JPH04349927A - Preparation of precise filter membrane - Google Patents

Preparation of precise filter membrane

Info

Publication number
JPH04349927A
JPH04349927A JP12128291A JP12128291A JPH04349927A JP H04349927 A JPH04349927 A JP H04349927A JP 12128291 A JP12128291 A JP 12128291A JP 12128291 A JP12128291 A JP 12128291A JP H04349927 A JPH04349927 A JP H04349927A
Authority
JP
Japan
Prior art keywords
membrane
pore diameter
film
filter membrane
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12128291A
Other languages
Japanese (ja)
Other versions
JP2961629B2 (en
Inventor
Yuko Kozono
小園 祐子
Jun Sasaki
純 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3121282A priority Critical patent/JP2961629B2/en
Publication of JPH04349927A publication Critical patent/JPH04349927A/en
Application granted granted Critical
Publication of JP2961629B2 publication Critical patent/JP2961629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Abstract

PURPOSE:To enhance the total filtering quantity when a raw liquid containing a suspended substance is filtered using an anisotropic precise filter membrane. CONSTITUTION:Polysulfone and polyvinyl pyrrolidone are dissolved in N- methyl-2-pyrrolidone and water is added to the resulting solution to prepare a film forming raw solution which is, in turn, cast on a support in a dissolved state and, after humid air adjusted in its temp. is applied to the surface of the cast liquid film for 1-30sec, the liquid film is immersed in a coagulation bath to form a precise filter membrane. Thereafter, the precise filter membrane is released from the support. In this method, the temp. of the coagulation bath is changed within the range of -10 deg.C-80 deg.C to control the anisotropic ratio of the precise filter membrane to 2-1000 times.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は精密濾過膜の製造方法に
関するものであり、特に製薬工業における薬剤、食品工
業におけるアルコール飲料、前記製造工業及び半導体製
造工業をはじめとする微細な加工を行なう電子工業分野
、さらに諸工業の実験室などにおいて使用される超純水
製造のための精製水、純水などの濾過、その他の精密濾
過に用いられ、10μm以下特に1μm以下サブミクロ
ンオーダーの微粒子や微生物を効率よくろ過する精密濾
過膜に関するものである。本発明の製造方法によって得
られた精密濾過膜は、種々の高分子、微生物、酵母、微
粒子を含有あるいは懸濁する液体の分離、精製、回収、
濃縮などに適用され、特に濾過を必要とする微細な微粒
子を含有する液体からその微粒子を分離する必要のある
場合に適用することができ、例えば微粒子を含有する各
種の懸濁液、発酵液あるいは培養液などの他、顔料の懸
濁液などから微粒子を分離する、原子力発電の復水から
クラッドを分離除去する場合にも適用される。また近年
バイオテクノロジーの急速な発展に伴い、培養、発酵、
酵素反応等による生化学物質の生産は、医薬品・食品・
化学製品など多くの分野で盛んに行われるようになって
きた。これらの生産物質は精製することによって付加価
値が高まるが、この精製操作に多くのコストがかけられ
るのが現状である。本発明の製造方法によって得られた
精密濾過膜はこれらの分野で特に有効であり、例えば培
養液中から反応阻害物質を連続的に除去することにより
高密度培養を行う、菌体外酵素生産菌を用いた時に酵素
を連続回収する、菌体内酵素生産菌を破砕した溶液から
酵素を回収する、バッチ式で得られた培養液から除去す
る、など多岐にわたって適用される。
[Industrial Application Field] The present invention relates to a method for manufacturing precision filtration membranes, and is particularly applicable to drugs in the pharmaceutical industry, alcoholic beverages in the food industry, and electronics that perform fine processing, including the aforementioned manufacturing industry and semiconductor manufacturing industry. It is used for the filtration of purified water, pure water, etc. for the production of ultrapure water used in the industrial field and laboratories of various industries, and for other precision filtration. This invention relates to a precision filtration membrane that efficiently filters water. The microfiltration membrane obtained by the production method of the present invention can be used to separate, purify, recover liquids containing or suspending various polymers, microorganisms, yeast, and fine particles.
It can be applied to concentration, etc., and particularly when it is necessary to separate fine particles from a liquid containing fine particles that requires filtration, for example, various suspensions, fermentation liquids, or liquids containing fine particles. In addition to culture fluids, it can also be used to separate fine particles from pigment suspensions, and to separate and remove crud from condensate from nuclear power plants. In addition, with the rapid development of biotechnology in recent years, cultivation, fermentation,
The production of biochemical substances through enzymatic reactions, etc. is used in pharmaceuticals, foods,
It has become popular in many fields such as chemical products. Although the added value of these produced substances increases by refining them, the current situation is that a lot of cost is incurred in this refining operation. The microfiltration membrane obtained by the production method of the present invention is particularly effective in these fields, for example, for extracellular enzyme-producing bacteria that are cultured at high density by continuously removing reaction inhibitors from the culture solution. It can be used in a wide variety of applications, including continuous recovery of enzymes when using microorganisms, recovery of enzymes from solutions obtained by crushing intracellular enzyme-producing bacteria, and removal of enzymes from culture solutions obtained in batches.

