JPS59137904A - Method for producing plastic optial transmission body - Google Patents

Method for producing plastic optial transmission body

Info

Publication number
JPS59137904A
JPS59137904A JP58011954A JP1195483A JPS59137904A JP S59137904 A JPS59137904 A JP S59137904A JP 58011954 A JP58011954 A JP 58011954A JP 1195483 A JP1195483 A JP 1195483A JP S59137904 A JPS59137904 A JP S59137904A
Authority
JP
Japan
Prior art keywords
monomers
monomer
refractive index
mixture
transmission body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58011954A
Other languages
Japanese (ja)
Other versions
JPH0437962B2 (en
Inventor
Yasuji Otsuka
大塚 保治
Motoaki Yoshida
元昭 吉田
Yasuhiro Koike
康博 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP58011954A priority Critical patent/JPS59137904A/en
Priority to US06/533,532 priority patent/US4521351A/en
Publication of JPS59137904A publication Critical patent/JPS59137904A/en
Publication of JPH0437962B2 publication Critical patent/JPH0437962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain a plastic optical transmission body of which the refractive index decreases in proportion to the square of the distance from a central axis over the entire part of said body by selecting a combination and mixing ratio of at least three kinds of monomers at which the monomers having the lower refractive indices are easier to copolymerize. CONSTITUTION:The figure indicating the example of the combination of ternary monomers is shown. The mixing ratio of the monomers varies with the kind of the monomers, the diameter of an optical transmission body, refractive index distribution, polymerizing conditions, etc. and is usually selected from the range of 20-90wt% M1, 2-40 M2 and 5-60 M3. A prescribed amt. of the monomers M1, M2, M3 are first mixed, and a prescribed amt. of a photopolymn. initiator (for example, benzoyl peroxide (BPO), benzoin methyl ether, etc.) is dissolved therein. The mixture is filled in a glass tube which has a prescribed bore (for example, about 2.9mm.) and is closed at one end, then the mixture is photopolymerized. A tubular UV lamp is provided at the center of the device, and cylindrical light shielding plates are attached in the upper and lower parts of the lamp so that the mixture in the glass tube is irradiated only with the UV light released from the central part of the tube.

Description

【発明の詳細な説明】 本発明は屈折率が次第に変化するような屈折率分布を有
する光伝送損失の小さい合成mll先光伝送体製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a synthetic multi-layer optical transmission body having a refractive index distribution in which the refractive index gradually changes and having a low optical transmission loss.

屈折率分布が(1)式で示される合成樹脂光伝送体は特
装゛昭5it−3o3oi (特願昭so−//7.2
.?) および特開昭6t−/1190011 (特願
昭!;!;−33920)  に提案されている。
A synthetic resin optical transmission body whose refractive index distribution is expressed by the formula (1) is a special specification "Sho 5it-3o3oi" (Special application Showa so-//7.2).
.. ? ) and JP-A-6T-/1190011 (Japanese Patent Application Sho!;!;-33920).

N −No (/ −−A、 r2)    (1)コ ここでNoは中心軸の屈折率、Nは中心軸からrの距離
にある点の屈折率で、Aは屈折率分布の定数、 である
N −No (/ −−A, r2) (1) Here, No is the refractive index of the central axis, N is the refractive index of a point at a distance of r from the central axis, A is the constant of the refractive index distribution, and be.

前記特許は重合の進行とともに共重合体の組成が変動す
ることを利用し、単量体M1およびM2としてそれが重
合体になったときの屈折率の値が互に異なり、しかも透
明な共重合体を形成するものを選び、所定の形状に保っ
た単量体混合物体の所定の一部分、から共重合が開始し
、ついで生成共重合体を反応系内で連続的に析出させる
ように共重合条件を選ぶことによって、屈折率勾配を有
する光伝送体を製造するものである。
The patent utilizes the fact that the composition of a copolymer changes with the progress of polymerization, and monomers M1 and M2 have different refractive index values when they become a polymer, and moreover, a transparent copolymer. Copolymerization starts from a predetermined portion of the monomer mixture, which is selected to form a copolymer and kept in a predetermined shape, and then copolymerization is carried out so that the resulting copolymer is continuously precipitated within the reaction system. By selecting conditions, an optical transmission body having a refractive index gradient can be manufactured.

