JPS63249112A - Optical fiber - Google Patents

Optical fiber

Info

Publication number
JPS63249112A
JPS63249112A JP62082704A JP8270487A JPS63249112A JP S63249112 A JPS63249112 A JP S63249112A JP 62082704 A JP62082704 A JP 62082704A JP 8270487 A JP8270487 A JP 8270487A JP S63249112 A JPS63249112 A JP S63249112A
Authority
JP
Japan
Prior art keywords
meth
acrylate
formula
optical fiber
chain fluoroalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62082704A
Other languages
Japanese (ja)
Inventor
Takashi Yamamoto
隆 山本
Shiruyoshi Matsumoto
松本 鶴義
Ryuji Murata
龍二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62082704A priority Critical patent/JPS63249112A/en
Priority to CA000543687A priority patent/CA1317064C/en
Priority to CA000543686A priority patent/CA1317063C/en
Priority to DE87306921T priority patent/DE3785520T2/en
Priority to EP87306921A priority patent/EP0257863B1/en
Priority to EP87306920A priority patent/EP0256765B1/en
Priority to DE8787306920T priority patent/DE3777911D1/en
Priority to KR1019870008617A priority patent/KR960014120B1/en
Priority to KR1019870008616A priority patent/KR880003201A/en
Publication of JPS63249112A publication Critical patent/JPS63249112A/en
Priority to US07/443,794 priority patent/US5022737A/en
Priority to US07/613,972 priority patent/US5238974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shell material having a low refractive index, high transparency, superior mechanical characteristics, and high heat resistance by using a specified long-chain fluoroalkyl (meth)acrylate and a specified short-chain fluoroalkyl (meth)acrylate as a base material. CONSTITUTION:A compsn. consisting of 1-50wt.% long-chain fluoroalkyl (meth) acrylate expressed by formula I, 50-90wt.% short-chain fluoroalkyl (meth) acrylate expressed by formula II, 1-20wt.% crosslinking monomer having >=2 polymerizable functional groups in a molecule, and 0.1-10wt.% photopolymn. initiator, is used for a photosetting compsn. constituting a shell component. In formulas, Y is H or CH3; X is H or F; l is an integer >=1; n is formula I is an integer 6-12; n in formula II is an integer 1-3. By this constitution, optical fiber having superior heat resistance and superior bending strength is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は芯が石英やポリメチルメタクリ7−ト、ポリス
チレン、ポリグルタルイミド、ポリカーボネートなどの
プラスチック類で構成され、鞘が光硬化性樹脂組成物の
硬化被模にて構成された光ファイバーに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a core made of quartz, polymethyl methacrylate, polystyrene, polyglutarimide, polycarbonate, or other plastics, and a sheath made of a photocurable resin composition. This invention relates to an optical fiber made of a hardened material.

〔従来の技術〕[Conventional technology]

光ファイバーの鞘材に要求される物性としては、芯材よ
り屈折率が低く、しかも透明性、耐熱性が良好で機械的
特性に優れており、石材との蜜漬性が良いことなどが挙
げられる。これまでこのような要求に答える鞘材として
は、例えば特公昭43−3878号公報に示される如く
、一般式 %式%) (式中のXはH,?又はOL 、 nは1〜6の整数、
mは2〜10の整数である)で示されるフルオロアルキ
ルメタクリレートの重合体又は共重合体t−鞘材とした
ものや特開昭49’−107730号公報に示される如
くトリフルオロエチル(メタ)アクリレートの重合体を
鞘材としたもの、特開昭59−228604号公報に示
す如くα−フルオロアクリV−トの重合体を鞘材とした
もの、特公昭53−216750に示す如く鞘材として
フッ化ビニリデンとテトラフルオロエチレンの共重合体
等を用いたものが知られている。
The physical properties required for optical fiber sheath materials include having a lower refractive index than the core material, good transparency and heat resistance, excellent mechanical properties, and good compatibility with stone. . Up until now, the sheath materials that meet these requirements have been shown in Japanese Patent Publication No. 43-3878, for example, using the general formula % (%) (in the formula, X is H, ? or OL, and n is 1 to 6). integer,
(m is an integer from 2 to 10) as a polymer or copolymer of fluoroalkyl methacrylate as a T-sheath material, and trifluoroethyl (meth) as shown in JP-A-49-107730. A sheath material made of an acrylate polymer, a sheath material made of an α-fluoroacrylate polymer as shown in JP-A No. 59-228604, and a sheath material made of an α-fluoroacrylate polymer as shown in Japanese Patent Publication No. 53-216750. Those using a copolymer of vinylidene fluoride and tetrafluoroethylene are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

フルオロアルキルメタクリレートの重合体又は共重合体
やトリフルオロエチルメタクリレートの重合体は非品性
であり透明性に潰れ低屈折率な重合体ではあるが機械的
特性、耐熱性が十分とは言えず光ファイバの鞘材として
は不十分である。
Polymers or copolymers of fluoroalkyl methacrylate and polymers of trifluoroethyl methacrylate are poor quality polymers that lack transparency and have a low refractive index, but their mechanical properties and heat resistance are not sufficient and they cannot be used with light. It is insufficient as a fiber sheath material.

フッ化ビニリデン系重合体はその機械的特性は優れてい
るがこの重合体は結晶性であり透明性を付与したフィル
ム状物でも高温雰囲下にさらすと結晶化が促進され不透
明化し、光ファイバの光伝送特性を低下させるという難
点がある。
Vinylidene fluoride polymer has excellent mechanical properties, but this polymer is crystalline, and even if it is a transparent film, when exposed to a high temperature atmosphere, crystallization will be promoted and it will become opaque, making it difficult to use as an optical fiber. It has the disadvantage that it degrades the optical transmission characteristics of .

α−フルオロアクリレートの重合体のフィルム状物はそ
の機械的特性、耐熱性、透明性等に優れているが溶融紡
糸に供した場合熱分解し易ずいという傾向が強く光ファ
イバの製造過程で問題を起し易いという難点がある。
α-Fluoroacrylate polymer film has excellent mechanical properties, heat resistance, transparency, etc., but has a strong tendency to thermally decompose when subjected to melt spinning, which causes problems in the optical fiber manufacturing process. The problem is that it is easy to cause

〔問題を解決するための手段〕[Means to solve the problem]

本発明者等は上述した現状にかんがみ低屈折率でありフ
ィルム状物の透明性、機械的特性、耐熱性に優れた鞘材
を提供することを目的として検討した結果本発明を完成
したものであり、その要旨とするところは長鎖フルオロ
アルキル(メタ)アクリレート、短鎖フルオロアルキル
(メタ)アクリレートをベースに少なくとも1分子中に
2個以上の重合性官能基を有する架橋性単量体及び光重
合開始剤を添加しその組成物を芯の表面に被覆した後光
照射して硬化させて鞘材R1を形成した光ファイバにあ
る。
In view of the above-mentioned current situation, the present inventors completed the present invention as a result of studies aimed at providing a sheath material with a low refractive index and excellent transparency, mechanical properties, and heat resistance for film-like materials. The gist of this is that crosslinkable monomers having at least two or more polymerizable functional groups in one molecule based on long-chain fluoroalkyl (meth)acrylates and short-chain fluoroalkyl (meth)acrylates, and The optical fiber has a sheath material R1 formed by adding a polymerization initiator, coating the core surface with the composition, and curing the core by irradiating it with light.

本発明において用いる長鎖フルオロアルキル(メタ)ア
ク+)V−ト単量体は前述した如き一般式(1)で示さ
れる構造を有するものであり、具体例としては、例えば
1.1.2.2−テトラハイドロパーフルオロドデシル
(メタ)アクリレート、f、 1.2.2−テトラハイ
ドロパーフルオロデシル(メタ)アクリレート、1.1
−ジハイドロパーフルオロプチル(メタ)アクリレート
等が例示される。上記長鎖フルオロアルキル(メタ)ア
クリレートを挙げることができ、鞘材形成用組成物中に
10〜50重量係の範囲で含ませることが望ましい当該
化合物の含有量が10重量係未満の組成−物より得られ
る硬化ポリマーはその屈折率が高くなり、機械特性も余
り高いものとすることが難しく光ファイバの鞘材として
の適性を損うことになり、逆に50重重量風上の組成物
は多官能単量体、光重合開始剤等の他の成分との相溶性
が低下悪くなり結果的にその硬化ポリマーに濁りが生じ
鞘材としての適性が損われるようになる。
The long-chain fluoroalkyl(meth)ac+)V-to monomer used in the present invention has a structure represented by the general formula (1) as described above, and specific examples include, for example, 1.1.2. .2-Tetrahydroperfluorododecyl (meth)acrylate, f, 1.2.2-Tetrahydroperfluorodecyl (meth)acrylate, 1.1
-dihydroperfluoroptyl (meth)acrylate and the like are exemplified. The long-chain fluoroalkyl (meth)acrylate mentioned above can be mentioned, and the content of the compound is preferably less than 10% by weight in the composition for forming a sheath material. The resulting cured polymer has a high refractive index, and it is difficult to make the mechanical properties too high, impairing its suitability as an optical fiber sheath material. The compatibility with other components such as polyfunctional monomers and photopolymerization initiators deteriorates, and as a result, the cured polymer becomes cloudy, impairing its suitability as a sheath material.

一般式(2)で示される構造の短鎖フルオロアルキル(
メタ)アジリレートの具体例としては列、(ハ2,2,
3.3−テトラフルオロプロピル(メタ)アクリレート
、トリフルオロエチル(メタ)アクリレート% 2.2
. & 3.5−ペンタフルオロプロピル(メタ)アク
リレート、1−トリフルオロメチル−2,2,2−1−
リフルオロエチル(メタ)アクリレート、1−トリフル
オロメチル−1,2゜2.2−テトラフルオa(メタ)
アクリレート、2、2.44.4.4−ヘキサフルオロ
ブチル(メタ)アクリノート、1−メチル−42,へ4
.4.4−ヘキサフルオロブチル(メタ)アクリノート
、1−ジメチル−2,2,5,3−テトラフルオロプロ
ピル(メタ)アクリレート、1.1−ジメチル−2゜2
、3.4.4.4−へキサフルオロブチル(メタ)アク
リレート等を挙げることができ、これら短鎖フルオロア
ルキル(メタ)アクリレートの光硬化性組成物中での含
有量としては50〜90重11%の範囲で用いるのが望
ましい。50重1t%未満の組成物は多官能単量体、光
重合開始剤等の他成分との相溶性が低下し結果的に硬化
物であるポリマーに濁りを生じ鞘材としての適性を損う
こととなり逆に当該化合物の含有量が90重量%以上の
組成物より得られる硬化ポリマーは屈折率が高くなり芯
材との屈折率差を大きくとることができず間口数の小さ
く光ファイバとなり易い光ファイバーの実用特性が低下
する。
Short-chain fluoroalkyl (
Specific examples of meta) azirylate include the column (Ha2,2,
3.3-Tetrafluoropropyl (meth)acrylate, trifluoroethyl (meth)acrylate% 2.2
.. & 3.5-pentafluoropropyl (meth)acrylate, 1-trifluoromethyl-2,2,2-1-
Lifluoroethyl (meth)acrylate, 1-trifluoromethyl-1,2゜2.2-tetrafluoro a(meth)
acrylate, 2,2.44.4.4-hexafluorobutyl(meth)acrynote, 1-methyl-42,he4
.. 4.4-Hexafluorobutyl (meth)acrynote, 1-dimethyl-2,2,5,3-tetrafluoropropyl (meth)acrylate, 1.1-dimethyl-2゜2
, 3.4.4.4-hexafluorobutyl (meth)acrylate, etc., and the content of these short-chain fluoroalkyl (meth)acrylates in the photocurable composition is 50 to 90% by weight. It is desirable to use it within a range of 11%. A composition containing less than 50% by weight and 1t% will be less compatible with other components such as polyfunctional monomers and photopolymerization initiators, resulting in turbidity in the cured polymer and impairing its suitability as a sheath material. Conversely, a cured polymer obtained from a composition containing 90% by weight or more of the compound has a high refractive index and cannot have a large difference in refractive index with the core material, making it easy to form an optical fiber with a small number of openings. Practical characteristics of optical fiber deteriorate.

すなわち長鎖フルオロアルキル(メタ)アクリレート成
分は硬化ポリマーの屈折率を低くし、機械的特性を向上
させる働きをなし、他方短鎖フルオロアルキル(メタ)
アクリレート成分は多官能性単量体、光重合開始剤等の
相溶性を向上させ硬化ポリマーの透明性を向上させる働
きをする。
That is, the long chain fluoroalkyl (meth)acrylate component serves to lower the refractive index and improve the mechanical properties of the cured polymer, while the short chain fluoroalkyl (meth)acrylate component serves to lower the refractive index and improve the mechanical properties of the cured polymer.
The acrylate component functions to improve the compatibility of polyfunctional monomers, photopolymerization initiators, etc. and to improve the transparency of the cured polymer.

まな、本発明において用いられる多官能の架橋性単量体
としては例えば1,3−ブタンジオールジアクリレート
、1.4−ブタンジオールジアクリレート、1.6−ヘ
キサンジオールジアクリレート、ジエチレングリコール
ジアクリレート、ネオペンチルグリコールジアクリレー
ト、ポリエチレングリコールジアクリレート、トリプロ
ピレングリコールジアクリレート、ヒドロキシピバリン
酸エステルネオペンチルグリコールジアクリレート、ヒ
ドロキシピバリン酸エステルネオペンチルグリコール誘
導体のジアクリレート、ネオペンチルグリコール変性ト
リメチo −ルプロパンジアクリレート3官能のものと
してトリメチロールプロパントリアクリレート、ペンタ
エリスリトールトリアクリレート、5官能のものとして
ジペンタエリスリトールモノヒドロキシペンタアクリV
−ト、6官能のものとしてジペンタエリスリトールへキ
サアクリレート等が挙げられる。上記多官能の架橋性単
量体を単独、又は2種以上を混合して用いることができ
、その全組成物中にしめる割合は1〜20重・  i%
の範囲で用いるのが望ましい。1重量係未満の組成物よ
りの硬化ポリマーでは充分な架橋密度のものが得られな
いし逆に20重を係以上の組成物は相溶性が低下して濁
Dt生じる。
The polyfunctional crosslinkable monomer used in the present invention includes, for example, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, diethylene glycol diacrylate, neo Pentyl glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, hydroxypivalic acid ester neopentyl glycol diacrylate, hydroxypivalic acid ester neopentyl glycol derivative diacrylate, neopentyl glycol modified trimethio-propane diacrylate 3 Trimethylolpropane triacrylate, pentaerythritol triacrylate as functional ones, dipentaerythritol monohydroxypentaacrylate V as pentafunctional ones
- and hexa-functional ones include dipentaerythritol hexaacrylate and the like. The above polyfunctional crosslinking monomers can be used alone or in combination of two or more, and the proportion in the total composition is 1 to 20% by weight/i%.
It is desirable to use it within the range of . A cured polymer made from a composition having a weight of less than 1 weight will not provide a sufficient crosslinking density, while a composition having a weight of 20 weight or more will result in poor compatibility and a turbid Dt.

光重合開始剤としては一般に紫外線硬化型塗料の開始剤
、増感剤として用いられている各種のものが使用でき、
例えば、ベンゾイン、ペンツインメチルエーテル、ベン
ゾインエチルエーテル、ベンゾインイソプロピルエーテ
ル、ベンゾインブチルエーテル、2−メチルベンゾイン
As the photopolymerization initiator, various kinds of materials that are generally used as initiators and sensitizers for ultraviolet curable paints can be used.
For example, benzoin, pentuin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, 2-methylbenzoin.

ベンゾフェノン、ミヒラーズケトン、ベンジル、ベンジ
ルジメチルケタール、ベンジルジエチルケタール、アン
トラキノン、メチルアントラキノン、ジアセチル、アセ
トフェノン、ジフェニルジスルフィド、アントラセン等
、またこれらとアミン類など少量の増感助剤と併用した
ものなどが挙げられる。
Examples include benzophenone, Michler's ketone, benzyl, benzyl dimethyl ketal, benzyl diethyl ketal, anthraquinone, methyl anthraquinone, diacetyl, acetophenone, diphenyl disulfide, anthracene, and those used in combination with small amounts of sensitizing aids such as amines.

これら、光重合開始剤の使用量は光硬化性組成物中に0
.1〜10重量部の範囲で含まれていることが好ましい
The amount of these photopolymerization initiators used is 0 in the photocurable composition.
.. It is preferably contained in a range of 1 to 10 parts by weight.

また、本発明で用いる鞘成分樹脂組成物には該組成物の
粘度調整の友めに単量体組成物と、相溶性良好なオリゴ
マー又はポリマーを5〜50重Q 1添加することが望
ましい。
Further, it is desirable to add 5 to 50 weight Q 1 of an oligomer or polymer having good compatibility with the monomer composition to the sheath component resin composition used in the present invention in order to adjust the viscosity of the composition.

また、本発明で用いる鞘成分樹脂組成物には硬化条件や
相溶性などの許容される範囲内で前記以外の添加剤を混
合することが可能である。
Further, additives other than those mentioned above can be mixed into the sheath component resin composition used in the present invention within the allowable range of curing conditions, compatibility, etc.

例えば、重合性不飽和基を含有するオリゴマ−成分を添
加することにより、樹脂組成物の粘度e 1.1整と同
時に硬化速度の向上を図ることが可能である。また光フ
アイバ芯成分との密着性を向上するための改良剤などを
添加することも可能である。
For example, by adding an oligomer component containing a polymerizable unsaturated group, it is possible to adjust the viscosity e of the resin composition to 1.1 and simultaneously improve the curing speed. It is also possible to add an improving agent to improve the adhesion to the optical fiber core component.

〔本発明の効果〕。[Effects of the present invention].

本発明の光ファイバーは従来のフルオロアルキルメタク
リレートポリマーを鞘材として用い、導光性良好な他の
ポリマーを芯とし溶融紡糸して得られた光ファイバーに
比べ耐熱耐、耐屈曲性に優れたものとすることができる
とともに、当該鞘成分形成用組成物は紫外線により短時
間に硬化する光重合性樹脂であることから光ファイバの
生産性が高くその生産管理も容易である。
The optical fiber of the present invention uses a conventional fluoroalkyl methacrylate polymer as a sheath material, and has superior heat resistance and bending resistance compared to optical fibers obtained by melt-spinning cores made of other polymers with good light guiding properties. In addition, since the composition for forming the sheath component is a photopolymerizable resin that is cured in a short time by ultraviolet rays, the productivity of optical fibers is high and the production management thereof is easy.

以下実施例により本発明を史に詳細に説明する。The present invention will be explained in detail below with reference to Examples.

実施例1 長鎖フルオロアルキル(メタ)アクリレート単量体とし
て1.1.2.2−テトラハイドロパーフルオロデシル
アクリレート20重量部、短鎖フルオロアルキル(メタ
)アクリレート単量体としてトリフルオロエチルアクリ
レート80重量部、多管能性単量体として1.6−ヘキ
サンシオールジアクリレート7重量部及び光重合開始剤
としてベンジルジメチルケタール(チバガイギー社製、
商品名イルガキュア651)3重量部を室温で混合して
光硬化性樹脂組成物CAIを得た。この樹脂組成物〔A
]をガラス板上に厚さ100μmに流延し、ポリエステ
ルフィルムで密着カバーして試料を作成した。この試料
に、高圧水銀灯を内蔵した紫外線露光装置f fr:用
い、B OW / cmの露光を約1秒間行い硬化物を
得た。
Example 1 20 parts by weight of 1.1.2.2-tetrahydroperfluorodecyl acrylate as a long-chain fluoroalkyl (meth)acrylate monomer, 80 parts by weight of trifluoroethyl acrylate as a short-chain fluoroalkyl (meth)acrylate monomer Parts by weight, 7 parts by weight of 1,6-hexanethiol diacrylate as a polyfunctional monomer, and benzyl dimethyl ketal (manufactured by Ciba Geigy) as a photopolymerization initiator.
A photocurable resin composition CAI was obtained by mixing 3 parts by weight of Irgacure (trade name: Irgacure 651) at room temperature. This resin composition [A
] was cast onto a glass plate to a thickness of 100 μm and tightly covered with a polyester film to prepare a sample. This sample was exposed to light at B OW / cm for about 1 second using an ultraviolet exposure device f fr: equipped with a high-pressure mercury lamp to obtain a cured product.

この硬化物は屈折率が1.589の透明でしなやかなフ
ィルムであった。このフィルムt−150℃で100時
間処理したのちも透明性は変化しなかった。
This cured product was a transparent and flexible film with a refractive index of 1.589. Even after this film was treated at t-150° C. for 100 hours, the transparency did not change.

外径が約200μmの石英コアファイバーを、前記光硬
化性樹脂組成物[A]からなるコーティング浴を通して
約1m/秒の速度で引き取り高圧水銀灯を内蔵した紫外
線露光装置を用い、80 W / cmの照射エネルギ
ーレベルで紫外mを照射して、外径300μmのポリマ
ークラッド石英光ファイバーを得た。この光ファイバー
は850 nm 波長での光伝送損失が84B/kmと
伝送損失は良好であり、かつ150℃で20時間処理し
たのちも伝送損失は変化しなかった。
A quartz core fiber with an outer diameter of about 200 μm was passed through a coating bath made of the photocurable resin composition [A] at a speed of about 1 m/sec, and was exposed to an ultraviolet light exposure device with a built-in high-pressure mercury lamp at 80 W/cm. A polymer-clad quartz optical fiber with an outer diameter of 300 μm was obtained by irradiating ultraviolet light at an irradiation energy level of m. This optical fiber had a good optical transmission loss of 84 B/km at a wavelength of 850 nm, and the transmission loss did not change even after being treated at 150° C. for 20 hours.

実施例2〜6 第1表に示した光硬化型組成物に対し、実施例1で用い
た光重合開始剤を加えた光硬化性組成物を作り実施例1
と同様にしてフィルム状硬化物を得た。このフィルム状
硬化物の屈折率を合わせて示す。いずれの光硬化性樹脂
組成物のフィルムも透明でしなやかなものであった。
Examples 2 to 6 A photocurable composition was prepared by adding the photopolymerization initiator used in Example 1 to the photocurable composition shown in Table 1. Example 1
A film-like cured product was obtained in the same manner as above. The refractive index of this film-like cured product is also shown. The films of all photocurable resin compositions were transparent and flexible.

又実施例1と同様に石英ファイバーに被覆してコアクラ
ッド型光ファイバを作りその光伝送損失、耐熱性等を評
価したところ実施列1と同様に低伝送損失の光ファイバ
であり優れた耐熱特性’r: 4mえていることを確め
た。
Similarly to Example 1, a core clad optical fiber was made by coating quartz fiber and its optical transmission loss, heat resistance, etc. were evaluated. As in Example 1, the optical fiber had low transmission loss and had excellent heat resistance characteristics. 'r: I confirmed that it was 4 meters higher.

第1表 実施例7 外径が約1000μmのポリカーボネートコアファイバ
を、実施列3の光硬化性樹脂組成物からなる浴を通して
約1m/秒の速度で引き取り高圧水銀灯を内蔵した紫外
i露光装置を用い、80W/cWKの照射エネルギーレ
ベルで照射して外径1050μmの光ファイバーを得九
。この光ファイバーは770 nm波長での損失が10
00d B /kmであった。これを130℃で300
時間処理した後損失を測定すると770 nm波長で1
050 an/kmと良好であった。
Table 1 Example 7 A polycarbonate core fiber with an outer diameter of about 1000 μm was taken through a bath made of the photocurable resin composition of Example 3 at a speed of about 1 m/sec using an ultraviolet i exposure device equipped with a built-in high-pressure mercury lamp. , an optical fiber with an outer diameter of 1050 μm was obtained by irradiation at an irradiation energy level of 80 W/cWK. This optical fiber has a loss of 10 at a wavelength of 770 nm.
00dB/km. This was heated to 130℃ for 300 minutes.
When the loss is measured after time treatment, it is 1 at a wavelength of 770 nm.
The speed was good at 0.050 an/km.

比較例 外径が200μmの石英コアファイバーをフッ化ビニリ
デン樹脂を用いて外径300μmの光ファイバーを得た
。この光ファイバーは800℃m波長での損失は100
4B/kmであったがこれを100℃で100時間処理
したところ損失は800 nm波長で3o o an/
kmに増加した。
An optical fiber with an outer diameter of 300 μm was obtained by using vinylidene fluoride resin from a quartz core fiber with a comparative exception diameter of 200 μm. This optical fiber has a loss of 100 at a wavelength of 800°C.
4B/km, but when this was treated at 100°C for 100 hours, the loss was 3o an/km at a wavelength of 800 nm.
km.

Claims (2)

【特許請求の範囲】[Claims] (1)芯−鞘構造の光ファイバの鞘成分が (イ)一般式 ▲数式、化学式、表等があります▼ (1) 〔式中YはH又はCH_3 XはH又はF lは1以上の整数 nは6〜12の整数〕 で表わされる長鎖フルオロアルキル(メタ)アクリレー
トの少なくとも1種と (ロ)一般式 ▲数式、化学式、表等があります▼(2) 〔式中YはH又はCH_3、XはH又はF nは1〜3の整数〕 で表わされる短鎖フルオロアルキル(メタ)アクリレー
トの少なくとも1種 (ハ)1分子中に少なくとも2個以上の重合性官能基を
有する架橋性単量体の少なくとも1種 (ニ)光重合開始剤 とよりなる光硬化性組成物の硬化物にて構成されている
ことを特徴とする光ファイバ。
(1) The sheath component of an optical fiber with a core-sheath structure is (a) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) [In the formula, Y is H or CH_3 X is H or F l is 1 or more Integer n is an integer from 6 to 12] At least one long-chain fluoroalkyl (meth)acrylate represented by (b) General formula ▲ Numerical formula, chemical formula, table, etc. ▼ (2) [In the formula, Y is H or CH_3, X is H or F n is an integer of 1 to 3] At least one short chain fluoroalkyl (meth)acrylate (c) Crosslinkable having at least two or more polymerizable functional groups in one molecule An optical fiber comprising a cured product of a photocurable composition comprising at least one monomer (d) photopolymerization initiator.
(2)光硬化性組成物として一般式(1)で表わされる
長鎖フルオロアルキル(メタ)アクリレート1〜50重
量%、一般式(2)で表わされる短鎖フルオロアルキル
(メタ)アクリレート50〜90重量%と、1分子中に
2個以上の重合性官能基をもつ、架橋性単量体1〜20
重量%及び光重合開始剤0.1〜10重量%とよりなる
組成物を用いることを特徴とする特許請求の範囲第1項
記載の光ファイバ。
(2) 1 to 50% by weight of a long-chain fluoroalkyl (meth)acrylate represented by general formula (1) and 50 to 90% by weight of a short-chain fluoroalkyl (meth)acrylate represented by general formula (2) as a photocurable composition Weight% and crosslinkable monomers having two or more polymerizable functional groups in one molecule 1 to 20
% by weight and a photopolymerization initiator from 0.1 to 10% by weight.
JP62082704A 1986-08-06 1987-04-03 Optical fiber Pending JPS63249112A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62082704A JPS63249112A (en) 1987-04-03 1987-04-03 Optical fiber
CA000543687A CA1317064C (en) 1986-08-06 1987-08-04 Plastic cladding composition for silica or glass core optical fiber, and silica or glass core optical fiber prepared therefrom
CA000543686A CA1317063C (en) 1986-08-06 1987-08-04 Plastic cladding composition for plastic core optical fiber, and plastic core optical fiber prepared therefrom
EP87306920A EP0256765B1 (en) 1986-08-06 1987-08-05 Plastic cladding composition for plastic core optical fiber, and plastic core optical fiber prepared therefrom
EP87306921A EP0257863B1 (en) 1986-08-06 1987-08-05 Plastic cladding composition for silica or glass core optical fiber, and silica or glass core optical fiber prepared therefrom
DE87306921T DE3785520T2 (en) 1986-08-06 1987-08-05 Plastic coating composition for an optical silica or glass core fiber and optical silica or glass core fiber thus obtained.
DE8787306920T DE3777911D1 (en) 1986-08-06 1987-08-05 PLASTIC COATING COMPOSITION FOR OPTICAL FIBER WITH PLASTIC CORE AND OPTICAL FIBER OBTAINED THEREFORE WITH PLASTIC CORE.
KR1019870008617A KR960014120B1 (en) 1986-08-06 1987-08-06 Plastic cladding composition for plastic core fiber and plastic core optical fiber prepared therefrom
KR1019870008616A KR880003201A (en) 1986-08-06 1987-08-06 Plastic Cladding Compositions and Silica or Glass Core Optical Fibers Prepared therefrom
US07/443,794 US5022737A (en) 1986-08-06 1989-11-22 Plastic cladding composition for plastic core optical fiber, and plastic core optical fiber prepared therefrom
US07/613,972 US5238974A (en) 1986-08-06 1990-11-15 Plastic cladding composition for silica or glass core optical fiber, and silica or glass core optical fiber prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62082704A JPS63249112A (en) 1987-04-03 1987-04-03 Optical fiber

Publications (1)

Publication Number Publication Date
JPS63249112A true JPS63249112A (en) 1988-10-17

Family

ID=13781787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62082704A Pending JPS63249112A (en) 1986-08-06 1987-04-03 Optical fiber

Country Status (1)

Country Link
JP (1) JPS63249112A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298514A (en) * 1991-01-31 1992-10-22 Dainippon Ink & Chem Inc Curable composition and optical fiber coated therewith
WO2015111506A1 (en) * 2014-01-23 2015-07-30 三菱レイヨン株式会社 Optical fiber, optical fiber cable, and communication equipment
WO2017110083A1 (en) * 2015-12-24 2017-06-29 富士フイルム株式会社 Method for producing soluble cross-linked polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298514A (en) * 1991-01-31 1992-10-22 Dainippon Ink & Chem Inc Curable composition and optical fiber coated therewith
WO2015111506A1 (en) * 2014-01-23 2015-07-30 三菱レイヨン株式会社 Optical fiber, optical fiber cable, and communication equipment
JPWO2015111506A1 (en) * 2014-01-23 2017-03-23 三菱レイヨン株式会社 Optical fiber, optical fiber cable and communication equipment
US9798043B2 (en) 2014-01-23 2017-10-24 Mitsubishi Chemical Corporation Optical fiber, optical fiber cable and communication equipment
JP2019204094A (en) * 2014-01-23 2019-11-28 三菱ケミカル株式会社 Optical fiber, optical fiber cable, and communication device
WO2017110083A1 (en) * 2015-12-24 2017-06-29 富士フイルム株式会社 Method for producing soluble cross-linked polymer
JPWO2017110083A1 (en) * 2015-12-24 2018-07-12 富士フイルム株式会社 Method for producing soluble cross-linked polymer

Similar Documents

Publication Publication Date Title
JPS6410019B2 (en)
JPH05247142A (en) Copolymer having photopolymerizable group, composition containing the same, and process for cladding optical fiber with the composition
KR960014120B1 (en) Plastic cladding composition for plastic core fiber and plastic core optical fiber prepared therefrom
US5730911A (en) Process for the manufacture of a substrate made of transparent organic glass and substrate thus obtained
CN1215098C (en) Photo-polymers and use thereof
JPS63249112A (en) Optical fiber
JPS63248807A (en) Photosetting composition
JP2871086B2 (en) Optical fiber cladding material
JPH01106001A (en) Resin composition for optical fiber sheath
JP2003506500A (en) Polymerizable composition for producing transparent polymer substrate, transparent polymer substrate obtained thereby and use thereof for lens
JPH03154007A (en) Organic optical waveguide
JPH03143945A (en) Transparent mixed resin composition
JP3130165B2 (en) Transparent resin composition
JP3130169B2 (en) Transparent mixed resin composition
JPS6340104A (en) Optical fiber
JPH01109308A (en) Heat-resistant sheath composition for optical fiber
JP3140593B2 (en) Transparent mixed resin composition and cured resin composition
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JP2651700B2 (en) Transparent mixed resin composition
JPH01188803A (en) Optical fiber made of plastic clad quartz core
JPH09258041A (en) Distributed refractive index type plastic optical fiber and its production
JPS6343104A (en) Optical fiber
JPH01289803A (en) Transparent mixed resin composition
JPS63208805A (en) Production of optical fiber
JPS59177502A (en) Production of preform rod