【0002】0002

【従来の技術】従来、膜を用いて懸濁物質を含有する原
液体から懸濁物質を分離する技術としては、たとえば圧
力を駆動力とする逆浸透法、限外濾過法、精密濾過法、
電位差を駆動力とする電気透析法、濃度差を駆動力とす
る拡散透析法等がある。これらの方法は、連続操作が可
能であり、分離操作中に温度やpHの条件を大きく変化
させることなく分離、精製あるいは濃縮ができ、粒子、
分子、イオン等の広範囲にわたって分離が可能であり、
小型プラント処理能力を大きく保つことができるので経
済的であり、分離操作に要するエネルギーが小さく、か
つ他の分離方法では難しい低濃度原液体の処理が可能で
あるなどの理由により広範囲に実施されている。更にバ
イオテクノロジーの進歩に伴い、高純度化、高性能化、
高精密化が要求されるようになり、従来から行なわれて
いる遠心分離や珪藻土濾過に代わって連続操作が可能で
大量処理できる、濾過助剤や凝集剤の添加が必要ない、
分離の効率は菌体と懸濁液の比重差に無関係であり培養
液の物性や菌体の種類に関係なく清澄な濾液が得られる
、高濃度培養ができ生産効率が向上する、完全密閉系が
可能で菌の漏れがない、濃縮後菌体の洗浄が可能である
、スケールアップが用容易で経済性が高い等の理由で精
密濾過あるいは限外濾過技術の応用分野が拡大しつつあ
る。
[Prior Art] Conventionally, techniques for separating suspended solids from an original liquid containing suspended solids using a membrane include, for example, reverse osmosis, ultrafiltration, microfiltration, which uses pressure as a driving force,
There are electrodialysis methods that use a potential difference as a driving force, and diffusion dialysis methods that use a concentration difference as a driving force. These methods can be operated continuously, and can separate, purify, or concentrate without significantly changing the temperature or pH conditions during the separation operation, and are capable of separating, purifying, or concentrating particles,
It is possible to separate a wide range of molecules, ions, etc.
It is economical because it can maintain a large processing capacity in a small plant, requires little energy for separation operations, and can process low-concentration raw liquids that are difficult to use with other separation methods, so it has been widely implemented. There is. Furthermore, with the progress of biotechnology, higher purity, higher performance,
High precision is now required, and instead of the conventional centrifugation and diatomaceous earth filtration, it is possible to perform continuous operation and process large quantities, and there is no need to add filter aids or flocculants.
Separation efficiency is unrelated to the difference in specific gravity between the bacterial cells and the suspension, and a clear filtrate can be obtained regardless of the physical properties of the culture medium or the type of bacterial cells.A completely closed system that enables high concentration cultivation and improves production efficiency. The field of application of microfiltration or ultrafiltration technology is expanding because it allows for no leakage of bacteria, it is possible to wash the bacteria after concentration, it is easy to scale up, and it is highly economical.

【0003】以上のような分離技術に用いられる膜とし
ては、酢酸セルロース、硝酸セルロース、再生セルロー
ス、ポリスルホン、ポリアクリロニトリル、ポリアミド
、ポリイミド等の有機高分子等を主体とした高分子膜(
例えば特公昭48−40050号、特開昭58−378
42号,特開昭58−91732号、特開昭56−15
4051号各公報参照)や耐熱性、耐薬品性などの耐久
性に優れている多孔質セラミック膜などがあり主として
コロイドの濾過を対象とする場合は限外濾過膜が使用さ
れ、微細な粒子の濾過を対象とする精密濾過ではそれに
適した微孔を有する精密濾過膜が使用されている。この
ような精密濾過膜は、その内部に存在する微孔の孔径が
実質的に変化せず、膜の両表面の孔径が実質的に変わら
ない所謂等方性膜と、膜厚方向に孔径が連続的または不
連続的に変化し、膜の一方の表面の孔径と他方の表面の
孔径とが異なっている所謂異方性膜と呼ばれる構造を有
するものとに分類される。これらのうち等方性膜は、特
開昭58−98015号に記載されているが、濾過にあ
たって膜全体が流体の流れに対して大きな抵抗を示し、
小さな流速しか得られない(即ち、単位面積当り、単位
時間当り、単位差圧当り小さな流量しか得られない)上
、目詰まりがしやすく濾過寿命が短い、耐ブロッキング
性がない等の欠点があった。一方異方性膜は特公昭55
−6406、特開昭56−154051号に記載されて
いる緻密層と呼ばれている孔径の小さな層を膜の片方の
表面または膜の内部に持ち、比較的大きな孔をあるいは
極端に大きな指型ボイドを膜の内部からもう一方の表面
にかけて持ったものである。懸濁物質は等方性膜を用い
るかまたは異方性膜の孔径の小さい側に原液体を供給す
る場合は微孔性膜表面で捕捉され、一方異方性膜の孔径
の大きい側に原液体を供給する場合は懸濁物質は微孔性
膜の内部で捕捉される。すなわち懸濁物質を精密濾過膜
の表面で阻止する場合は阻止された懸濁物質が非常に大
きな濾過抵抗となって透過流速が急激に低下し結果とし
て総濾過量は低くなるが、精密濾過膜が膜厚方向に孔径
が連続的または不連続的に変化し精密濾過膜の一方の表
面の孔径と他方の孔径とが異なる構造を有するいわゆる
異方性膜の表面孔径の大きい側を原液体側に向けて使用
することにより、精密濾過膜内部で懸濁物質が阻止でき
るため大きな総濾過量を得ることが可能となる。
[0003] Membranes used in the above separation techniques include polymer membranes mainly made of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, and polyimide.
For example, Japanese Patent Publication No. 48-40050, Japanese Patent Publication No. 58-378
No. 42, JP-A-58-91732, JP-A-56-15
4051) and porous ceramic membranes that have excellent durability such as heat resistance and chemical resistance.Ultrafiltration membranes are used when the main purpose is to filter colloids, and ultrafiltration membranes are used to filter fine particles. For precision filtration, a precision filtration membrane having micropores suitable for the purpose is used. Such precision filtration membranes are divided into so-called isotropic membranes, in which the pore diameters of the micropores existing inside the membrane do not substantially change, and pore diameters on both surfaces of the membrane do not substantially change, and pore diameters in the membrane thickness direction. It is classified as having a structure called an anisotropic membrane, in which the pore size changes continuously or discontinuously, and the pore size on one surface of the membrane is different from the pore size on the other surface. Among these, isotropic membranes are described in Japanese Patent Application Laid-Open No. 58-98015, but the entire membrane exhibits a large resistance to the flow of fluid during filtration.
Not only can only a small flow rate be obtained (that is, only a small flow rate can be obtained per unit area, per unit time, and per unit differential pressure), it also has drawbacks such as easy clogging, short filtration life, and lack of blocking resistance. Ta. On the other hand, the anisotropic film is
-6406, which has a layer with small pores called the compact layer on one surface or inside the membrane, and has relatively large pores or an extremely large finger-shaped layer, which is described in JP-A-56-154051. The void extends from the inside of the membrane to the other surface. Suspended solids are trapped on the microporous membrane surface when an isotropic membrane is used or the raw liquid is supplied to the smaller pore side of the anisotropic membrane, whereas the raw liquid is trapped on the larger pore side of the anisotropic membrane. When a liquid is supplied, suspended matter is trapped inside the microporous membrane. In other words, when suspended substances are blocked on the surface of a microfiltration membrane, the blocked suspended substances create a very large filtration resistance and the permeation flow rate decreases rapidly, resulting in a lower total filtration rate. The pore diameter changes continuously or discontinuously in the membrane thickness direction, and the pore diameter on one surface of the microfiltration membrane is different from the pore diameter on the other surface.The side with the larger surface pore diameter is placed on the raw liquid side. By using the microfiltration membrane toward the target, suspended solids can be blocked inside the microfiltration membrane, making it possible to obtain a large total filtration amount.

【0004】0004

【発明が解決しようとする課題】前述のように、精密濾
過膜が膜厚方向に孔径が連続的または不連続的に変化し
精密濾過膜の一方の表面の孔径と他方の孔径とが異なる
構造を有するいわゆる異方性膜の表面孔径の大きい側を
原液体側に向けて使用することにより、精密濾過膜内部
で懸濁物質が阻止できるため大きな総濾過量を得ること
が可能となる。異方性膜の表面孔径が大きい側の平均孔
径が最も孔径の小さい緻密層の平均孔径より極端に大き
い場合は、懸濁物質が膜内部の断層方向に均一に分散し
て捕捉されず緻密層部分に集中して捕捉されるため、結
果として異方性膜の特性が得られず等方性膜のように表
面で捕捉される場合と同様の結果となる。一方、異方性
膜の表面孔径が大きい側の平均孔径が最も孔径の小さい
緻密層の平均孔径とあまり変わらないつまり等方性膜に
近い構造の場合、懸濁物質は濾過膜表面で捕捉され結果
として総濾過量は低くなる。すなわち異方性膜の特性を
得るには懸濁物質が膜内部に分散して捕捉されるための
適切な異方性構造が必要である。すなわち、懸濁物質の
大きさ、種類、物性等によって異方性膜の表面孔径が大
きい側の平均孔径と最も孔径の小さい緻密層の平均孔径
の比を変化させる技術が必要となってくる。そうするこ
とによって、懸濁物質に応じた最適な捕捉性能を有する
膜構造を得、最大の総濾過量が得られることが期待され
る。
[Problems to be Solved by the Invention] As mentioned above, a microfiltration membrane has a structure in which the pore diameter changes continuously or discontinuously in the membrane thickness direction, and the pore diameter on one surface of the microfiltration membrane is different from the pore diameter on the other surface. By using a so-called anisotropic membrane with the larger surface pore size facing toward the raw liquid side, suspended solids can be blocked inside the microfiltration membrane, making it possible to obtain a large total filtration amount. If the average pore diameter on the side with larger surface pores of the anisotropic membrane is extremely larger than the average pore diameter in the dense layer, which has the smallest pore diameter, suspended substances will be dispersed uniformly in the cross-sectional direction inside the membrane and will not be captured and will not be captured in the dense layer. Since the particles are captured in a concentrated manner, the characteristics of an anisotropic film cannot be obtained as a result, and the result is similar to that of an isotropic film where the particles are captured on the surface. On the other hand, if the average pore diameter of the anisotropic membrane on the side with larger surface pores is not much different from the average pore diameter of the dense layer with the smallest pore diameter, that is, if the membrane has a structure close to that of an isotropic membrane, suspended solids will be trapped on the surface of the filtration membrane. As a result, the total filtration rate becomes low. That is, in order to obtain the characteristics of an anisotropic membrane, an appropriate anisotropic structure is required so that suspended substances can be dispersed and captured inside the membrane. In other words, a technique is needed to change the ratio of the average pore diameter on the side of the anisotropic membrane with larger surface pores to the average pore diameter of the dense layer with the smallest pore diameter, depending on the size, type, physical properties, etc. of the suspended solids. By doing so, it is expected that a membrane structure with optimal trapping performance depending on the suspended solids will be obtained and the maximum total filtration amount will be obtained.