前記特許には、屈折率勾配を有する合成樹脂光伝送体の
製造法として、重合体になったときの屈折率の差がo、
oosまたはそれよりも大きくなるような2種の単量体
(単量体混合物を含む)  MlおよびM2であって、
かつ単量体M1およびM2のそれらの共重合反応におけ
る単量体反応性比をそれぞれrlおよびr2とし、単量
体M1と単量体I M2との混合モル比を(Ti)m とすれば、の値が/
、1以上であるかまたは一以丁になるよ/、/ うな単量体M1と単量体M2との混合物を所定の形状た
とえば円柱状に保持すること、その所定形状の混合物体
に対して場所的に不均一な共重合条件を付与することに
よって最初に前記混合物体のうちの所定の部分たとえば
円柱形状の混合物体の外周部分のみが前記混合比とは異
なるM1成分とM2成分の比の共重合体を局部的に形成
しついでその部分から他の部分たとえば中心部分に向か
って徐々に共重合が進行するようにして共重合物体の内
部において、前記所定の部分がら他の部分に向か7)で
、M1成分とM2成分との含有比が次第に変化するよう
な濃度勾配を持たせ名ことからなる屈折率勾配を有する
合成樹脂光伝送体を製造する方法が記載されている。
The patent describes a method for producing a synthetic resin light transmission body having a refractive index gradient, in which the difference in refractive index when the polymer is formed is o,
two types of monomers (including monomer mixtures) Ml and M2 such that oos or larger,
And if the monomer reactivity ratios of monomers M1 and M2 in their copolymerization reactions are rl and r2, respectively, and the mixing molar ratio of monomers M1 and monomers I and M2 is (Ti)m, then , the value of /
, 1 or more or 1 or more /, / Holding a mixture of monomers M1 and M2 in a predetermined shape, such as a cylinder, and for a mixed object of the predetermined shape. By applying copolymerization conditions that are locally nonuniform, only a predetermined portion of the mixture, for example, the outer peripheral portion of a cylindrical mixture, has a ratio of M1 and M2 components that is different from the mixing ratio. A copolymer is formed locally, and then copolymerization gradually proceeds from that part to other parts, such as the central part, so that the copolymerization is carried out from the predetermined part to other parts inside the copolymer body. 7) describes a method for manufacturing a synthetic resin optical transmitter having a refractive index gradient, which has a concentration gradient in which the content ratio of M1 component and M2 component gradually changes.

そして単量体M、とM2の組合せの例として、メタクリ
ル階メチルと安息香酸ビニルその他、およびメタクリル
酸アルキルエステルとフェニル酢酸ビール類が挙もられ
ている。しかしながらこiらに挙げられている?μ量体
の組合せから得られる光伝送体は、その中心軸近くのみ
が(1)式の屈折率分布を持っていて、周辺部にゆくに
つれて屈折率の勾配は非常に綬やが七なってしまう。こ
れは、重合とともに共重合体の屈折率は増加するが、最
初のうちはその上昇番1μやがであるが、重合の後半で
は急上昇するためである。この方法によって棒状凸レン
ズを得るには周辺部を削って除去し、伝送体を得〕べ゛
く鋭意研究の結果、本発明番こJ−2だ、0すなわち、
下記の条件を満足するようなX種類(Xはすくなくとも
3)の単量体Ml * M2 + M3・・・・・・・
Mxの混合物を上記特許に記載の重合方法によって重合
して光伝送体とする。一般に多元共重合反応では次のよ
うになる。生長反応/LA#−al +MJ−→MJの
速度定数・をkijとすれば反応性比rijはrij 
w kii/kij と定義され、X元共重合にはX(X−/)個の反応性比
がある。
Examples of combinations of monomers M and M2 include methyl methacrylate and vinyl benzoate, and alkyl methacrylate and phenylacetic acid beers. However, are these listed here? An optical transmitter obtained from a combination of μ-mers has a refractive index distribution expressed by equation (1) only near its central axis, and the gradient of the refractive index becomes extremely steep toward the periphery. Put it away. This is because the refractive index of the copolymer increases with polymerization, and although the increase is only about 1 μm at the beginning, it increases rapidly in the latter half of the polymerization. In order to obtain a rod-shaped convex lens by this method, the peripheral part must be scraped and removed to obtain a transmitter.As a result of intensive research, the present invention number is J-2, 0, that is,
X types of monomers (X is at least 3) that satisfy the following conditions Ml * M2 + M3...
The mixture of Mx is polymerized into a light transmitter by the polymerization method described in the above patent. In general, multicomponent copolymerization reactions are as follows. Growth reaction/LA#-al +MJ-→If the rate constant of MJ is kij, the reactivity ratio rij is rij
It is defined as w kii/kij , and there are X (X-/) reactivity ratios in the X element copolymerization.

本発明の単量体の組合せ9(満足すべき条件へ示す。い
ま、二つの整数i、jは/≦i、j≦X 、 i)jな
る関係があるとき (1)反応性比に関して ここで(Xj/Mj)mは単量体Miと単量体xjの混
合モル比である。
Monomer combination 9 of the present invention (indicates the conditions to be satisfied. Now, two integers i, j are /≦i, j≦X, i)j. (1) Regarding the reactivity ratio: (Xj/Mj)m is the mixing molar ratio of monomer Mi and monomer xj.

(2)屈折率に関して ni (14iホモポリマーの屈折率)>nj(Mjホ
モポリマーの屈折率) である必要がある。
(2) Regarding the refractive index, it is necessary that ni (refractive index of 14i homopolymer)>nj (refractive index of Mj homopolymer).

X−3の場合について具体的に説明する。三元共重合で
は次の9種類の生長反応が競合しておこる。
The case of X-3 will be specifically explained. In ternary copolymerization, the following nine types of growth reactions occur in competition.

※ −wMl+Mよ− SMl※ (速度定数に11)ヘー
M1※十M2→ hWM 2※ (〃k12)※ へMl※+M3−”/%”M3  (tt  k13)
A−v、M2  +M1→ −vswMl (u   
k21)〜M2※+M2→智M2※(u  k22)〜
−M2※+M3→岸M3※(u  k23)※ ダヘM3  +M1−+  w−J(tt   k31
)〜”M3  +M2−+  7VIAIM2  (〃
に32)−+M3 +M3→−M3  (u  k33
)単量体反応性比は(3)式によって定義される。
* -wMl+Myo- SMl* (11 to rate constant) He M1*10M2→ hWM 2* (〃k12)* To Ml*+M3-”/%”M3 (tt k13)
A−v, M2 +M1→ −vswMl (u
k21) ~M2*+M2 → Satoshi M2*(u k22)~
-M2*+M3→Kishi M3*(u k23)* Dahe M3 +M1-+ w-J(tt k31
)~”M3 +M2-+ 7VIAIM2 (〃
32) -+M3 +M3→-M3 (u k33
) The monomer reactivity ratio is defined by equation (3).

r 12 ’! klx/k12 r21 = k22 /に21 r13−に11/に13 (3) r31= k33/に3x 本発明の単量体M 1 r M 21 M 3の組合せ
が満たすべき条件は (1)反応性比に関して ここで(Mi/Mj)mは単量体Miと単量体Mjの混
合モル比である。
r 12'! klx/k12 r21 = k22 / to 21 r13- to 11/to 13 (3) r31 = k33/ to 3x The conditions that the combination of monomers M 1 r M 21 M 3 of the present invention must satisfy are (1) reactivity Regarding the ratio, (Mi/Mj)m is the mixing molar ratio of monomer Mi and monomer Mj.

(2)屈折率に関して nl(B(1ホモポリマーの屈折率) <n2(M2ホ
モポリマーの屈折率)<13([3ホモポリなくともo
、oosであることが好ましい。
(2) Regarding the refractive index, nl (B (refractive index of 1 homopolymer) < n2 (refractive index of M2 homopolymer) < 13 ([3 homopolymer at least o
, oos is preferable.

条件(1)は三元′共重合の進行とともに最初単量体M
1が急速に重合し、次いで単量体M2が重合し、単量体
M3が最も遅れて重合することを示している。言い換え
れば重合初期に生成する共重合体は7  ラ\ つれてMlの含有量は急速に低下し、加わって単量体M
2の含有量が増加する。更に重合が進行すればM2の含
有量も低ドし、単量体M3の含有量が増加することとな
る。ここで条件(,2)が満足されておけば、重合の進
行とともに生成する共重合体の屈折率が増すが、単量体
の種類、単量体の仕込比を調節することにより、共重合
体の屈折率を重合転化率とともに広い転化率の範囲にわ
たってなだらかに増加させることができ、屈折率の急上
昇を避けることができる。
Condition (1) is that as the ternary copolymerization progresses, the initial monomer M
1 polymerizes rapidly, followed by monomer M2, and monomer M3 polymerizes most slowly. In other words, the copolymer produced at the initial stage of polymerization has a 7 ml content, and the Ml content rapidly decreases, and in addition, the monomer Ml content decreases rapidly.
The content of 2 increases. As the polymerization progresses further, the content of M2 also decreases, and the content of monomer M3 increases. If condition (, 2) is satisfied, the refractive index of the copolymer produced will increase as the polymerization progresses, but by adjusting the type of monomer and the monomer charging ratio, the refractive index of the copolymer will increase as the polymerization progresses. The refractive index of the coalescence can be gradually increased over a wide conversion range with the polymerization conversion rate, and a sharp increase in the refractive index can be avoided.

