JPH04369852A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPH04369852A
JPH04369852A JP17192991A JP17192991A JPH04369852A JP H04369852 A JPH04369852 A JP H04369852A JP 17192991 A JP17192991 A JP 17192991A JP 17192991 A JP17192991 A JP 17192991A JP H04369852 A JPH04369852 A JP H04369852A
Authority
JP
Japan
Prior art keywords
groove
semiconductor layer
oxide film
polycrystalline semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17192991A
Other languages
Japanese (ja)
Inventor
Kazuhide Rikuta
陸田 和秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17192991A priority Critical patent/JPH04369852A/en
Publication of JPH04369852A publication Critical patent/JPH04369852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable the upsides of the isolated parts on the same substrate to be lessened in level dispersion by a method wherein the upside of a polycrystalline semiconductor layer buried in a groove is set at a certain level by control in a trench isolation method. CONSTITUTION:A polycrystalline semiconductor layer is formed on the whole surface of a substrate 21 filling a groove 24, an oxide film 22 is formed on the upside through the implantation of oxygen ions and a thermal treatment, and the polycrystalline semiconductor layer is etched back making the oxide film 22 serve as an etching terminal point, whereby the polycrystalline semiconductor layer is left only inside the groove.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体集積回路装置の
製造方法に係り、特にトレンチ分離構造の製造法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit device, and more particularly to a method of manufacturing a trench isolation structure.

【0002】0002

【従来の技術】近年、半導体集積回路装置の高集積化が
急激に進み、素子の微細化の度合を高める工夫が種々の
方法で実施されている。特にバイポーラ型半導体集積回
路装置に於いては、素子の微細化と相俟って、素子分離
技術にも改良が加えられ、装置の高性能化に寄与してい
る。
2. Description of the Related Art In recent years, the degree of integration of semiconductor integrated circuit devices has rapidly progressed, and various methods have been implemented to increase the degree of miniaturization of elements. Particularly in bipolar semiconductor integrated circuit devices, along with the miniaturization of elements, improvements have also been made to element isolation technology, contributing to higher performance of the devices.

【0003】最近の素子分離技術は、半導体基板面に対
し垂直にエッチングできる反応性イオン・エッチング技
術(以下RIE技術と呼ぶ)を用いた溝堀り工程と、多
結晶シリコンによる溝の埋め戻し及び平坦化工程を組み
合わせたトレンチ分離技術が主流となっており、微細化
された素子分離の最先端技術として位置付けられている
[0003] Recent device isolation techniques include a trench digging process using reactive ion etching technology (hereinafter referred to as RIE technology) that can be etched perpendicularly to the semiconductor substrate surface, and a trench backfilling process using polycrystalline silicon. Trench isolation technology that combines a planarization process has become mainstream, and is positioned as the most advanced technology for miniaturized element isolation.

【0004】トレンチ分離構造を製造する場合の一般的
方法を図4〜図6を参照して説明する。まず図4(a)
に示すように、P型シリコン基板部に約2μmの厚さに
N型エピタキシャル層を成長させた半導体基板11の表
面に、熱酸化により、厚さ約1000Åの酸化膜12を
形成する。次に、その酸化膜12に公知のホトリソ・エ
ッチング技術を用いて、図4(b)に示すように開口部
13を形成する。次に酸化膜12をマスクとして、開口
部13を通してRIE技術により半導体基板11をエッ
チングし、該基板11に図4(c)に示すようにトレン
チ分離用の溝14を形成する。
A general method for manufacturing trench isolation structures will now be described with reference to FIGS. 4-6. First, Figure 4(a)
As shown in FIG. 2, an oxide film 12 with a thickness of about 1000 Å is formed by thermal oxidation on the surface of a semiconductor substrate 11 on which an N-type epitaxial layer is grown to a thickness of about 2 μm on a P-type silicon substrate. Next, an opening 13 is formed in the oxide film 12 using a known photolithographic etching technique, as shown in FIG. 4(b). Next, using the oxide film 12 as a mask, the semiconductor substrate 11 is etched through the opening 13 by RIE technique, and a groove 14 for trench isolation is formed in the substrate 11 as shown in FIG. 4(c).

【0005】次に、例えばエネルギー50KeV ,ド
ーズ量1×1013ions/cm2 の条件で、半導
体基板11面に垂直に硼素のイオン注入を行い、溝14
の底部に、チャンネルストッパーの役目をするP型領域
(図示せず)を形成する。その後、半導体基板11を1
000℃の水蒸気雰囲気中で酸化することにより、図5
(a)に示すように溝14の内壁に約2000Åの厚さ
の内壁酸化膜15を成長させる。次に、溝14を含む基
板11上の全面に減圧CVD装置を用いて公知の方法で
図5(b)に示すように多結晶シリコン16を生成する
。この多結晶シリコン16は、溝14を十分充填できる
厚さで生成する。続いて、多結晶シリコン16上に図5
(c)に示すようにフォトレジスト17をスピナー法に
て塗布し、表面の平坦化を図る。
Next, boron ions are implanted perpendicularly to the surface of the semiconductor substrate 11 under the conditions of an energy of 50 KeV and a dose of 1×10 13 ions/cm 2 , for example, to form the grooves 14 .
A P-type region (not shown) is formed at the bottom of the channel to serve as a channel stopper. After that, the semiconductor substrate 11 is
By oxidizing in a steam atmosphere at 000°C,
As shown in (a), an inner wall oxide film 15 with a thickness of about 2000 Å is grown on the inner wall of the trench 14. Then, as shown in FIG. Next, polycrystalline silicon 16 is produced on the entire surface of the substrate 11 including the grooves 14 by a known method using a low pressure CVD apparatus, as shown in FIG. 5(b). This polycrystalline silicon 16 is produced to a thickness sufficient to fill the groove 14. Subsequently, on the polycrystalline silicon 16,
As shown in (c), a photoresist 17 is applied using a spinner method to planarize the surface.

【0006】その後、公知のRIEエッチング技術を用
いて、フォトレジスト17と多結晶シリコン16を同じ
速度で、酸化膜12が露出するまで図6(a)に示すよ
うにエッチバックし、多結晶シリコン16を溝14内に
のみ残す。その後、残存多結晶シリコン16の上面に図
6(b)に示すように、約2000Åの厚さのキャップ
シリコン酸化膜18を形成する。以上で従来のトレンチ
分離が完了する。
Thereafter, using a known RIE etching technique, the photoresist 17 and the polycrystalline silicon 16 are etched back at the same speed until the oxide film 12 is exposed, as shown in FIG. 16 is left only in the groove 14. Thereafter, a cap silicon oxide film 18 having a thickness of about 2000 Å is formed on the upper surface of the remaining polycrystalline silicon 16, as shown in FIG. 6(b). Conventional trench isolation is thus completed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の製造方法では、フォトレジスト17と多結
晶シリコン16を同一速度でエッチバックする時、酸化
膜12が露出した時点でエッチング処理を中止しても、
エッチング速度が大きい為、溝14に埋め込まれた多結
晶シリコン16の上面を一定位置に制御することが非常
に困難であった。また、同一基板上の複数の分離部間で
も、溝14内の多結晶シリコン16の上面位置にバラツ
キが発生し、基板上の平坦性を害し、半導体集積回路装
置の高集積化にとって大きな障害となる問題があった。
However, in the conventional manufacturing method as described above, when the photoresist 17 and the polycrystalline silicon 16 are etched back at the same speed, the etching process is stopped when the oxide film 12 is exposed. Even if
Since the etching rate is high, it is very difficult to control the upper surface of the polycrystalline silicon 16 embedded in the groove 14 to a constant position. Furthermore, variations occur in the top surface position of the polycrystalline silicon 16 within the trench 14 even between multiple isolation portions on the same substrate, which impairs the flatness of the substrate and becomes a major hindrance to higher integration of semiconductor integrated circuit devices. There was a problem.

【0008】この発明は上記の点に鑑みなされたもので
、溝内の埋込み多結晶半導体層の上面を一定位置に制御
でき、同一基板上の複数の分離部間での上面位置のバラ
ツキもなくせ、優れたトレンチ分離を形成できる半導体
集積回路装置の製造方法を提供することを目的とする。
The present invention has been made in view of the above points, and it is possible to control the top surface of the buried polycrystalline semiconductor layer in the trench at a constant position, and eliminate variations in the top surface position among a plurality of separation parts on the same substrate. An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit device that can form excellent trench isolation.

【0009】[0009]

【課題を解決するための手段】この発明では、半導体基
板の素子分離部に溝を堀り、この溝を充填するように全
面に多結晶半導体層を形成した後、酸素のイオン注入と
熱処理により前記多結晶半導体層内に溝の上面で酸化膜
を形成し、この酸化膜をエッチング終点として多結晶半
導体層をエッチバックし、溝内にのみ多結晶半導体層を
残存させる。
[Means for Solving the Problems] In the present invention, a groove is dug in the element isolation portion of a semiconductor substrate, a polycrystalline semiconductor layer is formed on the entire surface so as to fill the groove, and then oxygen ion implantation and heat treatment are performed. An oxide film is formed in the polycrystalline semiconductor layer on the upper surface of the trench, and the polycrystalline semiconductor layer is etched back using the oxide film as an etching end point, leaving the polycrystalline semiconductor layer only in the trench.

【0010】0010

【作用】上記この発明においては、多結晶半導体層内に
溝の上面で酸化膜を形成し、この酸化膜をエッチング終
点としてエッチバックするようにしたので、残存多結晶
半導体層(埋込み多結晶半導体層)の上面を、溝の上面
位置に一定に制御することができ、同一基板上の複数の
分離部間でも上面位置のバラツキがなくなる。
[Operation] In the present invention, an oxide film is formed on the upper surface of the trench in the polycrystalline semiconductor layer, and this oxide film is used as the etching end point for etching back. The upper surface of the layer) can be controlled to be at a constant position on the upper surface of the groove, and there is no variation in the upper surface position even among a plurality of separation parts on the same substrate.

【0011】[0011]

【実施例】以下この発明の一実施例を図1〜図3を参照
して説明する。まず図1(a)に示すように、P型シリ
コン基板部に約2μmの厚さにN型エピタキシャル層を
成長させた半導体基板21の表面に、熱酸化により、厚
さ1000〜10000Åの酸化膜22を形成する。次
に、その酸化膜22に公知のホトリソ・エッチング技術
を用いて、図1(b)に示すように開口部23を形成す
る。次に、酸化膜22をマスクとして、開口部23を通
してRIE技術により半導体基板21をエッチングし、
該基板21に図1(c)に示すようにトレンチ分離用の
溝24を形成する。ここで、エッチング条件としては、
例えばSiCl4 とN2 の混合ガスを用い、約0.
5W/cm2 の電力密度を有する13.56MHz 
のRF電力を投入する。すると、約1000Å/分のエ
ッチング速度が得られ、この速度で、エピタキシャル層
の厚さが約2μmの場合、3μm前後の深さに溝24を
形成する。溝24形成後、例えばエネルギー50KeV
 ,ドーズ量1×1013ions/cm2 の条件で
半導体基板21面上に垂直に硼素のイオン注入を行い、
溝24の底部にチャンネルストッパーの役目をするP型
領域(図示せず)を形成する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. First, as shown in FIG. 1(a), an oxide film with a thickness of 1000 to 10000 Å is formed by thermal oxidation on the surface of a semiconductor substrate 21 on which an N-type epitaxial layer is grown to a thickness of about 2 μm on a P-type silicon substrate. 22 is formed. Next, an opening 23 is formed in the oxide film 22 using a known photolithographic etching technique, as shown in FIG. 1(b). Next, using the oxide film 22 as a mask, the semiconductor substrate 21 is etched through the opening 23 by RIE technology,
A groove 24 for trench isolation is formed in the substrate 21 as shown in FIG. 1(c). Here, the etching conditions are as follows:
For example, using a mixed gas of SiCl4 and N2, approximately 0.
13.56MHz with a power density of 5W/cm2
Turn on RF power. As a result, an etching rate of about 1000 Å/min is obtained, and at this rate, when the thickness of the epitaxial layer is about 2 μm, the groove 24 is formed to a depth of about 3 μm. After forming the groove 24, the energy is 50 KeV, for example.
, boron ions were implanted vertically onto the surface of the semiconductor substrate 21 at a dose of 1×1013 ions/cm2.
A P-type region (not shown) is formed at the bottom of the groove 24 to serve as a channel stopper.

【0012】次に、半導体基板21を酸化することによ
り、図2(a)に示すように溝24の内壁に100〜5
000Åの厚さの内壁酸化膜25を成長させる。その後
、溝24を含む基板21上の全面に減圧CVD装置を用
いて公知の方法で図2(b)に示すように多結晶シリコ
ン26を生成させる。この多結晶シリコン26の厚さは
、溝24を十分充填できれば良い。続いて、多結晶シリ
コン26上に図2(c)に示すようにフォトレジスト2
7をスピナー法にて塗布し、表面の平坦化を図る。
Next, by oxidizing the semiconductor substrate 21, as shown in FIG.
An inner wall oxide film 25 with a thickness of 0.000 Å is grown. Thereafter, polycrystalline silicon 26 is formed on the entire surface of the substrate 21 including the grooves 24 by a known method using a low pressure CVD apparatus, as shown in FIG. 2(b). The thickness of this polycrystalline silicon 26 may be sufficient as long as it can sufficiently fill the groove 24. Subsequently, a photoresist 2 is applied on the polycrystalline silicon 26 as shown in FIG. 2(c).
7 was applied using a spinner method to flatten the surface.

【0013】その後、公知のRIE技術を用いて、フォ
トレジスト27と多結晶シリコン26を同じ速度でエッ
チバックする。例えばSF6 とO2 の混合ガスを用
い、約0.2W/cm2 の電力を投入し、約3000
Å/分の速度でフォトレジスト27と多結晶シリコン2
6をエッチバックする。そして、このエッチバックでは
、時間エッチングにより、図3(a)に示すように酸化
膜22上に1000〜5000Åの多結晶シリコン26
を残す。その後、同図の矢印で示すようにイオン注入技
術により、酸素イオン(16O+ )を多結晶シリコン
26に打ち込む。例えば加速エネルギー150KeV 
,ドーズ量1.2×1018ions/cm2 で打ち
込む。そして、この酸素イオンの打ち込み後、熱処理を
行うことにより、図3(b)に示すように多結晶シリコ
ン26の酸素イオンが打込まれた部分、すなわち、多結
晶シリコン26の溝24上面部分にキャップシリコン酸
化膜28を形成する。次に、公知のRIE技術を用いて
多結晶シリコン26を再度エッチバックする。例えばS
F6 とO2 の混合ガスを用い、約0.2W/cm2
 の電力を投入し、約3000Å/分の速度で多結晶シ
リコン26をエッチバックする。そして、図3(c)に
示すように、酸化膜22とキャップシリコン酸化膜28
が露出したところで、エッチングを終了し、多結晶シリ
コン26を溝24内にのみ残す。以上でこの発明の一実
施例のトレンチ分離が完了する。
Thereafter, the photoresist 27 and the polycrystalline silicon 26 are etched back at the same speed using a known RIE technique. For example, using a mixed gas of SF6 and O2, applying power of about 0.2 W/cm2,
Photoresist 27 and polycrystalline silicon 2 at a rate of Å/min
Etch back 6. In this etch-back, as shown in FIG.
leave. Thereafter, oxygen ions (16O+) are implanted into the polycrystalline silicon 26 by ion implantation technology, as indicated by the arrows in the figure. For example, acceleration energy 150KeV
, at a dose of 1.2×1018 ions/cm2. After implanting the oxygen ions, heat treatment is performed to form the portion of the polycrystalline silicon 26 into which the oxygen ions have been implanted, that is, the top surface of the groove 24 of the polycrystalline silicon 26, as shown in FIG. 3(b). A cap silicon oxide film 28 is formed. Next, polycrystalline silicon 26 is etched back again using a known RIE technique. For example, S
Approximately 0.2W/cm2 using a mixed gas of F6 and O2
The polycrystalline silicon 26 is etched back at a rate of about 3000 Å/min. Then, as shown in FIG. 3(c), the oxide film 22 and the cap silicon oxide film 28
When the polycrystalline silicon 26 is exposed, the etching is terminated, leaving the polycrystalline silicon 26 only in the groove 24. This completes the trench isolation of one embodiment of the present invention.

【0014】[0014]

【発明の効果】以上詳細に説明したように、この発明に
よれば、溝を充填して基板上の全面に形成した多結晶半
導体層内に、酸素のイオン注入と熱処理により溝の上面
で酸化膜を形成し、この酸化膜をエッチング終点として
多結晶半導体層をエッチバックするようにしたので、残
存多結晶半導体層(埋込み多結晶半導体層)の上面を、
溝の上面位置に一定に制御することができ、同一基板上
の複数の分離部間でも上面位置のバラツキを無くすこと
ができる。従って、以後の製造工程、特に配線工程に於
いて、トレンチ溝上面の段差による配線の段切れが発生
することがなくなり、半導体集積回路装置の歩留り向上
が期待できる。また、前記酸化膜をキャップ酸化膜とし
て使用し得、新たにキャップ酸化膜を生成する必要がな
くなる。
As described in detail above, according to the present invention, oxygen ion implantation and heat treatment are performed to oxidize the top surface of the trench in a polycrystalline semiconductor layer that is formed on the entire surface of the substrate by filling the trench. By forming a film and etching back the polycrystalline semiconductor layer using this oxide film as the etching end point, the top surface of the remaining polycrystalline semiconductor layer (buried polycrystalline semiconductor layer)
The top surface position of the groove can be controlled to be constant, and variations in the top surface position can be eliminated even among a plurality of separation parts on the same substrate. Therefore, in the subsequent manufacturing process, particularly in the wiring process, disconnections in the wiring due to the level difference on the top surface of the trench groove will not occur, and an improvement in the yield of semiconductor integrated circuit devices can be expected. Furthermore, the oxide film can be used as a cap oxide film, eliminating the need to newly generate a cap oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例の一部を示す工程断面図で
ある。
FIG. 1 is a process sectional view showing a part of an embodiment of the present invention.

【図2】この発明の一実施例の一部を示す工程断面図で
ある。
FIG. 2 is a process sectional view showing a part of an embodiment of the present invention.

【図3】この発明の一実施例の一部を示す工程断面図で
ある。
FIG. 3 is a process sectional view showing a part of an embodiment of the present invention.

【図4】従来の製造方法の一部を示す工程断面図である
FIG. 4 is a process sectional view showing a part of a conventional manufacturing method.

【図5】従来の製造方法の一部を示す工程断面図である
FIG. 5 is a process sectional view showing a part of a conventional manufacturing method.

【図6】従来の製造方法の一部を示す工程断面図である
FIG. 6 is a process sectional view showing a part of a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

21  半導体基板 24  溝 26  多結晶シリコン 28  キャップシリコン酸化膜 21 Semiconductor substrate 24 groove 26 Polycrystalline silicon 28 Cap silicon oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板の素子分離部に溝を堀り、
この溝を充填するように全面に多結晶半導体層を形成し
た後、酸素のイオン注入と熱処理により前記多結晶半導
体層内に溝の上面で酸化膜を形成し、この酸化膜をエッ
チング終点として多結晶半導体層をエッチバックし、溝
内にのみ多結晶半導体層を残存させることを特徴とする
半導体集積回路装置の製造方法。
[Claim 1] A groove is dug in an element isolation part of a semiconductor substrate,
After forming a polycrystalline semiconductor layer over the entire surface so as to fill this groove, an oxide film is formed in the polycrystalline semiconductor layer on the upper surface of the groove by oxygen ion implantation and heat treatment, and this oxide film is used as the etching end point to form a polycrystalline semiconductor layer. A method for manufacturing a semiconductor integrated circuit device, characterized by etching back a crystalline semiconductor layer and leaving a polycrystalline semiconductor layer only in the groove.
JP17192991A 1991-06-18 1991-06-18 Manufacture of semiconductor integrated circuit device Pending JPH04369852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17192991A JPH04369852A (en) 1991-06-18 1991-06-18 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17192991A JPH04369852A (en) 1991-06-18 1991-06-18 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH04369852A true JPH04369852A (en) 1992-12-22

Family

ID=15932456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17192991A Pending JPH04369852A (en) 1991-06-18 1991-06-18 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH04369852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382556B1 (en) * 2001-06-27 2003-05-09 주식회사 하이닉스반도체 Method for manufacturing isolation of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382556B1 (en) * 2001-06-27 2003-05-09 주식회사 하이닉스반도체 Method for manufacturing isolation of semiconductor device

Similar Documents

Publication Publication Date Title
US6004864A (en) Ion implant method for forming trench isolation for integrated circuit devices
JPH04234146A (en) Formation method of field oxide film for semiconductor device
JPH1174340A (en) Manufacture of semiconductor device
US20030170964A1 (en) Oxidation of ion implanted semiconductors
JPH1074828A (en) Improved manufacture of separately constituting body in integrated circuit
KR100256830B1 (en) Method for forming planarized field isolation regions
JPH0348656B2 (en)
JPH11145273A (en) Manufacture of semiconductor device
JP2001068543A (en) Manufacture of semiconductor device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPH04369852A (en) Manufacture of semiconductor integrated circuit device
US6479328B1 (en) Method of fabricating SOI wafer
JPH06291178A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH06314739A (en) Manufacture of semiconductor device
JPH0555362A (en) Manufacture of semiconductor integrated circuit device
JPS5835938A (en) Manufacture of semiconductor device
JPH01143231A (en) Manufacture of semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
JPH05121537A (en) Manufacture of semiconductor device
JP2783200B2 (en) Method for manufacturing semiconductor device
KR950005273B1 (en) Manufacturing method of semiconductor device
KR101016352B1 (en) Method of forming an isolation layer in a semiconductor device
JP3958454B2 (en) Method for forming isolation film of semiconductor element
JPS594046A (en) Semiconductor device and fabrication thereof