JPH01143231A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01143231A
JPH01143231A JP30091187A JP30091187A JPH01143231A JP H01143231 A JPH01143231 A JP H01143231A JP 30091187 A JP30091187 A JP 30091187A JP 30091187 A JP30091187 A JP 30091187A JP H01143231 A JPH01143231 A JP H01143231A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon film
insulating layer
film
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30091187A
Other languages
Japanese (ja)
Inventor
Masaaki Ohira
正明 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP30091187A priority Critical patent/JPH01143231A/en
Publication of JPH01143231A publication Critical patent/JPH01143231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stop etching in the upper part of an insulating layer formed in a polycrystalline silicon film by the selectivity ratio of etching between the polycrystalline silicon film and the insulating layer and obtain a flat surface easily by a method wherein, after trenches are formed, the polycrystalline silicon film is built up and nitrogen or oxygen ions are implanted into the polycrystalline silicon film and then a thermal treatment at a required temperature is carried out to form the insulating film in the polycrystalline silicon film. CONSTITUTION:Trenches 3 with width of 1mum are formed in the surface of a P-type semiconductor substrate 1 on which an N-type impurity layer 2 is formed by epitaxial growth. Then an insulating film 4 composed of a thin silicon film is formed and then a polycrystalline silicon film 5 with a thickness of 1mum is built up so as to fill the trenches 3. Then nitrogen ions are implanted into the polycrystalline silicon film 5 under the conditions of an acceleration voltage of 460keV and a dosage of 1X10<13>-10X10<13>cm<-3>. Then a thermal treatment is carried out in an inert gas atmosphere at the temperature of 900-1000 deg.C to form an insulating layer 6 made of silicon nitride at the boundary between the insulating film 4 and the polycrystalline silicon layer 5. Further, the polycrystalline silicon film 5 is removed by an etching technology and the insulating layer 6 is exposed to form isolated trenches. The insulating layer 6 is used as an etching stopper layer and a very smoothly flat surface can be obtained.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に絶縁分離溝
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Application Field The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an isolation trench.

〔従来の技術〕[Conventional technology]

従来、この種の半導体装置の製造方法は、まず、第2図
(a)に示すように、例えば表面にN型不純物層2を有
するP型半導体(シリコン)基板1に所定パターンの講
3を形成し、しかる後に、第2図(b )に示すように
、溝3の表面に酸化又はCVD法で絶縁膜4をつけ、そ
の後に分離部を埋込むために多結晶シリコン[5を成長
させ、次に、第2図(c)に示すように、エッチハック
法を用いて全面エツチングにより千世化を行なって素子
領域表面を露出させることにより絶縁分離溝を形成して
いた。
Conventionally, in the manufacturing method of this type of semiconductor device, first, as shown in FIG. 2(a), a predetermined pattern 3 is formed on a P-type semiconductor (silicon) substrate 1 having, for example, an N-type impurity layer 2 on the surface. After that, as shown in FIG. 2(b), an insulating film 4 is formed on the surface of the groove 3 by oxidation or CVD, and then polycrystalline silicon [5] is grown to fill the isolation part. Next, as shown in FIG. 2(c), the entire surface is etched using the etch hack method to expose the surface of the element region, thereby forming an insulating isolation groove.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ト述した従来の半導体装置の製造方法は、多結晶シリコ
ンH9のエッチバックにより平坦化を行なっているので
、多結晶シリコン膜成長時の気相条件及び基板状態によ
って結晶粒径等が大きく変化し、エツチング速度がばら
つくためともずれは714部と素子形成部の間で段差か
できやすい。又、渚内部に残った。多結晶シリコンの表
面形状もいびつになり、その後の工程に於いて段差被覆
性の悪い電極配線が形成され易く品質又は歩留が低下す
るという欠点がある。
In the conventional semiconductor device manufacturing method described above, the polycrystalline silicon H9 is planarized by etching back, so the crystal grain size etc. vary greatly depending on the gas phase conditions and substrate conditions during polycrystalline silicon film growth. Also, due to variations in etching speed, misalignment tends to create a step between the 714 portion and the element forming portion. Also, it remained inside the beach. The surface shape of the polycrystalline silicon also becomes distorted, and electrode wiring with poor step coverage is likely to be formed in subsequent steps, resulting in a reduction in quality and yield.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板の一主表
面から厚さ方向に向って所定形状の溝を形成する工程と
、前記溝の表面に絶縁膜を被着したのち多結晶シリコン
膜を堆積させる工程と、前記多結晶シリコン膜に窒素又
は酸素をイオン注入したのち熱処理を行ない前記絶縁膜
と前記多結晶シリコン膜の界面近傍に絶縁層を形成する
工程と、前記多結晶シリコン膜をエツチングして前記絶
縁層を露出させる工程とにより絶縁分離溝を形成すると
いうものである。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a groove of a predetermined shape in the thickness direction from one main surface of a semiconductor substrate, and depositing an insulating film on the surface of the groove, and then depositing a polycrystalline silicon film. a step of depositing, a step of ion-implanting nitrogen or oxygen into the polycrystalline silicon film and then performing heat treatment to form an insulating layer near the interface between the insulating film and the polycrystalline silicon film, and etching the polycrystalline silicon film. and exposing the insulating layer to form an insulating isolation trench.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程順に配置した半導体チップの断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining one embodiment of the present invention.