本発明に用いられる三元系の単量体の組合せの例を牙1
表に挙げる。
An example of a combination of ternary monomers used in the present invention is Fang 1.
Listed in the table.

単量体の混合割合は、単量体の種類、光伝送体の直径、
屈折率分布2重合条件などによって異なるが、通常G;
i Ml 、20〜90 、 [2j 〜llO,M3
 !; 〜60各重量%の範囲内から選ばれる。
The mixing ratio of monomers depends on the type of monomer, the diameter of the optical transmitter,
Although it varies depending on the refractive index distribution bipolymerization conditions, etc., it is usually G;
iMl, 20~90, [2j~llO,M3
! selected from within the range of ~60% by weight.

次に本発明について詳細を説明する。Next, the present invention will be explained in detail.

まず、所定量の単量体M’l 1M 2 r M 3を
混合し、これに所定量の光重合開始剤(例えば過酸化ベ
ンゾイル(BPO)、ベンゾインメチルエーテルなト)
単量体M1を多量に含んでいるが、重合の進行にオ1表 を溶解し、これを所定の内径(たとえば約、;)、9m
m)を有し、一端を閉じたガラス管を満たし第1図に示
す装置によって光共重合する。管状の紫外線ランプlが
装置中心にあり、ランプlの上部と下部には円筒状の遮
光板−が取り付けてあって、管の中心部の部分から放出
される紫外線のみによってガラス管q内の混合物が照射
されるようにしである。
First, a predetermined amount of monomer M'l 1M 2 r M 3 is mixed, and a predetermined amount of a photopolymerization initiator (for example, benzoyl peroxide (BPO), benzoin methyl ether, etc.) is mixed therewith.
Although it contains a large amount of monomer M1, as the polymerization progresses, the monomer M1 is dissolved and the monomer M1 is dissolved in a predetermined inner diameter (e.g., approximately, ;), 9 m.
m), filled a glass tube with one end closed, and photocopolymerized using the apparatus shown in FIG. A tubular ultraviolet lamp l is located at the center of the device, and cylindrical light-shielding plates are attached to the top and bottom of the lamp l, allowing the mixture in the glass tube q to be illuminated only by the ultraviolet light emitted from the central part of the tube. so that it is irradiated.

なお/lは、ランプlからの光が遮光板コの間隔(たと
えば7(7mm)だけに放出するように設けたつば状の
遮光補助板である。紫外線強度はシリコンフォトセル3
でモニターされている。紫外線ランプ/から所定距離た
とえば/(70mの距離に上記単量体混合物を満たした
複数本のガラス管ダを支持部材Sに装着し、モーター6
でたとえば毎分qO回転で回転させておく。最初紫外線
ランプ/をガラス管ダのF端より低い位置に置き、ラン
フ’/をは一定温度の空気を人口ざからファン9で送り
込み排出[’310より排出しているが、ランプlの発
熱のために温度は上昇するが、送入空気温度より成る程
度高い湿度で一定となる。光共重合はガラス管lの底部
よりおこる。
Note that /l is a brim-shaped auxiliary light-shielding plate provided so that the light from lamp l is emitted only to the interval between the light-shielding plates (for example, 7 mm).
is being monitored. A plurality of glass tubes filled with the monomer mixture are attached to the support member S at a predetermined distance, for example, 70 m from the ultraviolet lamp /, and the motor 6
For example, let it rotate at qO rotations per minute. First, the ultraviolet lamp / is placed at a position lower than the F end of the glass tube, and the lamp '/ is pumped with air at a constant temperature from the artificial gap using a fan 9 to be discharged. Therefore, the temperature rises, but the humidity remains constant at a level higher than the inlet air temperature. Photocopolymerization occurs from the bottom of the glass tube l.

重合によって体積が収縮するが、ガラス管の上部にある
重合しぞいない部分から単量体混合物が常に供給される
ので重合体内部に空隙が生じることはない。ランプlの
移動とともに重合する部分は次第に上部に移動し、遂に
ガラス管ダ内の単量体混合物がすべて固化する。照射開
始してから所定時間たとえば約70時間後に照射終了後
ガラス管グを装置より取り外したとえばgoocにj4
(時間加熱して残存単量体をできるだけ重合させておく
Although the volume shrinks due to polymerization, the monomer mixture is always supplied from the upper part of the glass tube that is not undergoing polymerization, so no voids are created inside the polymer. As the lamp 1 moves, the portion to be polymerized gradually moves upward, and finally all of the monomer mixture in the glass tube solidifies. After a predetermined period of time, e.g., approximately 70 hours, from the start of irradiation, the glass tube is removed from the apparatus and placed in a gooc, for example.
(Heat for a period of time to polymerize as much of the remaining monomer as possible.

ついでガラス管qを破砕し、共重合体ロッドを取り出す
。ロッドは両端の部分を除き、ロッド全体に亘って屈折
率分布定数Aは一定値を示す。
Next, the glass tube q is crushed and the copolymer rod is taken out. The refractive index distribution constant A of the rod exhibits a constant value over the entire rod except for both end portions.

得られた光伝送体を加熱延伸して、光集束性の繊維を得
ることができる。ロッドの加熱延伸に先立ち、ロッドに
微量含まれている揮発性物質を除去t ルt、= メニ
10−3〜10−4 mmHgの減圧下にso”c3〜
ダ日問おく。
The obtained light transmitting body is heated and stretched to obtain a light-focusing fiber. Prior to heating and stretching the rod, trace amounts of volatile substances contained in the rod are removed under reduced pressure of 10-3 to 10-4 mmHg.
I'll ask you questions every day.

次に第2図に原理を示した熱延伸装置によって延伸する
。すなわち上記の合成樹脂ロッドをプリフォーム21と
して支持部材−一に装着し速度■1(mm/5ec)で
降下させ、一定温度T’dの定温加熱器23の間を通過
させ、F方のドライブ、ロール21により速度■2 m
 m / S e Cで引張り、延伸する。
Next, it is stretched using a hot stretching device whose principle is shown in FIG. That is, the above synthetic resin rod is attached as a preform 21 to the support member 1, lowered at a speed of 1 (mm/5ec), passed between constant temperature heaters 23 at a constant temperature T'd, and driven in the F direction. , the speed is 2 m by the roll 21.
Stretch and stretch at m/S e C.

V2/Vlが延伸率となる。得られた合成樹脂光学繊維
2jを切断研磨して長さ/−Jmmのロッドレンズに仕
上げ、そのレンズ作用から(1)式の屈折率分布定数A
を求める。また、合成樹脂光学繊維をドラムに巻きつけ
、一端より63コざAのレーザー光を入射させ、他端よ
り射出する光の強度を測定する。繊維の長さと射出光の
強度の関係から伝送損失を求める。
V2/Vl is the stretching ratio. The obtained synthetic resin optical fiber 2j is cut and polished to form a rod lens of length /-Jmm, and from the lens action, the refractive index distribution constant A of equation (1) is obtained.
seek. In addition, a synthetic resin optical fiber is wound around a drum, a laser beam of 63 kozas A is input from one end, and the intensity of the light emitted from the other end is measured. Transmission loss is determined from the relationship between the length of the fiber and the intensity of the emitted light.

実施例を次に示す。Examples are shown below.

実施例1〜l 単量体M1として屈折率が/、1lL2のメタクリル酸
メチル(HMA)を、M2として屈折率が/、t、2 
  。
Examples 1 to 1 Monomer M1 was methyl methacrylate (HMA) with a refractive index of /, 1L2, and M2 was a refractive index of /, t, 2.
.

のアクリロニトリル(AM)を、そしてM3として三元
系で図面に示した装置を用いて、第2表に示す条件によ
りレンズを製造し、表に示す結果を得た。
Using acrylonitrile (AM) and M3 as a ternary system using the apparatus shown in the drawing, lenses were manufactured under the conditions shown in Table 2, and the results shown in the table were obtained.

なお、(3)式における単量体反応性比はr12−/、
31゜r13−tr、sコ、r21−o、iコ、 r2
3− j 、Os r31−(7,07。
In addition, the monomer reactivity ratio in formula (3) is r12-/,
31゜r13-tr, sco, r21-o, ico, r2
3-j, Os r31-(7,07.

r32−0.03であり、実施例1についての(す、 
(3) 。
r32-0.03, and (su,
(3).

(≦)式の左辺の値はそれぞれ/、# 、 J、jコお
よびj、4Jであっていずれも (す、 C3> 、 
(4)式を満足していた。実施例−〜ダについても同時
に(り)〜(6)式を満足した。
The values on the left side of the equation (≦) are respectively /, #, J, jko and j, 4J, and all of them are (su, C3>,
Equation (4) was satisfied. In Examples 1 to 2, formulas (ri) to (6) were also satisfied.

オコ表 実施例番号 l    コ   3’I MMA (部)         4u  t7.Ot
ふ01ム7)      AN  (部)      
   9.J  lr、2   z9  1JVB  
(部)        JIAj  J4!、#  J
u  23.0BPO(部)         Ql 
 O,ま  i、o   o、sランプ移動速度V (
mm/m1n)  0.7 0.A  to   0.
1屈折率分布庫数A (10−3mm−2)   よ4
1  ’A63 3./3  、?、、g70ッド半径
Rp (II ml)    /、113  ’/、1
13  /、lj  /、41!牙3表 実施例qの屈折率分布を第3図に示す。
Oko table example number l ko 3'I MMA (part) 4u t7. Ot
Fu01mu7) AN (department)
9. J lr, 2 z9 1JVB
(Department) JIAj J4! , #J
u 23.0BPO (part) Ql
O, ma i, o o, s ramp movement speed V (
mm/m1n) 0.7 0. A to 0.
1 refractive index distribution number A (10-3mm-2) yo4
1 'A63 3. /3,? ,,g70 radius Rp (II ml) /,113'/,1
13/, lj/, 41! The refractive index distribution of Example q is shown in FIG.

なお、比較のためANを使用せずにMMA7j部および
VB 2!;部を用いて実施例ダと同一寸法の光伝送体
を製造した場合の屈折率分布を牙3図の点線に示す。
For comparison, MMA7j part and VB2! without using AN. The dotted line in Figure 3 shows the refractive index distribution in the case where an optical transmission body having the same dimensions as that of Example D was manufactured using the above-mentioned part.

$損失/、2(IBlmの光ファイバーを得た。An optical fiber of $ loss/, 2 (IBlm) was obtained.

実施例5〜IO MMA−AN−VB以外の三元系を用いて製造した光伝
送体の製造条件、結果を第3表に示す。
Example 5 - IO Table 3 shows the manufacturing conditions and results of the optical transmission body manufactured using a ternary system other than MMA-AN-VB.

【図面の簡単な説明】[Brief explanation of drawings]

第7図は本発明を説明するための製造装置の一例をIす
1部所面の側面図、第2図は第1図の装置に続いて本発
明を実施する装置の一例を示す何気1図 19− 第2因
FIG. 7 is a partial side view of an example of a manufacturing apparatus for explaining the present invention, and FIG. 1 Figure 19- Second cause

Claims (2)

【特許請求の範囲】[Claims] (1)単量体Xiが重合体になったとき゛の屈折率をn
iとすると、niが互に異なるすくなくとも3種の単量
体(単量体混合物を1含む) ’ M 1+ M2 !
 M 3・・・・・・・・−の混合物を所定の形状に保
持するこ?ぐその所定形状の混合物体に対して場所的に
不均一な共愈合条件を付与することによって最初に前記
混合物体のうちの所定の部分のみが前記混合比とは異な
る単量体成分の比の共重合体を局部的に形成しついでそ
の部分から他の部分に向かって徐々に共重合−が進行す
るようにしt1共重合物体の内部におい量体成分が火弟
に変化するような濃度勾配を持たせる屈折率勾配を有す
る各成樹脂光i送体を製造する方法において、単量体M
iとして、niが低い単量体Mi、はど共重合し易いよ
うな単量体の組合せを選ぶことにより光伝送体全体に亘
って屈折率が中心軸からの距離の二乗に比例して減少し
て  ・いる合成樹脂光伝送体を製造する方法。
(1) When the monomer Xi becomes a polymer, the refractive index of
If i is at least three types of monomers (including one monomer mixture) where ni is different from each other, ' M 1+ M2 !
M 3......- to hold the mixture in a predetermined shape? By applying locally non-uniform co-consolidation conditions to a mixed body having a predetermined shape, first, only a predetermined portion of the mixed body has a ratio of monomer components that is different from the above-mentioned mixing ratio. After forming a copolymer locally, copolymerization gradually proceeds from that part to other parts, thereby creating a concentration gradient in which the odor component inside the copolymer body changes gradually. In the method for manufacturing each resin optical transmitter having a refractive index gradient, the monomer M
By selecting a combination of monomers such as i, a monomer with a low ni, and monomers that are easy to copolymerize, the refractive index of the entire optical transmitter decreases in proportion to the square of the distance from the central axis.・A method of manufacturing a synthetic resin optical transmission body.
(2)前記のすくなくとも3種の単量体6混合物は単量
体M1 + M2およびMjかうなるものであり、Mi
に対するMjの単量体反応性比(i+j −i、r、3
)をrijで表わし、MiとMjとの混合モル比を。 (r23(H)m+/) / (、(七)m+r32)
>/−’/の式のすべにを満足するものである特許請求
の範囲オノ項記載の谷成樹脂光伝送体を製造する方法。
(2) The mixture of at least three monomers 6 is composed of monomers M1 + M2 and Mj, and Mi
The monomer reactivity ratio of Mj to (i+j −i, r, 3
) is expressed by rij, and the mixing molar ratio of Mi and Mj is. (r23(H)m+/) / (, (7)m+r32)
A method for manufacturing a Tanise resin optical transmission body according to claim 1, which satisfies all of the formulas >/-'/.
JP58011954A 1983-01-27 1983-01-27 Method for producing plastic optial transmission body Granted JPS59137904A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58011954A JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body
US06/533,532 US4521351A (en) 1983-01-27 1983-09-16 Process for producing light-transmitting element of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011954A JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body

Publications (2)

Publication Number Publication Date
JPS59137904A true JPS59137904A (en) 1984-08-08
JPH0437962B2 JPH0437962B2 (en) 1992-06-23

Family

ID=11792011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011954A Granted JPS59137904A (en) 1983-01-27 1983-01-27 Method for producing plastic optial transmission body

Country Status (1)

Country Link
JP (1) JPS59137904A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321937A (en) * 1976-08-12 1978-02-28 Mitsubishi Electric Corp Preparation of synthetic resin material for optical transmission

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321937A (en) * 1976-08-12 1978-02-28 Mitsubishi Electric Corp Preparation of synthetic resin material for optical transmission

Also Published As

Publication number Publication date
JPH0437962B2 (en) 1992-06-23

Similar Documents

Publication Publication Date Title
US3955015A (en) Method of manufacturing a transparent light conducting element of synthetic resin having refractive index gradient
JP3010369B2 (en) Method of manufacturing synthetic resin optical transmission body
JPH05247142A (en) Copolymer having photopolymerizable group, composition containing the same, and process for cladding optical fiber with the composition
JPH08244130A (en) Manufacture of transparent article with refractive index gradient
US4521351A (en) Process for producing light-transmitting element of synthetic resin
KR20020069219A (en) Methods and compositions for the manufacture of ophthalmic lenses
JPH0576602B2 (en)
JP3005808B2 (en) Manufacturing method of synthetic resin optical transmission body
JPS59137904A (en) Method for producing plastic optial transmission body
US5378776A (en) Method for preparing optical polymer with radial transition in refractive index
JP2002501444A (en) Radially symmetric graded-index transparent product and its manufacturing method
JPH0638125B2 (en) Method for producing light-focusing plastic
JPH0340362B2 (en)
JPS62108208A (en) Plastic optical transmission body and its production
JPS6223001A (en) Production of spherical plastic lens
JPH0355801B2 (en)
JPH10245410A (en) Production of plastic optical fiber, and plastic optical fiber produced thereby
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JPH03217407A (en) Preparation of high refractive index resin
JPH05173025A (en) Production of synthesized resin light transmission body
JPH063508A (en) Light transmission body made of hemispherical plastic and its production
JPH01108247A (en) Transparent resin composition
JPH0735929A (en) Gradient index optical transmission body
JPH0340361B2 (en)
JPH0652323B2 (en) Method for manufacturing synthetic resin ball lens