【0005】[0005]

【課題を解決するための手段】本発明は、上述した従来
技術にあった問題点を解決するために施されたものであ
って、濾過対象物に応じた最適な捕捉性能を有する膜構
造を形成するすなわち濾過対象物の性質に合わせ膜の異
方性構造を自由に変化させ、最大の濾過流量を得る精密
濾過膜の新規な製膜技術を提供することを目的とするも
のである。以下、本発明を詳細に説明する。異方性構造
は緻密層が膜の片方の表面に存在する場合、膜の内部に
存在する場合ともに表面孔径の大きい側の平均孔径と緻
密層の平均孔径の比で定義される。すなわち異方性構造
の異方性比とは、表面孔径の大きい側の平均孔径を緻密
層の平均孔径で割った値で定義される。ここで示す膜表
面の平均孔径は電子顕微鏡によって得られた写真より算
出したもので、緻密層の平均孔径は、図1に示すように
、ASTM−316−80法により測定したものである
。  図1に於いて、aは測定された緻密層の最小口径
層の平均口径を示し、bは最小口径層厚さを示す。A面
は表面口径の小さい側を示し、B面は表面口径の大きい
側を示す。精密濾過膜では通常緻密層の平均孔径は上記
で示した通り0.05μm以上10μm以下であるが、
異方性膜の場合表面孔径の大きい側の平均孔径は通常1
μm以上100μm以下であり、表面孔径の大きい面と
緻密層の平均孔径の比は2倍以上1000倍以下である
。高い濾過量を得るための好ましい異方性構造は表面孔
径の大きい側の平均孔径が緻密層の平均孔径の2倍以上
500倍以下、好ましくは5倍以上50倍以下である。 また、表面孔径の大きい面から緻密層にいたるまでの構
造は、懸濁物質が膜内部で均一に分散するためには平均
孔径が連続的に変化することが好ましい。また、懸濁物
質の捕捉効果を向上するためには濾過膜の厚みは厚い方
が好ましいが、濾過膜強度及び取扱性の点から一般的に
20μm以上1000μm以下、好ましくは100μm
以上300μm以下のものが使用される。更に好ましく
は、170μm以上300μm以下のものが使用される
[Means for Solving the Problems] The present invention has been carried out to solve the above-mentioned problems in the prior art. The purpose of the present invention is to provide a new membrane-forming technology for precision filtration membranes, in which the anisotropic structure of the membrane can be freely changed according to the properties of the object to be filtered, thereby obtaining the maximum filtration flow rate. The present invention will be explained in detail below. The anisotropic structure is defined by the ratio of the average pore diameter of the larger surface pores to the average pore diameter of the dense layer, both when the dense layer exists on one surface of the membrane and when it exists inside the membrane. That is, the anisotropy ratio of an anisotropic structure is defined as the value obtained by dividing the average pore diameter on the larger surface pore diameter by the average pore diameter in the dense layer. The average pore diameter of the membrane surface shown here was calculated from a photograph obtained by an electron microscope, and the average pore diameter of the dense layer was measured by the ASTM-316-80 method, as shown in FIG. In FIG. 1, a indicates the average diameter of the measured minimum diameter layer of the compact layer, and b indicates the thickness of the minimum diameter layer. Side A shows the side with a smaller surface aperture, and side B shows the side with a larger surface aperture. In precision filtration membranes, the average pore size of the dense layer is usually 0.05 μm or more and 10 μm or less, as shown above.
In the case of anisotropic membranes, the average pore size on the side with larger surface pores is usually 1
It is 100 μm or more, and the ratio of the average pore diameter of the surface having a large pore size to that of the dense layer is 2 times or more and 1000 times or less. In order to obtain a high filtration rate, a preferable anisotropic structure has an average pore diameter on the larger side of the surface pores that is 2 times or more and 500 times or less, preferably 5 times or more and 50 times or less, the average pore diameter of the dense layer. Further, in the structure from the surface with large pores to the dense layer, it is preferable that the average pore size changes continuously in order to uniformly disperse suspended substances inside the membrane. In addition, in order to improve the effect of trapping suspended solids, it is preferable that the thickness of the filtration membrane is thicker, but in terms of the strength of the filtration membrane and ease of handling, it is generally 20 μm or more and 1000 μm or less, preferably 100 μm.
A thickness of 300 μm or more is used. More preferably, a thickness of 170 μm or more and 300 μm or less is used.

【0006】本発明の精密濾過膜は、ポリスルホンとポ
リビニルピロリドンをN−メチル−2−ピロリドンに溶
解して水を加えてなる製膜原液を溶解状態で支持体上に
流延し、流延された液膜の表面に1秒以上30秒以下の
時間調温湿風を当てることによって、該液膜に溶媒の蒸
発と非溶媒蒸気の吸収の制御を行い液膜の表面から内部
に向かってコアセルベーションを起こさせ、その後ポリ
マーに対し非溶媒でありポリマーの溶媒に相溶性を有す
る液を収容する凝固液に浸漬することによって、上記の
コアセルベーション相を微細孔として固定させ微細孔以
外の細孔を形成することによって得られる。一方、本発
明の精密濾過膜の異方性比制御方法は、上記の凝固液に
浸漬する過程において凝固液の温度を−10℃以上80
℃以下に変化させることによって、緻密層より内部(裏
面側へ向かって)におけるコアセルベーション相の形成
から凝固に至るまでの時間を調節し、裏面に至るまでの
孔径の大きさを制御することにより可能である。凝固液
の温度を高くすると、コアセルベーション相の形成が早
くなり凝固に至るまでの時間が長くなるため、裏面へ向
かう孔径は大きくなる。一方、凝固液の温度を低くする
と、コアセルベーション相の形成が遅くなり凝固に至る
までの時間が短くなるため、裏面へ向かう孔径の大きさ
はあまり大きくならない。すなわち凝固液の温度を制御
することによって異方性膜の異方性比を制御することが
出来る。また、微細孔を有する緻密層の平均孔径は、製
膜原液中の含有水分量、流延後に当てる調温湿風中に含
まれる水分濃度、調温湿風を当てる時間によって制御出
来る。
[0006] The precision filtration membrane of the present invention is obtained by casting a membrane-forming stock solution in which polysulfone and polyvinylpyrrolidone are dissolved in N-methyl-2-pyrrolidone and adding water in a dissolved state onto a support. By applying temperature-controlled moist air to the surface of the liquid film for a period of 1 second to 30 seconds, the evaporation of the solvent and the absorption of non-solvent vapor are controlled and the core is drawn from the surface of the liquid film to the inside. By causing cervation and then immersing the polymer in a coagulation solution containing a liquid that is a non-solvent and is compatible with the polymer's solvent, the above coacervation phase is fixed as micropores and the particles other than the micropores are fixed. Obtained by forming pores. On the other hand, in the method for controlling the anisotropy ratio of a microfiltration membrane of the present invention, the temperature of the coagulating liquid is adjusted to 80° C.
By changing the temperature below ℃, the time from the formation of the coacervation phase inside the dense layer (toward the back side) to solidification can be adjusted, and the size of the pores up to the back side can be controlled. This is possible. When the temperature of the coagulation liquid is raised, the coacervation phase is formed faster and the time required for solidification becomes longer, so the pore diameter toward the back surface becomes larger. On the other hand, when the temperature of the coagulation liquid is lowered, the formation of the coacervation phase is delayed and the time required for solidification is shortened, so that the size of the pores toward the back surface does not become so large. That is, by controlling the temperature of the coagulation liquid, the anisotropy ratio of the anisotropic film can be controlled. Further, the average pore diameter of the dense layer having micropores can be controlled by the amount of water contained in the film-forming stock solution, the water concentration contained in the temperature-controlled moist air applied after casting, and the time period during which the temperature-controlled moist air is applied.

【0007】本発明において用いられる膜形成用ポリマ
ーはポリスルホン以外に、多孔質膜の用途や他の目的の
合わせて選択することが出来る。このようなポリマ−と
してセルロースアセテート、ニトロセルロース、スルホ
ン化ポリスルホン、ポリエーテルスルホン、ポリアクリ
ロニトリル、スチレン−アクリロニトリルコポリマー、
スチレン−ブタジエンコポリマー、エチレン−酢酸ビニ
ルコポリマーのケン化物ポリビニルアルコール、ポリカ
ーボネート、オルガノシロキサン−ポリカーボネートコ
ポリマー、ポリエステルカーボネート、オルガノポリシ
ロキサン、ポリフェニレンオキシド、ポリアミド、ポリ
イミド、ポリアミドイミド、ポリベンズイミダゾール等
を挙げることができる。
In addition to polysulfone, the membrane-forming polymer used in the present invention can be selected depending on the use of the porous membrane and other purposes. Such polymers include cellulose acetate, nitrocellulose, sulfonated polysulfone, polyethersulfone, polyacrylonitrile, styrene-acrylonitrile copolymer,
Examples include styrene-butadiene copolymer, saponified product of ethylene-vinyl acetate copolymer polyvinyl alcohol, polycarbonate, organosiloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, polybenzimidazole, etc. .

【0008】また、多孔質構造を制御するものとして膨
潤剤と称される無機電解質、有機電解質、高分子叉はそ
の電解質はポリビニルピロリドン以外に、食塩、塩化リ
チウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウ
ム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ
酸ナトリウム等の有機酸の金属塩、ポリエチレングリコ
ール、ポリビニルピロリドン等の高分子、ポリスチレン
スルホン酸ナトリウム、ポリビニルベンジルトリメチル
アンモニウムクロライド等の高分子電解質、ジオクチル
スルホコハク酸ナトリウム、アルキルメチルタウリン酸
ナトリウム等のイオン系界面活性剤等を挙げることがで
きる膜形成用ポリマーの良溶媒として、通常膜形成用ポ
リマーの溶媒でありかつ凝固液に浸漬した場合速やかに
凝固液と置換されるものが使用され、N−メチル−2−
ピロリドン以外に、膜形成用ポリマーの種類によって選
択出来る。膜形成用ポリマーがポリスルホンの場合、ジ
オキサン、テトラヒドロフラン、ジメチルホルムアミド
、ジメチルアセトアミドあるいはこれらの混合溶媒が適
当であり、ポリアクリロニトリルの場合にはジオキサン
、N−メチル−2−ピロリドン、ジメチルホルムアミド
、ジメチルアセトアミド、ジメチルスルホキシド等が、
ポリアミドの場合にはジメチルホルムアミドやジメチル
アセトアミド等が、セルロースアセテートの場合はアセ
トン、ジオキサン、テトラヒドロフラン、N−メチル−
2−ピロリドン等が適当である。
In addition to polyvinylpyrrolidone, inorganic electrolytes, organic electrolytes, polymers, or swelling agents called swelling agents that control the porous structure include common salt, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate, Metal salts of inorganic acids such as zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, polymers such as polyethylene glycol and polyvinylpyrrolidone, polymer electrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethylammonium chloride, dioctyl. Examples of good solvents for film-forming polymers include ionic surfactants such as sodium sulfosuccinate and sodium alkylmethyltaurate, which are usually solvents for film-forming polymers and quickly coagulate when immersed in a coagulating solution. N-methyl-2-
In addition to pyrrolidone, it can be selected depending on the type of film-forming polymer. When the membrane-forming polymer is polysulfone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide, or a mixed solvent thereof is suitable, and when polyacrylonitrile is used, dioxane, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, Dimethyl sulfoxide etc.
In the case of polyamide, dimethylformamide, dimethylacetamide, etc. are used, and in the case of cellulose acetate, acetone, dioxane, tetrahydrofuran, N-methyl-
2-pyrrolidone and the like are suitable.

【0009】本発明における非溶媒としては、水以外に
セルソルブ類、メタノール、エタノール、プロパノール
、アセトン、テトラヒドロフラン、ポリエチレングリコ
ール、グリセリン等が挙げられる。製膜原液としてのポ
リマー濃度は5重量%以上35重量%以下、好ましくは
10重量%以上30重量%以下である。35重量%を超
えると、得られる精密濾過膜の透水性が実用的に意味を
持たない程小さくなり、5重量%以下より低い濃度では
十分な分離機能を持った精密濾過膜は得られない。また
膨潤剤の添加量は添加によって製膜原液の均一性が失わ
れることが無い限り特に制限は無いが、通常溶媒に対し
て0.5容量%以上10容量%以下である。非溶媒の良
溶媒に対する割合は混合液が均一状態を保てる範囲なら
ば如何なる範囲でもよいが5重量%以上50重量%以下
が好ましい。凝固浴としては、水、メタノール、エタノ
ール、ブタノールなどのアルコール類。エチレングリコ
ール、ジエチレングリコールなどのグリコール類エーテ
ル、n−ヘキサン、n−ヘプタン、等の脂肪族炭化水素
類、グリセリン等のグリセロール類などポリマーを溶解
しないものなら何でも用いることが出来る。好ましいの
は水、アルコール類またはこれらの液体との2種以上の
混合液体である。
In addition to water, nonsolvents used in the present invention include cellosolves, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin, and the like. The polymer concentration as a membrane forming stock solution is 5% by weight or more and 35% by weight or less, preferably 10% by weight or more and 30% by weight or less. If it exceeds 35% by weight, the water permeability of the microfiltration membrane obtained becomes so low that it has no practical meaning, and if the concentration is lower than 5% by weight, a microfiltration membrane with sufficient separation function cannot be obtained. The amount of the swelling agent added is not particularly limited as long as the addition does not impair the uniformity of the film-forming stock solution, but it is usually 0.5% by volume or more and 10% by volume or less based on the solvent. The ratio of the nonsolvent to the good solvent may be in any range as long as the mixed liquid can maintain a uniform state, but it is preferably 5% by weight or more and 50% by weight or less. Coagulation baths include water, alcohols such as methanol, ethanol, and butanol. Anything that does not dissolve the polymer can be used, such as glycol ethers such as ethylene glycol and diethylene glycol, aliphatic hydrocarbons such as n-hexane and n-heptane, and glycerols such as glycerin. Preferred are water, alcohols, or a mixture of two or more of these liquids.

【0010】0010

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例 ポリスルホン(アモコ社製  P3500)15部、ポ
リビニルピロリドン15部、水3部をNーメチルー2ー
ピロリドン67部に溶解して製膜原液を得る。ガラス板
に液膜厚さ180μmでキャスティングコーターを通し
て、流延しその液膜表面に25℃相対湿度45%に調節
した空気を2m/secで5秒間当て、その後直ちに水
を満たした凝固液槽へ浸漬して精密濾過膜を得た。凝固
液の温度を5℃、25℃、45℃と変化させた時の膜の
緻密層の平均孔径、表面孔径の大きい側の平均孔径、異
方性比を表1に示した。
[Examples] Examples of the present invention are shown below, but the present invention is not limited thereto. Example 15 parts of polysulfone (P3500 manufactured by Amoco), 15 parts of polyvinylpyrrolidone, and 3 parts of water are dissolved in 67 parts of N-methyl-2-pyrrolidone to obtain a membrane forming stock solution. A liquid film with a thickness of 180 μm was cast onto a glass plate through a casting coater, and air adjusted to 25°C and relative humidity of 45% was applied to the surface of the liquid film at 2 m/sec for 5 seconds, and then immediately transferred to a coagulation tank filled with water. A precision filtration membrane was obtained by immersion. Table 1 shows the average pore diameter of the dense layer of the membrane, the average pore diameter of the larger surface pore diameter, and the anisotropy ratio when the temperature of the coagulation liquid was varied from 5° C. to 25° C. to 45° C.

【0011】[0011]

【表1】[Table 1]

【0012】なおここで示す膜表面の平均孔径は電子顕
微鏡によって得られた写真より算出したもので、緻密層
の平均孔径はASTM−316−80法により測定した
ものである。
The average pore diameter of the membrane surface shown here was calculated from a photograph taken with an electron microscope, and the average pore diameter of the dense layer was measured by the ASTM-316-80 method.

【0013】[0013]

【発明の効果】本発明により、濾過対象物に応じた最適
な捕捉性能を有する膜構造を形成するすなわち濾過対象
物の性質に合わせ膜の異方性構造を自由に変化させ得る
もので濾過膜及びシステム設計上極めて有力な技術と考
えられる。
Effects of the Invention According to the present invention, a filtration membrane is formed that has a membrane structure that has an optimal trapping performance depending on the object to be filtered, that is, the anisotropic structure of the membrane can be freely changed according to the properties of the object to be filtered. It is considered to be an extremely powerful technology in terms of system design.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】精密濾過膜の断面の模式図を示す。FIG. 1 shows a schematic diagram of a cross section of a microfiltration membrane.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ポリスルホンとポリビニルピロリドン
をN−メチル−2−ピロリドンに溶解して水を加えてな
る製膜原液を溶解状態で支持体上に流延し、流延された
液膜の表面に調温湿風を当てた後該液膜を凝固浴に浸漬
させることによって精密濾過膜を形成させ、しかる後前
記支持体上より精密濾過膜を剥離する製造方法において
、凝固浴の温度を変化させて精密濾過膜の異方性比を制
御することを特徴とする製膜方法。
Claim 1: A film-forming stock solution prepared by dissolving polysulfone and polyvinylpyrrolidone in N-methyl-2-pyrrolidone and adding water is cast on a support in a dissolved state, and a film is formed on the surface of the cast liquid film. A manufacturing method in which a precision filtration membrane is formed by immersing the liquid film in a coagulation bath after applying temperature-controlled moist air, and then peeling off the precision filtration membrane from the support, in which the temperature of the coagulation bath is changed. A membrane forming method characterized by controlling the anisotropy ratio of a precision filtration membrane.
【請求項2】  該凝固浴の温度を−10℃以上80℃
以下にすることにより、異方性膜の表面孔径の大きい側
の平均孔径と緻密層の平均孔径の比を2倍以上1000
倍以下に制御することを特徴とする請求項第1項記載の
製膜方法。
Claim 2: The temperature of the coagulation bath is -10°C or higher and 80°C.
By setting the ratio of the average pore diameter of the anisotropic membrane on the side with larger surface pores to the average pore diameter of the dense layer to 1000 or more,
2. The film forming method according to claim 1, wherein the film forming method is controlled to be less than or equal to twice as much.
JP3121282A 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane Expired - Fee Related JP2961629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3121282A JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3121282A JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Publications (2)

Publication Number Publication Date
JPH04349927A true JPH04349927A (en) 1992-12-04
JP2961629B2 JP2961629B2 (en) 1999-10-12

Family

ID=14807399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3121282A Expired - Fee Related JP2961629B2 (en) 1991-05-27 1991-05-27 Manufacturing method of microfiltration membrane

Country Status (1)