まず、第1図(a)に示すように、表面にN型不純物層
2をエピタキシャル成長法により形成したP型半導体基
板1(シリコン)の表向に幅1μmの溝3をホトリソグ
ラフィー技術とエツチング技術を用いて形成する。
First, as shown in FIG. 1(a), a groove 3 with a width of 1 μm is formed on the surface of a P-type semiconductor substrate 1 (silicon) on which an N-type impurity layer 2 is formed by epitaxial growth using photolithography and etching techniques. Form using.

次に第1図(b)に示すように、薄い酸化シリコンから
なる絶縁膜4を形成し、しかる後に渦3を埋込むために
多結晶シリコンl模5を厚さ1)tm成長する。ここま
では従来例と同しで、ろる。次に、第1図(C)に示す
ように、加速電圧460kev、 ドーズ量1×101
3〜10X10 ”cm−3の条件(投影飛程RPか多
結晶シリコン膜5の厚さ1μm前後になるように)て多
結晶シリコン1195に、窒素をイオン注入し、しかる
漫に不活性カス雰囲気中で温度000〜]00(−)℃
で熱処理を行ない。窒化シリコンからなる絶縁11u 
5の界面に形成する。
Next, as shown in FIG. 1(b), a thin insulating film 4 made of silicon oxide is formed, and then a polycrystalline silicon layer 5 is grown to a thickness of 1) tm in order to bury the vortex 3. Up to this point, it's the same as the conventional example. Next, as shown in FIG. 1(C), the acceleration voltage was 460 kev and the dose was 1×101
Nitrogen ions are implanted into polycrystalline silicon 1195 under conditions of 3 to 10 x 10" cm-3 (so that the projected range RP or the thickness of the polycrystalline silicon film 5 is approximately 1 μm), and then an inert gas atmosphere is introduced. Temperature inside: 000~]00(-)℃
Heat treatment is performed. Insulation 11u made of silicon nitride
Formed at the interface of No.5.

次に第1図<(」)に示すように、多結晶シリコン膜5
をエツチング技術を用いて除去し、絶縁層0を露出させ
絶縁分離溝を形成する。絶縁層6がエツチング阻止層と
なり表面は極めて平坦に仕上る。多結晶シリコン膜5の
エツチング方法は、窒化シリコンと選択性のあるもので
あればどのような方法てもよい。例えは、ウェットエツ
チングならHNO3(20)十HF (1)を用いれば
よく、ドライエツヂンクならS F f、やC(:J’
4を用いれはよい。
Next, as shown in FIG.
is removed using an etching technique to expose the insulating layer 0 and form an insulating isolation trench. The insulating layer 6 serves as an etching prevention layer and the surface is finished extremely flat. The polycrystalline silicon film 5 may be etched by any method as long as it is selective to silicon nitride. For example, for wet etching, HNO3 (20) and HF (1) can be used, and for dry etching, use S F f, or C (:J'
It is good to use 4.

なお、多結晶シリコン膜5の堆積厚さは、表面か平坦に
なるよう渦幅の数倍にjπぶとよい。あるいは、堆積後
にエッチハック法により平坦化してからイオン注入を行
うようにしてもよい。
Note that the deposited thickness of the polycrystalline silicon film 5 is preferably several times the vortex width by jπ so that the surface is flat. Alternatively, the ion implantation may be performed after planarization by an etch hack method after deposition.

又、Q iの代りに酸素をイオン注入してもよい、すな
わち、投影飛程Rpか1μmになるように、加速電圧4
20kevで、ドーズ景1×1014〜10 X 10
14cm−3の注入を行なった後、不活性ガス中におい
て温度1000〜1200℃て熱処理を行ない、酸化シ
リコン絶縁層6を形成してもよいのである。
In addition, oxygen ions may be implanted instead of Qi, that is, the acceleration voltage is set to 4 so that the projected range Rp becomes 1 μm.
At 20kev, dose view 1 x 1014 ~ 10 x 10
After implantation of 14 cm<-3>, heat treatment may be performed at a temperature of 1000 to 1200[deg.] C. in an inert gas to form the silicon oxide insulating layer 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、渦形成後に堆積した多結
晶シリコン膜に窒素又は酸素をイオン注入し、その後に
所定の温度で熱処理を行ない、多結晶シリコン膜内に絶
縁層を形成することにより、その後に絶縁分離領域を平
坦化するために多結晶シリコン膜のエツチングを行なう
とき、絶縁層と多結晶シリコ1ン膜のエツチングの選択
比により絶縁層上部でエツチングか止まり容喝に平坦化
か出来る。このろに絶縁分離領域がフラットになり、段
差被覆性のよい電極配線を形成できるので半導体装置の
高品質化、高歩留化を実現することかできる効果がある
As explained above, the present invention implants nitrogen or oxygen ions into a polycrystalline silicon film deposited after vortex formation, and then performs heat treatment at a predetermined temperature to form an insulating layer within the polycrystalline silicon film. Then, when etching the polycrystalline silicon film to planarize the isolation region, depending on the etching selectivity between the insulating layer and the polycrystalline silicon film, the etching may stop at the top of the insulating layer or it may not be completely flattened. I can do it. In this way, the insulation isolation region becomes flat and electrode wiring with good step coverage can be formed, which has the effect of realizing high quality and high yield of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を1悦明する
ための工程順に配置した半導木チップの断面図、第2図
(a)〜<c)は従来例を、′i(a明するための工程
順に配置した半へ9体チップの断m1[4である。 111.[)型半導体基板、20.・N型不純物層、3
・・・溝、4・・・絶縁膜、5・・・多結晶シリコン膜
、6・・・絶縁層。
FIGS. 1(a) to (d) are cross-sectional views of semiconductor wood chips arranged in the order of steps for carrying out one embodiment of the present invention, and FIGS. , 'i(a) is a section m1 [4] of a half-nine chip arranged in the order of steps to clarify. 111. [) type semiconductor substrate, 20.・N-type impurity layer, 3
... Groove, 4... Insulating film, 5... Polycrystalline silicon film, 6... Insulating layer.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板の一主表面から厚さ方向に向って所定形状
の溝を形成する工程と、前記溝の表面に絶縁膜を被着し
たのち多結晶シリコン膜を堆積させる工程と、前記多結
晶シリコン膜に窒素又は酸素をイオン注入したのち熱処
理を行ない前記絶縁膜と前記多結晶シリコン膜の界面近
傍に絶縁層を形成する工程と、前記多結晶シリコン膜を
エッチングして前記絶縁層を露出させる工程とにより絶
縁分離溝を形成することを特徴とする半導体装置の製造
方法。
a step of forming a groove of a predetermined shape in the thickness direction from one main surface of a semiconductor substrate; a step of depositing a polycrystalline silicon film after depositing an insulating film on the surface of the groove; and a step of depositing a polycrystalline silicon film. a step of ion-implanting nitrogen or oxygen into the substrate and then performing heat treatment to form an insulating layer near the interface between the insulating film and the polycrystalline silicon film; a step of etching the polycrystalline silicon film to expose the insulating layer; 1. A method of manufacturing a semiconductor device, the method comprising: forming an insulating isolation trench.
JP30091187A 1987-11-27 1987-11-27 Manufacture of semiconductor device Pending JPH01143231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30091187A JPH01143231A (en) 1987-11-27 1987-11-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30091187A JPH01143231A (en) 1987-11-27 1987-11-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01143231A true JPH01143231A (en) 1989-06-05

Family

ID=17890611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30091187A Pending JPH01143231A (en) 1987-11-27 1987-11-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01143231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer
FR2774808A1 (en) * 1998-02-09 1999-08-13 United Microelectronics Corp DOUBLE-DAMASCAN STRUCTURE AND MANUFACTURING METHOD THEREOF
NL1009459C2 (en) * 1998-06-22 1999-12-27 United Microelectronics Corp Dual damascene structure for multilevel metallization and interconnect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111437A (en) * 1983-11-22 1985-06-17 Toshiba Corp Manufacture of semiconductor device
JPS61166041A (en) * 1985-01-17 1986-07-26 Matsushita Electronics Corp Dielectric isolation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111437A (en) * 1983-11-22 1985-06-17 Toshiba Corp Manufacture of semiconductor device
JPS61166041A (en) * 1985-01-17 1986-07-26 Matsushita Electronics Corp Dielectric isolation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5354706A (en) * 1993-03-02 1994-10-11 Lsi Logic Corporation Formation of uniform dimension conductive lines on a semiconductor wafer
FR2774808A1 (en) * 1998-02-09 1999-08-13 United Microelectronics Corp DOUBLE-DAMASCAN STRUCTURE AND MANUFACTURING METHOD THEREOF
NL1009459C2 (en) * 1998-06-22 1999-12-27 United Microelectronics Corp Dual damascene structure for multilevel metallization and interconnect

Similar Documents

Publication Publication Date Title
US4211582A (en) Process for making large area isolation trenches utilizing a two-step selective etching technique
JPH0851216A (en) Mesa separation soi transistor and its preparation
JPH0338857A (en) Method of manufacturing semiconductor device and semiconductor isolating structure
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPH01143231A (en) Manufacture of semiconductor device
US5851901A (en) Method of manufacturing an isolation region of a semiconductor device with advanced planarization
JPS59182538A (en) Semiconductor device and manufacture thereof
JPS58200554A (en) Manufacture of semiconductor device
JPS63114158A (en) Manufacture of semiconductor device
JPS5961181A (en) Manufacture of semiconductor device
JPS60244036A (en) Semiconductor device and manufacture thereof
JP2828126B2 (en) Semiconductor device and manufacturing method thereof
JPH0778833A (en) Bipolar transistor and its manufacture
JPH11289082A (en) Semiconductor device and its manufacture
JPH021937A (en) Semiconductor bipolar tranistor having base and emitter structure in trench and its manufacture
JPS594073A (en) Manufacture of semiconductor device
JPS60211958A (en) Semiconductor device
JPS6088468A (en) Method of producing semiconductor integrated circuit
JPS59165435A (en) Manufacture of semiconductor device
JPH04369852A (en) Manufacture of semiconductor integrated circuit device
JPS6148935A (en) Manufacture of semiconductor device
JPS6164161A (en) Semiconductor device and manufacture thereof
JPS61240680A (en) Manufacture of bipolar transistor
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor