manufacturing method of the present invention, the content of vinyl fluoride should be at least Preferably it is 50 mo/L/%. When the vinylidene fluoride content is 75 mo/I/4 or less, the copolymer becomes a rubber-like, non-quality polymer, and a plastic optical transmission body having particularly high flexibility can be obtained.

また、本発明において耐熱性、機械的特性、加工性、屈
折率バランス等実用的性能を向上させるために、弗化ビ
ニリデンとヘキサフルオロアセトンに弗化ビニリデンと
ヘキサフルオロアセトン以外の例えばテトラフルオロエ
チレン、6弗化プロピレン、弗化ビニル等の第3成分を
共重合しても差支えない。
In addition, in the present invention, in order to improve practical performance such as heat resistance, mechanical properties, workability, and refractive index balance, vinylidene fluoride and hexafluoroacetone may contain other substances other than vinylidene fluoride and hexafluoroacetone, such as tetrafluoroethylene. A third component such as propylene hexafluoride or vinyl fluoride may be copolymerized.

本発明でもう一つの成分としてポリメチpメタク!IV
−1−及びこれを主成分とする共重合体を用いる。共重
合成分としてはメタクリル酸エチp1メタクリル酸プロ
ピル、メタクリル酸n−ブチμ、メタクリル酸t−ブチ
〜、メタクリル酸シクロヘキシp、メタクリル酸フエ二
μ、メタクリル酸ベンジp1メタクリ/71!i12.
2.2−トリエルオロエチμメタクリル酸β−ヒドロキ
シエチル、メタクリル酸グリシジル、メタクリル酸β−
メチルグリシジp等の如きメタクリレート類、アクリル
酸メチル、アクリル酸エチp1アクリル酸プロピp1ア
クリル酸ブチルの如きアクリレート類、メタクリル酸、
アクリル酸スチレン、α−メ千μスチレン等との共y 
合体75:あげられるが、これらに限定されるものでは
なく、さらに少量のアクリロニトリル、無水マレイン酸
等他種成分を含む共重合体であってもさしつかえない。
Another ingredient in the present invention is POLYMETHYP METAC! IV
-1- and a copolymer containing this as a main component are used. Copolymerization components include ethyl methacrylate p1 propyl methacrylate, n-buty methacrylate μ, t-buty methacrylate, cyclohexy p methacrylate, pheniμ methacrylate, benzymethacrylate p1 methacrylate/71! i12.
2.2-Trieloloethyl μ-β-hydroxyethyl methacrylate, glycidyl methacrylate, β-methacrylate
methacrylates such as methyl glycidi p, methyl acrylate, ethyl acrylate p1 propy acrylate p1 acrylates such as butyl acrylate, methacrylic acid,
Co-produced with styrene acrylate, α-methylene styrene, etc.
Coalescence 75: Examples include, but are not limited to, and a copolymer containing a small amount of other components such as acrylonitrile and maleic anhydride may also be used.

これら共重合体成分の量は50重量%以下、好ましくは
30重fi%以下、更に好ましくは15重*S以下が好
ましい。
The amount of these copolymer components is preferably 50% by weight or less, preferably 30% by weight or less, and more preferably 15% by weight*S or less.

本発明は弗化ビニリデンとヘキサフルオロアセトンの共
重合体とメチルメタクリレート糸ポリマーの混合物が優
れた相溶性のためほぼ分子分散が達成され、屈折率のか
なり異なるポリマーの混合にもかかわらず、かなり広い
混合割合の範囲においても透明である性質を応用したも
のである。
The present invention shows that the mixture of vinylidene fluoride and hexafluoroacetone copolymers and methyl methacrylate thread polymers has excellent compatibility so that nearly molecular dispersion is achieved and, despite the mixture of polymers with considerably different refractive indices, a fairly wide This is an application of the property of being transparent even within a range of mixing ratios.

その透明な混合割合の範囲は、弗化ビニリデンとヘキサ
フルオロアセトン共重合体がD 〜95重fk%の範囲
であり、弗化ビニリデンとヘキサフルオロアセトン共重
合体の比率が95重ffi%以上になると弗化ビニリデ
ンとヘキサフルオロアセトン共重合体が容易に結晶化を
起し、乳白色、不透明になるので好ましくない。
The range of the transparent mixing ratio is that the vinylidene fluoride and hexafluoroacetone copolymer is in the range of D to 95% by weight, and the ratio of vinylidene fluoride and hexafluoroacetone copolymer is 95% by weight or more. In this case, the vinylidene fluoride and hexafluoroacetone copolymer easily crystallizes and becomes milky white and opaque, which is not preferable.

即ち本発明は、弗化ビニリデンとヘキサフルオロアセト
ン共重合体の混合比が0〜95重量%、好ましくは0〜
80重量%の範囲で連続的に変化し、それに応じて屈折
率も連続的に変化しているプラスチック光伝送体である
That is, in the present invention, the mixing ratio of vinylidene fluoride and hexafluoroacetone copolymer is 0 to 95% by weight, preferably 0 to 95% by weight.
It is a plastic optical transmission body in which the refractive index changes continuously within a range of 80% by weight, and the refractive index also changes continuously accordingly.

本発明の大きな特徴は、各種の形状及び屈折率分布を目
的に応じて設定することができる点にある。
A major feature of the present invention is that various shapes and refractive index distributions can be set depending on the purpose.

本発明でより有意義な形状及び屈折率分布は断面形状が
円の繊維状であり屈折率がその中心より周辺に向って連
続的に小さくなっており、光集束機能あるいは凸レンズ
機能、光フアイバ機能があるものである。
The shape and refractive index distribution that is more meaningful in the present invention is that the cross-sectional shape is circular and the refractive index decreases continuously from the center toward the periphery, and has a light focusing function, a convex lens function, and an optical fiber function. It is something.

この場合、中心から周辺になるほど弗化ビニリデンとヘ
キサフルオロアセトン共重合体の混合比が大きくなるこ
とにより達成される。
In this case, this is achieved by increasing the mixing ratio of vinylidene fluoride and hexafluoroacetone copolymer from the center to the periphery.

特に望ましくは、中心軸に垂直な各断面での屈折率分布
Nが、中心軸部の屈折率をNo、中心軸より半径方向の
距離をrとしたとき N wNo (1−ar”) に近い分布で与えられる場合である。
Particularly preferably, the refractive index distribution N in each cross section perpendicular to the central axis is close to N wNo (1-ar'') where No is the refractive index at the central axis and r is the distance in the radial direction from the central axis. This is the case given by the distribution.

これ以外にも本発明によυ平板内に屈折率分布が形成さ
れた導波路、平板レンズも可能である。
In addition to this, waveguides and flat plate lenses in which a refractive index distribution is formed in a υ flat plate according to the present invention are also possible.

本発明の光伝送体の製造装置の一例の断面図を第1図に
示す。重合体(A)と単祉体混合物(C)をシリンダ(
1)に仕込みヒーター(3〕で加熱しながら、ピストン
(4)で定量的に押し出し、混練部(2)で均質に混ぜ
合せた後、ノズル(5)!りストランドファイバ(6)
を得る。
FIG. 1 shows a cross-sectional view of an example of the optical transmission body manufacturing apparatus of the present invention. The polymer (A) and the monomer mixture (C) are placed in a cylinder (
1), extruded quantitatively with the piston (4) while heating with the heater (3), mixed homogeneously in the kneading section (2), and then the nozzle (5)!Re-strand fiber (6)
get.

ストランドファイバ(6)は揮発部(7)に導かれガス
尋人孔(9)より導入された空気、窒素、アルゴン等の
ガスにより単量体(C)がその表面より揮発しその内部
に単量体(C)の濃度分布が生じる。その濃度分布を目
的に応じて、ストランドファイバの太さ、吐出量、引き
取り速度、滞在時間と揮発部の温度、流量等によシコン
ドローμした後、活性光線照射部(A))に導き、残存
している単量体を重合固化せしめ、ニップローラ(10
)を経て巻取ドラム(11)に巻取り、目的の光伝送体
(12)を連続的に得るものである。なお本法において
光照射する時期は上述の様に揮発部の後でもよいが、条
件設定が可能であれば揮発と光照射を同時に行ってもよ
い。又揮発は空気及び窒素、アルゴン等の不活性、ガス
の気流で行なってもよいし、減圧下に行なうことも可能
である。さらに、光伝送体(12)の残留単量体をさら
に少なくするために、光照射部の後に熱重合部を設定し
てもよいし、ポリマーのT9以上の加熱下に更に光照射
を行なうことも有効である。
The strand fiber (6) is led to the volatilization part (7), and the monomer (C) is volatilized from its surface by a gas such as air, nitrogen, or argon introduced from the gas hole (9), and the monomer (C) is inside the strand fiber. A concentration distribution of mer (C) is generated. After drawing the concentration distribution according to the purpose, such as the thickness of the strand fiber, the discharge amount, the take-up speed, the residence time, the temperature of the volatile part, the flow rate, etc., it is guided to the actinic ray irradiation part (A)), and the remaining Polymerize and solidify the monomers that are
) and then wound onto a winding drum (11) to continuously obtain the desired optical transmission body (12). In this method, the light irradiation may be performed after the volatilization part as described above, but the volatilization and light irradiation may be performed simultaneously if the conditions can be set. Further, the volatilization may be carried out with a stream of air or an inert gas such as nitrogen or argon, or may be carried out under reduced pressure. Furthermore, in order to further reduce the residual monomer in the light transmission body (12), a thermal polymerization section may be set after the light irradiation section, or the light irradiation may be further performed while the polymer is heated to T9 or higher. is also valid.

本発明の前駆体組成物には、ポリマーとして弗化ビニリ
デンとへキサフμオロアセトンノ共重合体のみを使用し
てもよいし、弗化ビニリデン・とヘキサフルオロアセト
ン共重合体とメチルメタクリレート糸ポリマーの両者を
混合してもよいし、倉明性を阻害しない範囲であれば第
三成分を混合して使用しても差支えない。
In the precursor composition of the present invention, only vinylidene fluoride and hexafluoroacetone copolymer may be used as the polymer, or both vinylidene fluoride and hexafluoroacetone copolymer and methyl methacrylate thread polymer may be used. may be mixed, or a third component may be mixed and used as long as the brightness is not impaired.

又、溶解させる車量体混合物(C)には、単量体として
、メチルメタクリレートのみを使用して4J1.いし、
先に述べたメチルメタクリレート共重合体を構成する共
重合単瓜体を含むのは一向に差支かえない。さらに、エ
チレングリコ−pジメタクリレートの様な三官能性ある
いは三官能性の車量体を1llit熱性、加工性、機械
的特性を向上させるために併用するのも好ましいことで
ある。
Further, in the vehicle mass mixture (C) to be dissolved, only methyl methacrylate was used as a monomer, and 4J1. stone,
There is absolutely no problem in including the monomer copolymer constituting the methyl methacrylate copolymer mentioned above. Furthermore, it is also preferable to use trifunctional or trifunctional polymers such as ethylene glyco-p dimethacrylate in combination to improve thermal properties, processability, and mechanical properties.

また、本発明において光重合を促進するだめの、従来公
知の光重合開始剤、あるいは促進剤、増感剤を添加併用
することは有効な手段である。
Further, in the present invention, it is an effective means to add and use a conventionally known photopolymerization initiator, accelerator, or sensitizer to promote photopolymerization.

さらに前駆組成物の貯蔵安定性を高めるため、および組
成物を繊維状などに成形するときの粘度変化、即ち熱重
合を防止するために、従来公知の熱重合禁止剤を用いる
のが好ましい。
Further, in order to enhance the storage stability of the precursor composition and to prevent viscosity change, that is, thermal polymerization when forming the composition into a fibrous form, it is preferable to use a conventionally known thermal polymerization inhibitor.

このようにして得られた前駆組成物は100℃程度の温
度では熱重合反応は起さないが、均質な光伝送体を得る
には、前駆組成物を充分に均質に混練する必要がある。
Although the precursor composition thus obtained does not undergo a thermal polymerization reaction at a temperature of about 100° C., it is necessary to knead the precursor composition sufficiently homogeneously in order to obtain a homogeneous optical transmitter.

混練操作には、従来公知の混線装置が使用できる。又直
径がα5〜5嘱φ程度の繊維状の光伝送体を得るには、
特にこ°の前駆体組成物の押出温度での粘度が重要であ
り、1.000 〜100、000ポイズ、好ましくは
s、 o o o  〜50、000ボイズの粘度範囲
にあるのがよい。
A conventionally known mixing device can be used for the kneading operation. In addition, in order to obtain a fibrous optical transmission body with a diameter of approximately α5 to 5 φ,
The viscosity of the precursor composition at the extrusion temperature is particularly important, and should be in the range of 1.000 to 100,000 poise, preferably s, o o o to 50,000 poise.

本発明に用いることのできる活性光源としては、150
〜600 nmの波長の光を放出する伏素、アーク灯、
超高圧水銀灯、高圧水銀灯、低圧水銀灯、ケミカルヲン
プ、キセノンクンブ、レーザー光等が使用できる。また
場合によっては電子線を照射して重合させても差支えな
い。
As an active light source that can be used in the present invention, 150
An arc lamp that emits light with a wavelength of ~600 nm,
Ultra-high-pressure mercury lamps, high-pressure mercury lamps, low-pressure mercury lamps, chemical pumps, xenon pumps, laser lights, etc. can be used. Further, depending on the case, polymerization may be carried out by irradiation with an electron beam.

さらに重合を完結させるため、あるいは残留モノマーを
できるだけ少なくするために、光照射を二段階にする、
あるいは熱重合と併用するのが有効である。重合に引き
続いて残留モノマー分を熱風等により乾燥してもよい。
Furthermore, in order to complete the polymerization or to minimize residual monomer, light irradiation is carried out in two stages.
Alternatively, it is effective to use it in combination with thermal polymerization. Following the polymerization, residual monomers may be dried with hot air or the like.

本発明の光伝送体に残留している単量体は出来るだけ少
ないのが好ましく、5%以下、さらには3%以下、さら
に好ましくは1.5%以下であり、上述の方法により達
成することが可能である。
The amount of monomer remaining in the optical transmission body of the present invention is preferably as small as possible, and is preferably 5% or less, more preferably 3% or less, and even more preferably 1.5% or less, which can be achieved by the method described above. is possible.

本発明によって得られた光伝送体の光学特性を更に向上
させるために、得られた光伝送体を、約100℃より高
く、弗化ビニリデンとヘキサフルオロアセトン共重合体
とメチルメタクリレート系ポリマーのブレンド物の下限
臨界共溶温度よシ低い温度に一旦加熱した後、空気、水
、氷、ドライアイス、液体窒素等の冷媒にて、室温ある
いはそれ以下の温度に急冷することが好ましい。この熱
処理により、光伝送体の光伝送性、解像性は向上する。
In order to further improve the optical properties of the light transmitting material obtained according to the present invention, the obtained light transmitting material is heated to a temperature higher than about 100° C. and a blend of vinylidene fluoride, hexafluoroacetone copolymer, and methyl methacrylate-based polymer. It is preferable that the material is once heated to a temperature lower than the lower critical cosolution temperature of the material, and then rapidly cooled to room temperature or a temperature lower than that using a refrigerant such as air, water, ice, dry ice, or liquid nitrogen. This heat treatment improves the optical transmission properties and resolution of the optical transmission body.

以下本発明をよシ詳しく、実施例にて説明する。なお実
施例中、部は重量部を示す。
The present invention will be explained in more detail below with reference to Examples. In the examples, parts indicate parts by weight.

〔評価方法〕〔Evaluation methods〕

■、レンズ性能の測定 ■ 評価装置 レンズ性能の評価は第2図に示すような評価装置を用い
て行なった。
(2) Measurement of Lens Performance (2) Evaluation Apparatus Lens performance was evaluated using an evaluation apparatus as shown in FIG.

■ 試料の調整 試作した屈折率分布型レンズを、通過するHe−Neレ
ーザー光線のうねυから判定しλ た光線の周期(λ)のほぼ1/4の長さく1)となるよ
う切断し、研磨機を用いて、試料の両端面が長軸に垂直
な平行平面となるよう研磨し、評価試料とした。
■ Preparation of the sample Cut the prototype gradient index lens to a length 1) that is approximately 1/4 of the period (λ) of the light beam determined from the ridges υ of the He-Ne laser beam passing through it. Using a polisher, both end surfaces of the sample were polished to become parallel planes perpendicular to the long axis, and used as an evaluation sample.

■ 測定方法 第2図に示したように、光学ベンチ (101)の上に配置された試料台の上に試作した試料
(10a)をセットし、絞り(104)を調節して光源
(102)からの光が集光用レンズ(103)、絞り (104)、ガラス板(105)を通り、試料の端面全
面に入射するようにした後、試料(108)およびポラ
ロイドカメラ(107)の位置をポラロイドフィルム上
にピントがあうよう調節し、正方形格子像を撮影′し、
格子のゆがみを観察した。ガラス板(105)はフォト
マスク用クロムメッキガラスのクロム被膜をα1簡の正
方形格子模様に精密加工されたものを用いた。
■Measurement method As shown in Figure 2, the prototype sample (10a) is set on the sample stage placed on the optical bench (101), the aperture (104) is adjusted, and the light source (102) is set. After the light passes through the condensing lens (103), the aperture (104), and the glass plate (105) and is incident on the entire end surface of the sample, the positions of the sample (108) and the Polaroid camera (107) are adjusted. Adjust the focus so that it is on the Polaroid film, shoot a square grid image,
The distortion of the grid was observed. The glass plate (105) used was a chrome-plated photomask glass plated with a chrome coating precisely processed into an α1 square grid pattern.

■、屈折率分布の測定 カールツアイス社製インターフアコ干渉顕微鏡を用いて
公知の方法により測定した。
(2) Measurement of refractive index distribution Measurement was carried out by a known method using an Interfaco interference microscope manufactured by Carl Zeiss.

実施例1 弗化ビニリデン91モ/L/俤トヘキサフルオロアセト
ン9モ/l/%からなる共重合体(nDl、390)8
部、連続塊状重合法で製造したポリメチルメタクリレー
ト(nDl、492) 27部、メチルメタクリレート
単量体65部、ベンジルジメチルケタ−pα1部、ハイ
ドロキノンα1部ヲ、第1図の装置のシリンダー(1)
に仕込み、80℃に加熱し、混練部を通して直径2.0
電φのノズμより押し出した。この時この前駆体組成物
の押し出し時の粘度は2−5XIQ4  ポイズであっ
た。続いて押し出したファイバを80℃に加熱した窒素
ガスが10−7分の流量で流れる揮発部中を12分で通
過せしめ、6本の円状に等間隔に設置された400Wの
高圧水銀灯の中心にファイバを通過させ、約5分間光を
照射し、zom/分の速度でニップローラーで引き取っ
た。
Example 1 Copolymer (nDl, 390) consisting of 91 mo/L vinylidene fluoride/91 mo/L/% hexafluoroacetone (nDl, 390) 8
1 part, 27 parts of polymethyl methacrylate (nDl, 492) produced by continuous bulk polymerization method, 65 parts of methyl methacrylate monomer, 1 part of benzyl dimethyl keter pα, 1 part of hydroquinone α, cylinder (1) of the apparatus shown in FIG.
heated to 80°C, passed through the kneading section to a diameter 2.0
It was extruded from the nozzle μ of the electric wire φ. At this time, the viscosity of this precursor composition during extrusion was 2-5XIQ4 poise. Next, the extruded fiber was passed through the volatilization section in which nitrogen gas heated to 80℃ flows at a flow rate of 10-7 minutes in 12 minutes, and the fiber was passed through the center of six 400W high-pressure mercury lamps installed at equal intervals in a circle. The fiber was passed through the fiber, irradiated with light for about 5 minutes, and pulled off with a nip roller at a speed of zom/min.

得られたファイバの直径は1000μmであり、インク
ーファコ干渉顕微鏡により測定した屈折率分布は、中心
部が1.471 、周辺部が1.465であり、中止部
から周辺部に向って連続的に減少していた。
The diameter of the obtained fiber was 1000 μm, and the refractive index distribution measured by an ink-faco interference microscope was 1.471 at the center and 1.465 at the periphery, and decreased continuously from the stop to the periphery. Was.

なお、得られたファイバのNMHによる組成分析の結果
は、中心部には弗化ビニリデンとヘキサフルオロアセト
ンの共重合体が、20重iチ、周辺部には50重量%含
まれていた。メチルメタクリy−ト単量体の残留分は、
全体として1.0重量%であった。
In addition, as a result of the compositional analysis of the obtained fiber by NMH, the center portion contained 20 weight percent of a copolymer of vinylidene fluoride and hexafluoroacetone, and the peripheral portion contained 50 weight percent. The residual amount of methyl methacrylate monomer is
The total amount was 1.0% by weight.

又、先述のレンズ性能の測定を行なった結果正方形格子
の像は歪が少ないものであった。
Furthermore, as a result of the above-mentioned lens performance measurement, it was found that the image of the square lattice had little distortion.

実施例2 弗化ビニリデン91モA/%とヘキサフルオロアセトン
9モ/L/%からなる共重合体(nDl、390)50
部とメチルメタクリレート単量体50部、ベンジμジメ
チルケター/110.1部、ハイドロキノン[11部を
第1図の装置に仕込み実施例1と同様にしてファイバを
得だ。実施例1と同様にして評価した結果、中心部はn
Dl、450、 弗化ビニリデン、ヘキサフルオロアセ
トン共重合体組成比60重承チ、周辺部はn o 1.
415、同組成比80重量%であり、中心から周辺部に
向ってnDl):連続的に減少し、ていた。
Example 2 Copolymer (nDl, 390) consisting of 91 moA/% vinylidene fluoride and 9 mo/L/% hexafluoroacetone (nDl, 390) 50
1 part, 50 parts of methyl methacrylate monomer, 110.1 parts of benzene μ dimethyl keter, and 11 parts of hydroquinone were charged into the apparatus shown in FIG. 1, and a fiber was obtained in the same manner as in Example 1. As a result of evaluation in the same manner as in Example 1, the center part was n
Dl, 450, vinylidene fluoride, hexafluoroacetone copolymer composition ratio 60 times, peripheral area no 1.
415, the same composition ratio was 80% by weight, and it decreased continuously from the center to the periphery.

レンズ性能の4+1J定を行なった結果、正方形格子の
像は歪が少ないものであったが、像のコントラストが若
干終いものであった。又レンズの周辺部になるほど先の
散乱が大きくなっていた。
As a result of 4+1J adjustment of the lens performance, the image of the square lattice had little distortion, but the contrast of the image was slightly poor. In addition, the scattering was greater toward the periphery of the lens.

コルレンズを140℃×5分間加熱し、10℃の水で急
冷した。
The Corlens was heated at 140°C for 5 minutes and quenched with 10°C water.

この急冷熱処理したレンズのレンズ特性は像がコントラ
スト良く鮮明に写るものであった。
The lens properties of this rapidly cooled and heat-treated lens were such that the image was clear and had good contrast.

レンズ周辺部の散乱も小さくなっていた。Scattering around the lens was also reduced.

実施例3 弗化ビニリデン91モ/&%とヘキサフμオロアセトン
9モルチからなる共重合体(nDt39o)30部、連
続塊状重合法で得たポリメチμメタクリレート(nDl
、492 ) 20部、メチルメタクリレート単量体5
0部、1−ヒドロキシシクロへキシルフエニpケトン0
.2部、ハイドロキノン11.1部を、第1図の装置に
仕込み実施例1と同様にしてファイバを得た。
Example 3 30 parts of a copolymer (nDt39o) consisting of 91 mo/&% vinylidene fluoride and 9 mole hexafluoroacetone, polymethacrylate (nDl
, 492) 20 parts, methyl methacrylate monomer 5
0 parts, 1-hydroxycyclohexylphenylphene p-ketone 0
.. 2 parts and 11.1 parts of hydroquinone were charged into the apparatus shown in FIG. 1, and a fiber was obtained in the same manner as in Example 1.

実施例1と同様にして評価した結果、中心部ハnD1.
455、弗化ビニリデン、ヘキサフルオロアセトン共重
合体組成比40重量%、周辺部はn n 1.455、
同組成比55重量%であり、中心から周辺部に向ってn
Dが連続的に減少していた。
As a result of evaluation in the same manner as in Example 1, the central portion nD1.
455, vinylidene fluoride, hexafluoroacetone copolymer composition ratio 40% by weight, peripheral area n n 1.455,
The composition ratio is 55% by weight, and from the center to the periphery n
D was decreasing continuously.

レンズ性能の測定を行った結果、像は歪の少ないもので
あり、実施例1よυ開口数の大きなものであった。
As a result of measuring the lens performance, the image had little distortion and had a larger numerical aperture than Example 1.

実施例4 弗化ビニリデン75モtv%、ヘキサフルオロアセトン
25モ)V csからなる共重合体(nDl、370)
  ’fj用いる以外は実施例1と同様にしてファイバ
を得だ。実施例1と同様にして評価した結果中心部nD
1.468、弗化ビニリデン・ヘキサフルオロアセトン
共重合体の組成比20重量%、周辺部n o ’1.4
60、同組成比50重量%であり、中心部から周辺部に
向ってnpが連続的に減少していた。レンズ性能を測定
した結果、像は歪が少ないものであシ、その機械的特性
は特に屈曲性に冨んだものであった。
Example 4 Copolymer (nDl, 370) consisting of vinylidene fluoride (75 motv%), hexafluoroacetone (25 motv%) Vcs
A fiber was obtained in the same manner as in Example 1 except that 'fj was used. As a result of evaluation in the same manner as in Example 1, the central part nD
1.468, composition ratio of vinylidene fluoride/hexafluoroacetone copolymer 20% by weight, peripheral area no '1.4
60, the same composition ratio was 50% by weight, and np decreased continuously from the center toward the periphery. As a result of measuring the lens performance, the image had little distortion, and its mechanical properties were particularly rich in flexibility.

〔発明の効果〕〔Effect of the invention〕

本発明による、プラスチック光伝送体は、複写機用Vン
ズアレイ、ファクシミリ用レンズアレイ、光フアイバ結
合素子、光分波器、ラインセンサー等に利用されるロッ
ドレンズや、屈折率分布型光ファイバ、発光性装飾用光
ファイバと広汎な用途に使用されるものであり、かつプ
ロセスが非常に簡単で生産性が高く、工学的プロセスと
して効率的な製造法を提供するものである。
The plastic optical transmission body according to the present invention can be used for rod lenses used in V lens arrays for copiers, lens arrays for facsimile machines, optical fiber coupling elements, optical demultiplexers, line sensors, etc., graded index optical fibers, light emitting It is used for a wide range of applications as a decorative optical fiber, and the process is very simple and the productivity is high, and it provides an efficient manufacturing method as an engineering process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光伝送体の製造装置の一例の断面図、
第2図は本発明により得られる合成樹脂体のレンズ性能
評価装置の配置の説明図である。 1・・・シリンダ 2・・・混練部 3・・・ヒーター 4・・・ピストン 5 ・・・ ノ ズ ル 6・・・ストランドファイバ 7・・・揮発部 8・・・活性光線照射部 9・・・ガス導入孔 10・・−ニップローラ 11・・・巻取ドラム 12・・・光伝送体 102・・・光源用タングステンランプ103・・・集
光用レンズ 108・・・評価用資料
FIG. 1 is a cross-sectional view of an example of the optical transmission body manufacturing apparatus of the present invention;
FIG. 2 is an explanatory diagram of the arrangement of an apparatus for evaluating lens performance of a synthetic resin body obtained according to the present invention. 1... Cylinder 2... Kneading section 3... Heater 4... Piston 5... Nozzle 6... Strand fiber 7... Volatile section 8... Actinic ray irradiation section 9. ... Gas introduction hole 10 ... - Nip roller 11 ... Winding drum 12 ... Light transmission body 102 ... Tungsten lamp for light source 103 ... Focusing lens 108 ... Evaluation materials

Claims (1)

【特許請求の範囲】 1)弗化ビニリデンとヘキサフルオロアセトンの共重合
体(A)とポリメチルメタクリレートまたはメチルメタ
クリレート単位を主成分とする共重合体(B)との混合
物からなる光伝送体であつて、(A)成分と(B)成分
の混合比がその内部から表面に向つて連続的に変化して
分布されてなることを特徴とするプラスチック光伝送体
。 2)共重合体(A)の構成成分が単量体に換算して弗化
ビニリデン/ヘキサフルオロアセトン (モル比)が99/1〜50/50の範囲である特許請
求の範囲第1項記載のプラスチック光伝送体。 3)弗化ビニリデンとヘキサフルオロアセトンの共重合
体(A)とポリメチルメタクリレートまたはメチルメタ
クリレート単位を主成分とする共重合体(B)およびメ
チルメタクリレート単量体を主成分とする単量体混合物
(C)を溶解混合してなる組成物、あるいは弗化ビニリ
デンとヘキサフルオロアセトンの共重合体(A)とメチ
ルメタクリレート単量体を主成分とする単量体混合物(
C)を溶解混合してなる組成物を所望の形に成形し、成
形後、該成形物の表面より単量体を揮発させ、内部から
表面に向つて連続的な濃度分布を与えた後、あるいは与
えながら未重合単量体を重合せしめることを特徴とする
プラスチック光伝送体の製造方法。
[Scope of Claims] 1) An optical transmission material comprising a mixture of a copolymer (A) of vinylidene fluoride and hexafluoroacetone and a copolymer (B) containing polymethyl methacrylate or methyl methacrylate units as a main component. 1. A plastic optical transmitter, characterized in that the mixing ratio of components (A) and (B) is continuously varied and distributed from the inside toward the surface. 2) The constituent components of the copolymer (A) are vinylidene fluoride/hexafluoroacetone (molar ratio) in the range of 99/1 to 50/50 in terms of monomers. plastic optical transmission body. 3) A copolymer of vinylidene fluoride and hexafluoroacetone (A), a copolymer containing polymethyl methacrylate or methyl methacrylate units as a main component (B), and a monomer mixture containing a methyl methacrylate monomer as a main component (C), or a monomer mixture containing vinylidene fluoride and hexafluoroacetone copolymer (A) and methyl methacrylate monomer as main components (
A composition obtained by dissolving and mixing C) is molded into a desired shape, and after molding, the monomer is volatilized from the surface of the molded product to give a continuous concentration distribution from the inside to the surface. Alternatively, a method for producing a plastic optical transmitter, characterized in that unpolymerized monomers are polymerized while being fed.
JP60248643A 1985-11-06 1985-11-06 Plastic optical transmission body and its production Pending JPS62108208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60248643A JPS62108208A (en) 1985-11-06 1985-11-06 Plastic optical transmission body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60248643A JPS62108208A (en) 1985-11-06 1985-11-06 Plastic optical transmission body and its production

Publications (1)

Publication Number Publication Date
JPS62108208A true JPS62108208A (en) 1987-05-19

Family

ID=17181166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60248643A Pending JPS62108208A (en) 1985-11-06 1985-11-06 Plastic optical transmission body and its production

Country Status (1)

Country Link
JP (1) JPS62108208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159459A (en) * 1986-12-23 1988-07-02 Central Glass Co Ltd Resin composition
JP2008216318A (en) * 2007-02-28 2008-09-18 Hitachi Cable Ltd Heat-resistant synthetic resin optical fiber, and its manufacturing method
WO2015046511A1 (en) 2013-09-30 2015-04-02 株式会社クラレ Plastic image fiber and method for fabrication of same
US11226420B2 (en) 2016-06-21 2022-01-18 Kuraray Co., Ltd. Plastic scintillating fiber and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159459A (en) * 1986-12-23 1988-07-02 Central Glass Co Ltd Resin composition
JP2008216318A (en) * 2007-02-28 2008-09-18 Hitachi Cable Ltd Heat-resistant synthetic resin optical fiber, and its manufacturing method
WO2015046511A1 (en) 2013-09-30 2015-04-02 株式会社クラレ Plastic image fiber and method for fabrication of same
US10126492B2 (en) 2013-09-30 2018-11-13 Kuraray Co., Ltd. Plastic image fiber and method for fabrication of same
US11226420B2 (en) 2016-06-21 2022-01-18 Kuraray Co., Ltd. Plastic scintillating fiber and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR950001049B1 (en) Optical transmission medium and process for producing the same
US5390274A (en) Distributed graded index type optical transmission plastic article and method of manufacturing same
JPS62108208A (en) Plastic optical transmission body and its production
EP0447548A1 (en) Method of manufacturing a plastic graded-index optical transmission element
JP2651582B2 (en) Plastic optical transmission body and method of manufacturing the same
JPS5986003A (en) Manufacture of synthetic resin body for transmitting image
JP2651584B2 (en) Plastic optical transmission body and method of manufacturing the same
JP3263195B2 (en) Manufacturing method of refractive index distribution type plastic molding
JPH03192310A (en) Manufacture of plastic optical transmission body
JPH0216505A (en) Plastic light transmission body and production thereof
JPH0364706A (en) Plastic optical transmission body
JPS62215204A (en) Production of plastic optical transmission body
JP2651583B2 (en) Plastic optical transmission body and method of manufacturing the same
JPH02109002A (en) Optical transmitting body and its production
JPH0216504A (en) Production of plastic light transmission body
JPH03290605A (en) Production of plastic optical transmission body
JP3072116B2 (en) Manufacturing method of graded index plastic optical transmitter
JP3591851B2 (en) Graded-index optical transmitter
JPH0233104A (en) Manufacture of plastic optical transmission body
JP2893046B2 (en) Method of manufacturing refractive index distribution type plastic optical transmission body
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JPS63304204A (en) Plastic light transmission body and its production
JP3328615B2 (en) Graded-index plastic optical transmitter
JPH05113511A (en) Plastic optical transmittor and its production
JPH0342603A (en) Production of light transmission body made of plastic