Country Link
JP (1) JP2961629B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297179A (en) * 2005-04-15 2006-11-02 Ngk Insulators Ltd Filtration membrane for membrane filtration of clarified water
JP2008542022A (en) * 2005-06-09 2008-11-27 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfiltration membrane with improved filtration behavior
JP2009542424A (en) * 2006-07-07 2009-12-03 ガンブロ・ルンディア・エービー Plasma separation membrane
JP2014223621A (en) * 2013-05-14 2014-12-04 ポール・コーポレーションPallCorporation High throughput membrane with rough surface
JP2016538122A (en) * 2013-11-14 2016-12-08 インテグリス・インコーポレーテッド Microporous polyamide-imide membrane
WO2018088451A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Immunoisolation membrane, transplantation chamber, and transplantation device
WO2018088452A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Immunoisolation membrane, transplantation chamber, and transplantation device
WO2019004377A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019004378A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019004381A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber, method for producing transplant chamber, transplant device and method for fusing porous membrane
WO2019044991A1 (en) 2017-08-30 2019-03-07 富士フイルム株式会社 Angiogenic agent and method for producing same
WO2019044990A1 (en) 2017-08-30 2019-03-07 富士フイルム株式会社 Cell transplantation device and method for manufacturing same
WO2020138028A1 (en) 2018-12-25 2020-07-02 富士フイルム株式会社 Cell transplant kit, method for manufacturing bag-like structure, and therapeutic agent for diabetes
WO2020175416A1 (en) 2019-02-26 2020-09-03 富士フイルム株式会社 Hydrophilic porous membrane and method for producing hydrophilic porous membrane
CN113164880A (en) * 2018-11-30 2021-07-23 富士胶片株式会社 Method for producing porous film and porous film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101002597B1 (en) * 2008-12-31 2010-12-20 웅진케미칼 주식회사 Method for Manufacturing Porous membrane

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297179A (en) * 2005-04-15 2006-11-02 Ngk Insulators Ltd Filtration membrane for membrane filtration of clarified water
JP2008542022A (en) * 2005-06-09 2008-11-27 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfiltration membrane with improved filtration behavior
JP4898797B2 (en) * 2005-06-09 2012-03-21 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microfiltration membrane with improved filtration behavior
JP2009542424A (en) * 2006-07-07 2009-12-03 ガンブロ・ルンディア・エービー Plasma separation membrane
JP2014223621A (en) * 2013-05-14 2014-12-04 ポール・コーポレーションPallCorporation High throughput membrane with rough surface
US10532329B2 (en) 2013-11-14 2020-01-14 Entegris, Inc. Microporous polyamide-imide membranes
JP2016538122A (en) * 2013-11-14 2016-12-08 インテグリス・インコーポレーテッド Microporous polyamide-imide membrane
US10919001B2 (en) 2013-11-14 2021-02-16 Entegris, Inc. Microporous polyamide-imide membranes
WO2018088451A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Immunoisolation membrane, transplantation chamber, and transplantation device
WO2018088452A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Immunoisolation membrane, transplantation chamber, and transplantation device
WO2019004377A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019004381A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber, method for producing transplant chamber, transplant device and method for fusing porous membrane
WO2019004378A1 (en) 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019044991A1 (en) 2017-08-30 2019-03-07 富士フイルム株式会社 Angiogenic agent and method for producing same
WO2019044990A1 (en) 2017-08-30 2019-03-07 富士フイルム株式会社 Cell transplantation device and method for manufacturing same
CN113164880A (en) * 2018-11-30 2021-07-23 富士胶片株式会社 Method for producing porous film and porous film
WO2020138028A1 (en) 2018-12-25 2020-07-02 富士フイルム株式会社 Cell transplant kit, method for manufacturing bag-like structure, and therapeutic agent for diabetes
WO2020175416A1 (en) 2019-02-26 2020-09-03 富士フイルム株式会社 Hydrophilic porous membrane and method for producing hydrophilic porous membrane

Also Published As

Publication number Publication date
JP2961629B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JPH04349927A (en) Preparation of precise filter membrane
Zhao et al. Formation of dynamic membranes for oily water separation by crossflow filtration
JPH057047B2 (en)
TW201526979A (en) Membrane with plurality of charges
JPH04250834A (en) Precision filter membrane
CN111013400A (en) Method for preparing polyvinylidene fluoride tubular membrane by low-temperature thermal induced phase method
JPS63139930A (en) Production of microporous membrane
JPH0549877A (en) Production of composite filter membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JP2530133B2 (en) Microporous membrane
JP2717458B2 (en) Filtration method
JPH0557149A (en) Filter system
JPH04317708A (en) New filtration using filtration assistant
JPH0679147A (en) Filtration method
Scott et al. Introduction to industrial membrane processes
JPH05329339A (en) Filtering apparatus
JPH0810593A (en) Porous membrane having negative charge, its production and modifier for porous membrane
JPH04190834A (en) Cross-flow type filter
JPH0561970B2 (en)
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend
JPH04317730A (en) Composite filtration membrane
JPH04317728A (en) Composite filtration membrane
JPH04271817A (en) Filtering method
JPH04145929A (en) Cross-flow filter
JPH04317729A (en) Composite filtration membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees