JPH057047B2 - - Google Patents

Info

Publication number
JPH057047B2
JPH057047B2 JP60155722A JP15572285A JPH057047B2 JP H057047 B2 JPH057047 B2 JP H057047B2 JP 60155722 A JP60155722 A JP 60155722A JP 15572285 A JP15572285 A JP 15572285A JP H057047 B2 JPH057047 B2 JP H057047B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
polymer
present
microporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60155722A
Other languages
Japanese (ja)
Other versions
JPS6214905A (en
Inventor
Jun Sasaki
Kyoichi Naruo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP60155722A priority Critical patent/JPS6214905A/en
Priority to GB8701193A priority patent/GB2199786B/en
Priority to DE19873701633 priority patent/DE3701633A1/en
Publication of JPS6214905A publication Critical patent/JPS6214905A/en
Publication of JPH057047B2 publication Critical patent/JPH057047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は液体の精密濾過に使用される微孔性膜
の製造方法に関する。更に詳しくは、本発明は濾
過速度の大きい微孔性膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to a method for producing a microporous membrane used for precision filtration of liquids. More specifically, the present invention relates to a method for producing a microporous membrane with a high filtration rate.

《従来の技術》 微孔性膜は古くから知られており、(例えばア
ール・ケステイング(R.Kesting)著シンセテイ
ツク・ポリマー・メンブラン(Synthetic
Polymer Membrane)マグロウヒル社
(McGraw Hill社)発行)濾過用フイルターなど
に広く利用されている。微孔性膜は、たとえば米
国特許第1421341号、同3133132号、同2944017号、
特公昭43−15698号、特公昭45−33313号、同48−
39586号、同48−40050号などに記載されているよ
うに、セルローズエステルを原料として製造され
るもの、米国特許第2783894号、同3408315号、同
4340479号、同4340480号、同4450126号ドイツ特
許DE3138525号、特開昭58−37842号などに記載
されているように脂肪族ポリアミドを原料として
製造されるもの、米国特許第4196070号、同
4340482号、特開昭55−99934号、特開昭58−
91732号などに記載されているようにポリフルオ
ロカーボンを原料として製造されるもの、特開昭
56−154051号、特開昭56−86941号、特開昭56−
12640号などに記載されているポリスルホンを原
料とするもの、ドイツ特許OLS3003400号などに
記載されているポリプロピレンを原料とするもの
などがある。これら微孔性膜は電子工業用洗浄
水、医薬用水、医薬製造工程用水、食品水等の濾
過、滅菌に用いられ近年その用途と使用量は拡大
しており、特に粒子捕捉の点から信頼性の高い微
孔性膜が注目され多用されている。
<Prior Art> Microporous membranes have been known for a long time (for example, Synthetic Polymer Membranes by R. Kesting).
Polymer Membrane (Published by McGraw Hill) Widely used in filtration filters, etc. Microporous membranes are disclosed in, for example, US Pat. No. 1,421,341, US Pat.
Special Publication No. 43-15698, Special Publication No. 33313-1973, Special Publication No. 48-
As described in U.S. Patent No. 39586 and U.S. Pat.
No. 4340479, No. 4340480, No. 4450126 Products manufactured using aliphatic polyamide as a raw material as described in German Patent No. DE 3138525, Japanese Patent Application Laid-Open No. 58-37842, etc., U.S. Patent No. 4196070,
No. 4340482, JP-A-55-99934, JP-A-58-
Products manufactured using polyfluorocarbon as raw materials, as described in JP-A No. 91732, etc.
No. 56-154051, JP-A-56-86941, JP-A-56-
There are those made from polysulfone as a raw material, such as those described in German Patent No. 12640, and those made from polypropylene, as described in German Patent No. OLS 3003400. These microporous membranes are used for filtration and sterilization of electronic industry cleaning water, medical water, water for pharmaceutical manufacturing processes, food water, etc., and their applications and usage have expanded in recent years, especially in terms of particle capture. Highly microporous membranes are attracting attention and are widely used.

《発明が解決しようとする問題点》 しかしながら従来の微孔性膜は、単位面積当た
りの濾過速度が十分とは言えず、必要濾過流量を
得るにはより高い圧力で濾過する必要があり、又
は膜面積を増すべく多くの濾過ユニツトを並列し
て使用することを余儀無くされている。そこで濾
過工程のコストダウンの面で濾過速度を上げる事
は当業界の技術的課題であつた。
<<Problems to be solved by the invention>> However, conventional microporous membranes cannot be said to have a sufficient filtration rate per unit area, and in order to obtain the required filtration flow rate, it is necessary to perform filtration at a higher pressure, or In order to increase the membrane area, it is necessary to use many filtration units in parallel. Therefore, increasing the filtration speed in order to reduce the cost of the filtration process has been a technical challenge in the industry.

このような観点から、従来微孔性膜の改質のた
めに、出来上がつた膜をアルコール等の有機溶媒
によつて処理する事が知られており、例えば特開
昭55−147108号には、ポリスルホン半透膜をアル
コール処理し、濾過速度を上げる方法が記載され
ている。しかしながらこの方法の場合には、濾過
速度の増大が膜の孔径の増大によるものであるた
めに、膜が本来維持せねばならない分離能の低下
を伴い好ましくない。
From this point of view, it has been known to treat the finished membrane with an organic solvent such as alcohol in order to modify the microporous membrane. describes a method of increasing the filtration rate by treating a polysulfone semipermeable membrane with alcohol. However, in the case of this method, since the increase in filtration rate is due to the increase in the pore size of the membrane, this is not preferable as it involves a decrease in the separation ability that the membrane should originally maintain.

そこで本発明者等は、アルコール処理が膜に与
える効果について詳細に調べた結果、アルコール
処理の極く初期には膜の空孔率が上昇し、引続き
平均孔径が増大するという2つの現象が存在する
事を見い出し本発明に到達した。
Therefore, the present inventors investigated in detail the effect that alcohol treatment has on membranes, and found that two phenomena exist: the porosity of the membrane increases at the very early stage of alcohol treatment, and the average pore diameter subsequently increases. The present invention was achieved by discovering the following.

従つて本発明の第1の目的は、単位面積当たり
の濾過流量を増大することのできる微孔性膜の製
造方法を提供することにある。
Therefore, a first object of the present invention is to provide a method for manufacturing a microporous membrane that can increase the filtration flow rate per unit area.

本発明の第2の目的は、微粒子、ならびに細菌
等を効率良く捕捉することができる濾過寿命の長
い微孔性膜の製造方法を提供することにある。
A second object of the present invention is to provide a method for producing a microporous membrane with a long filtration life that can efficiently trap fine particles, bacteria, and the like.

《問題を解決するための手段》 本発明の上記の諸目的は、ポリマーを極性有機
溶媒に溶解してなる製膜原液を支持体上に流延
し、次いで凝固浴に浸漬する微孔性膜の製造方法
において、支持体上に流延された製膜原液を凝固
浴に浸漬し微孔を形成させた後、5〜30分間アル
コール浴中に浸漬することを特徴とする微孔性膜
の製造方法によつて達成された。
<<Means for Solving the Problems>> The above-mentioned objects of the present invention are to produce a microporous membrane in which a membrane-forming stock solution prepared by dissolving a polymer in a polar organic solvent is cast onto a support, and then immersed in a coagulation bath. In the method for producing a microporous membrane, the membrane forming stock solution cast onto a support is immersed in a coagulation bath to form micropores, and then immersed in an alcohol bath for 5 to 30 minutes. This was achieved through a manufacturing method.

本発明で使用することのできる微孔性膜には、
ポリ弗化ビニリデン、ポリテトラフルオロエチレ
ンの如き弗素系樹脂、ポリスルホン、ポリエーテ
ルスルホン、脂肪族ポリアミド、セルローズエス
テル、ポリプロピレンポリイミド等の公知のポリ
マーを単独又は混合して原料とすることができ
る。
Microporous membranes that can be used in the present invention include:
Known polymers such as polyvinylidene fluoride, fluorine-based resins such as polytetrafluoroethylene, polysulfone, polyethersulfone, aliphatic polyamide, cellulose ester, and polypropylene polyimide can be used alone or in combination as raw materials.

本発明においては、これらの中でもポリスルホ
ンが好ましく、特に の繰り返し単位で表されるポリマーが好ましい。
In the present invention, polysulfone is preferred among these, particularly Polymers represented by repeating units are preferred.

微孔性膜の製造は、上記ポリマーを良溶媒、
良溶媒と非溶媒の混合溶媒又はポリマーに対
する溶解性の程度が異なる複数種の溶媒の混合し
たものに溶解して製膜原液を作製し、これを支持
体上に流延し、凝固液中に浸漬、又は直接凝固液
中に流延凝固せしめ洗浄、乾燥して行う。この場
合に、ポリマーを溶解する溶媒の一例としては、
ジクロロメタン、アセトン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシ
ド、2−ピロリドン、N−メチル−2−ピロリド
ン、スルホラン、ヘキサメチルホスホルアミド等
を挙げることができる。
The production of microporous membranes involves using the above polymer as a good solvent,
A membrane-forming stock solution is prepared by dissolving it in a mixed solvent of a good solvent and a non-solvent or a mixture of multiple types of solvents with different degrees of solubility for the polymer, and this is cast onto a support and poured into a coagulating solution. It is carried out by immersion or direct casting into a coagulating solution, followed by washing and drying. In this case, an example of a solvent that dissolves the polymer is
Dichloromethane, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, N-methyl-2-pyrrolidone, sulfolane, hexamethylphosphoramide and the like can be mentioned.

上記溶媒に添加する非溶媒の一例としては、
水、セロソルブ類、メタノール、エタノール、プ
ロパノール、アセトン、テトラヒドロフラン、ポ
リエチレングリコール、グリセリン等が挙げられ
る。非溶媒の良溶媒に対する割合は、混合液が均
一状態を保てる範囲ならばいかなる範囲でもよい
が、5重量%〜50重量%が好ましい。
An example of a non-solvent added to the above solvent is:
Examples include water, cellosolves, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, and glycerin. The ratio of the non-solvent to the good solvent may be in any range as long as the mixed liquid can maintain a uniform state, but is preferably 5% to 50% by weight.

又、多孔構造を制御するものとして膨潤剤と称
される無機電解質、有機電解質、高分子又はその
電解質等を加えることもできる。
In addition, an inorganic electrolyte, an organic electrolyte, a polymer, or an electrolyte thereof called a swelling agent may be added to control the porous structure.

本発明で使用することのできる電解質として
は、食塩、硝酸ナトリウム、硝酸カリウム、硫酸
ナトリウム、塩化亜鉛等の無機酸の金属塩、酢酸
ナトリウム、ギ酸ナトリウム等の有機酸の金属
塩、ポリビニルピロリドン等の高分子、ポリスチ
レンスルホン酸ナトリウム、ポリビニルベンジル
トリメチルアンモニウムクロライド等の高分子電
解質、ジオクチルスルホコハク酸ナトリウム、ア
ルキルメチルタウリン酸ナトリウム等のイオン系
界面活性剤等が用いられる。これらの電解質は、
単独でポリマー溶液に加えてもある程度の効果を
示すものであるが、これら電解質を水溶液として
添加する場合には、特に顕著な効果を示すもので
ある。電解質水溶液の添加量は添加によつて溶液
の均一性が失われることがない限り、特に制限は
ないが、通常、溶媒に対して0.5容量%〜10容量
%である。又、電解質水溶液の濃度についても特
に制限はなく、濃度の大きい方が効果が大きい
が、通常用いられる濃度としては1重量%〜60重
量%である。
Electrolytes that can be used in the present invention include common salt, metal salts of inorganic acids such as sodium nitrate, potassium nitrate, sodium sulfate, and zinc chloride; metal salts of organic acids such as sodium acetate and sodium formate; and metal salts of organic acids such as polyvinylpyrrolidone. Molecules, polymer electrolytes such as sodium polystyrene sulfonate, polyvinylbenzyltrimethylammonium chloride, ionic surfactants such as sodium dioctyl sulfosuccinate, sodium alkylmethyl taurate, etc. are used. These electrolytes are
Although these electrolytes exhibit some effect even when added alone to a polymer solution, when these electrolytes are added as an aqueous solution, they exhibit a particularly remarkable effect. The amount of the electrolyte aqueous solution to be added is not particularly limited as long as the addition does not impair the uniformity of the solution, but it is usually 0.5% to 10% by volume based on the solvent. Further, there is no particular restriction on the concentration of the electrolyte aqueous solution, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight.

製膜原液としてのポリマー溶液の濃度は5〜35
重量%、好ましくは10〜30重量%である。35重量
%を越えると、得られる微孔性膜の透水性が実質
的な意味を持たない程小さくなり、又5重量%よ
り低い濃度では十分な分離能を持つた微孔性膜は
得られない。
The concentration of the polymer solution as a membrane forming stock solution is 5 to 35
% by weight, preferably 10-30% by weight. If the concentration exceeds 35% by weight, the water permeability of the microporous membrane obtained becomes so small that it has no practical meaning, and if the concentration is lower than 5% by weight, a microporous membrane with sufficient separation ability cannot be obtained. do not have.

上記のようにして調整した製膜原液を支持体の
上に流延し、流延直後或いは一定時間をおいて、
凝固液中に支持体ごとポリマー溶液膜を浸漬す
る。
The membrane-forming stock solution prepared as described above is cast onto a support, and immediately after casting or after a certain period of time,
The polymer solution membrane along with the support is immersed in the coagulation solution.

凝固液としては、水が最も一般的に用いられる
が、ポリマーを溶解しない有機溶媒を用いても良
く、又これら非溶媒を2種以上混合して用いても
良い。又必要に応じ良溶媒を混合しても良い。
As the coagulating liquid, water is most commonly used, but an organic solvent that does not dissolve the polymer may also be used, or a mixture of two or more of these non-solvents may be used. Further, a good solvent may be mixed if necessary.

支持体としては、通常微孔性膜を製造する場合
に支持体として使用できるものの中から任意に選
択することができるが、特に不織布を使用した場
合には支持体を剥がす必要がないので好ましい。
The support can be arbitrarily selected from those that can be used as a support in the production of microporous membranes, but it is particularly preferable to use a nonwoven fabric since there is no need to peel off the support.

本発明で使用することのできる不織布はポリプ
ロピレン、ポリエステル、等から成る一般的なも
のであり、材質の限定を受けるものではない。
The nonwoven fabric that can be used in the present invention is generally made of polypropylene, polyester, etc., and is not limited in material.

本発明においては、凝固液中でポリマーが析出
した流延膜はこの後水洗、温水洗、有機溶媒洗等
の代わりに、又はこれらの洗浄工程の直後の未乾
燥の状態で、微孔性膜の孔径が実質的に変化しな
い程度にアルコールで処理する。このような処理
条件は、処理温度が室温〜60℃好ましくは40℃〜
55℃、処理時間は5分〜30分好ましくは10分〜20
分であり、このようなアルコール処理の後は、80
℃以下好ましくは40℃以下で乾燥する。
In the present invention, the cast membrane in which the polymer has precipitated in the coagulation solution is then processed into a microporous membrane instead of being washed with water, hot water, organic solvent, etc., or in an undried state immediately after these washing steps. treated with alcohol to such an extent that the pore size of the pore size does not substantially change. Such processing conditions include processing temperatures ranging from room temperature to 60°C, preferably from 40°C to
55℃, processing time is 5 minutes to 30 minutes, preferably 10 minutes to 20 minutes
minutes, and after such alcohol treatment, 80
Drying is carried out at a temperature of ℃ or lower, preferably 40℃ or lower.

《作用》 浸漬時間はアルコールの温度によつても異な
り、実質的な孔径変化を伴わない範囲内であれば
制限はなく、長い方が濾過流量は増大するので好
ましいが、長すぎる場合には微孔性膜の孔径が大
きくなるので好ましくない。
<<Effect>> The immersion time also varies depending on the temperature of the alcohol, and there is no limit as long as it does not cause a substantial change in pore size. A longer immersion time is preferable because the filtration flow rate increases, but if it is too long, there may be a slight This is not preferable because the pore size of the porous membrane becomes large.

この場合、膜を一度乾燥状態にした後処理した
場合には空孔率増大と孔径増大は同時に起こり、
濾過流量のみの増大は実現されない。
In this case, if the membrane is dried and then treated, the porosity and pore size will increase at the same time.
An increase in filtration flow rate alone is not achieved.

上記処理において使用することのできるアルコ
ールとしては、例えばメタノール、エタノール、
プロパノール、イソプロパノール、n−ブタノー
ル、iso−ブタノール、ter−ブタノール、アミル
アルコール、イソアミルアルコール等を挙げるこ
とができるが、これらの中でも、特にメタノー
ル、エタノール、イソプロパノール及びter−ブ
タノールが好ましい。
Alcohols that can be used in the above treatment include, for example, methanol, ethanol,
Examples include propanol, isopropanol, n-butanol, iso-butanol, ter-butanol, amyl alcohol, isoamyl alcohol, and among these, methanol, ethanol, isopropanol, and ter-butanol are particularly preferred.

これらのアルコールは単独で使用することも、
混合して使用することも、更には、他の溶媒を少
量添加して使用することもできる。
These alcohols can be used alone or
They can be used in combination, or they can be used with a small amount of other solvent added.

《発明の効果》 本発明によれば、極めて容易に微孔性膜本来の
分離能を低下させることなく、微孔性膜の濾過流
量を向上させることができる。本発明によつて得
られた膜の濾過効率は極めて大きいので、濾過流
量に対する微孔性膜の寿命も大きく改善される。
<<Effects of the Invention>> According to the present invention, the filtration flow rate of a microporous membrane can be improved very easily without reducing the inherent separation ability of the microporous membrane. Since the filtration efficiency of the membrane obtained according to the present invention is extremely high, the life of the microporous membrane with respect to the filtration flow rate is also greatly improved.

以下、本発明を実施例に従つて更に詳述する
が、本発明はこれによつて限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

実施例 1 ポリフツ化ビニリデン20部、ジメチルアセトア
ミド(DMA)70部及びメタノール10部よりなる
混合溶液を、ガラス板上にドクターブレードを用
いて250μm厚味に流延し、30秒間空気中に放置
した後、水/DMA=1/1の凝固液に浸漬し、
2分間凝固させて直ちに50℃のメタノールに10分
間浸漬させた。処理を終わつた膜は40℃にて乾燥
させた。孔径は0.05μ、濾過流量は15ml/cm2
min・atmであつたのに対し、メタノール未処理
の膜は孔径は0.05μmとメタノール処理した場合
と同じであつたが、濾過流量は4ml/cm2・min・
atmと小さかつた。
Example 1 A mixed solution consisting of 20 parts of vinylidene polyfluoride, 70 parts of dimethylacetamide (DMA), and 10 parts of methanol was cast onto a glass plate to a thickness of 250 μm using a doctor blade, and left in the air for 30 seconds. After that, it is immersed in a coagulation solution of water/DMA = 1/1,
After coagulating for 2 minutes, it was immediately immersed in methanol at 50°C for 10 minutes. The treated membrane was dried at 40°C. Pore size is 0.05μ, filtration flow rate is 15ml/ cm2 .
min・atm, while the pore size of the membrane untreated with methanol was 0.05 μm, the same as that of the membrane treated with methanol, but the filtration flow rate was 4 ml/cm 2・min・
It was a small ATM.

一方、メタノール処理を3時間行つた場合には
18ml/cm2・min・atmの濾過流量であつたが、孔
径も0.92μと拡大しているのが観察され、分離能
力が劣化したことが確認された。これらの事実
は、本発明の方法によつて初めて、分離能力を劣
化させることなく濾過流量を大きくすることがで
きることを実証するものである。
On the other hand, when methanol treatment was performed for 3 hours,
Although the filtration flow rate was 18 ml/cm 2 ·min · atm, it was observed that the pore diameter had also increased to 0.92 μ, and it was confirmed that the separation ability had deteriorated. These facts demonstrate that, for the first time, the method of the present invention makes it possible to increase the filtration flow rate without deteriorating the separation ability.

実施例 2 ポリスルホン(UCC社P3500)20部、Nメチル
−2−ピロリドン60部、ポリビニルピロリドン
(分子量4万)15部及びLiCl5部よりなる均一溶液
をガラス板上に150μ厚に流延した後直ちに冷水
に浸漬し、1分後、イソプロパノール(50℃)に
8分間浸漬処理を行つた。
Example 2 A homogeneous solution consisting of 20 parts of polysulfone (UCC P3500), 60 parts of N-methyl-2-pyrrolidone, 15 parts of polyvinylpyrrolidone (molecular weight 40,000), and 5 parts of LiCl was immediately cast onto a glass plate to a thickness of 150μ. After 1 minute of immersion in cold water, the sample was immersed in isopropanol (50°C) for 8 minutes.

この膜は0.1μm孔径を有し、濾過流量50ml/
cm2・min・atmであつたのに対し、イソプロパノ
ール未処理の膜は0.1μm孔径で27ml/cm2・min・
atmであつた。一方、3時間上記のアルコール処
理を行つた場合には、濾過流量が52ml/cm2
min・atmと増大したが、同時に孔径も0.16μmと
増大し分離能が低下したことが確認された。
This membrane has a pore size of 0.1μm and a filtration flow rate of 50ml/
cm2・min・atm, whereas the membrane untreated with isopropanol had a pore size of 27ml/ cm2・min・
It was hot at the ATM. On the other hand, when the above alcohol treatment was performed for 3 hours, the filtration flow rate was 52ml/ cm2 .
It was confirmed that the pore size increased to 0.16 μm and the separation ability decreased at the same time.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリマーを極性有機溶媒に溶解してなる製膜
原液を支持体上に流延し、次いで凝固浴に浸漬す
る微孔性膜の製造方法において、支持体上に流延
された製膜原液を凝固浴に浸漬し微孔を形成させ
た後、5〜30分間アルコール浴中に浸漬すること
を特徴とする微孔性膜の製造方法。
1. In a method for producing a microporous membrane in which a membrane-forming stock solution prepared by dissolving a polymer in a polar organic solvent is cast onto a support, and then immersed in a coagulation bath, the film-forming stock solution cast onto the support is A method for producing a microporous membrane, which comprises immersing it in a coagulation bath to form micropores, and then immersing it in an alcohol bath for 5 to 30 minutes.
JP60155722A 1985-07-15 1985-07-15 Process of manufacturing microporous Granted JPS6214905A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60155722A JPS6214905A (en) 1985-07-15 1985-07-15 Process of manufacturing microporous
GB8701193A GB2199786B (en) 1985-07-15 1987-01-20 Polymeric micro-porous membranes and their production
DE19873701633 DE3701633A1 (en) 1985-07-15 1987-01-21 MICROPOROUS MEMBRANE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60155722A JPS6214905A (en) 1985-07-15 1985-07-15 Process of manufacturing microporous
GB8701193A GB2199786B (en) 1985-07-15 1987-01-20 Polymeric micro-porous membranes and their production

Publications (2)

Publication Number Publication Date
JPS6214905A JPS6214905A (en) 1987-01-23
JPH057047B2 true JPH057047B2 (en) 1993-01-28

Family

ID=39339878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155722A Granted JPS6214905A (en) 1985-07-15 1985-07-15 Process of manufacturing microporous

Country Status (3)

Country Link
JP (1) JPS6214905A (en)
DE (1) DE3701633A1 (en)
GB (1) GB2199786B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574162A (en) * 2019-03-14 2021-10-29 帝人株式会社 Concentration membrane, concentration device, concentration system, concentration method for biological particles, and detection method for biological particles

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8907283A (en) * 1987-11-06 1990-02-13 Dow Chemical Co SEMI-PERMEABLE MEMBRANES WITH INTERNAL DISCRIMINATORY REGION
DE3829752A1 (en) * 1988-09-01 1990-03-22 Akzo Gmbh INTEGRAL ASYMMETRICAL POLYAETHERSULPHONE MEMBRANE, METHOD FOR THE PRODUCTION AND USE FOR ULTRAFILTRATION AND MICROFILTRATION
US4902422A (en) * 1988-12-06 1990-02-20 Board Regents The University Of Texas System Defect-free ultrahigh flux asymmetric membranes
CA2062638A1 (en) * 1991-03-12 1992-09-13 Seriya Takahashi Process for producing composite semipermeable membrane
US5188734A (en) * 1991-03-26 1993-02-23 Memtec America Corporation Ultraporous and microporous integral membranes
US5480554A (en) * 1992-05-13 1996-01-02 Pall Corporation Integrity-testable wet-dry-reversible ultrafiltration membranes and method for testing same
US6277281B1 (en) * 1994-03-04 2001-08-21 Usf Filtration And Separations Group Inc. Large pore synthetic polymer membranes
WO1995023640A1 (en) * 1994-03-04 1995-09-08 Memtec America Corporation Large pore synthetic polymer membranes
DE4421871C2 (en) 1994-06-23 1997-06-19 Seitz Filter Werke Multi-layer microfiltration membrane with integrated pre-filter layer and process for its production
US5834107A (en) * 1996-01-22 1998-11-10 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
US5980746A (en) * 1996-11-14 1999-11-09 Pall Corporation Membrane and methods of preparing and using same
US6045899A (en) 1996-12-12 2000-04-04 Usf Filtration & Separations Group, Inc. Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters
US6146747A (en) * 1997-01-22 2000-11-14 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
US5958989A (en) * 1997-07-08 1999-09-28 Usf Filtration And Separations Group, Inc. Highly asymmetric ultrafiltration membranes
ES2151815B1 (en) * 1998-05-18 2001-08-16 Consejo Superior Investigacion PROCEDURE FOR THE PREPARATION OF CARBON MEMBRANES FOR THE SEPARATION OF PERMANENT GASES.
AT408656B (en) * 1998-06-04 2002-02-25 Chemiefaser Lenzing Ag METHOD FOR PRODUCING CELLULOSIC MOLDED BODIES
EP3124103A1 (en) * 2000-05-24 2017-02-01 EMD Millipore Corporation Process of forming multilayered structures
ATE528320T1 (en) 2002-05-10 2011-10-15 Bio Layer Pty Ltd GENERATION OF SURFACE COATING DIVERGENCE
US7881871B2 (en) 2003-12-12 2011-02-01 Bio-Layer Pty Limited Method for designing surfaces
JP4897676B2 (en) 2004-07-02 2012-03-14 バイオ‐レイヤー ピーティーワイ リミティッド How to use metal complexes
EP1721657A1 (en) * 2005-05-13 2006-11-15 SONY DEUTSCHLAND GmbH A method of fabricating a polymeric membrane having at least one pore
FR2958190B1 (en) * 2010-04-01 2012-05-18 Commissariat Energie Atomique PROCESS FOR FORMING VINYLIDENE POLYFLUORIDE-TYPE FLUORINE POLYMER FILM USED AS LITHIUM BATTERY SEPARATOR
DE102011114634A1 (en) * 2011-10-04 2013-04-04 Mn-Beteiligungs Gmbh Abrasion resistant membrane and process for its preparation
TWI658070B (en) 2013-11-14 2019-05-01 美商恩特葛瑞斯股份有限公司 Microporous polyamide-imide membranes
DE102018004521A1 (en) 2018-06-07 2019-12-12 Sartorius Stedim Biotech Gmbh Serial arrangement with multiple layers of asymmetric filter media, manufacturing process, filtration unit, use of the array, and characterization procedures
CN109847585B (en) * 2018-12-20 2021-12-14 沃顿科技股份有限公司 Preparation method of composite nanofiltration membrane and composite nanofiltration membrane prepared by same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50756A (en) * 1973-05-02 1975-01-07
JPS5382669A (en) * 1976-12-29 1978-07-21 Kuraray Co Ltd Preparation of dry separating membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50756A (en) * 1973-05-02 1975-01-07
JPS5382669A (en) * 1976-12-29 1978-07-21 Kuraray Co Ltd Preparation of dry separating membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574162A (en) * 2019-03-14 2021-10-29 帝人株式会社 Concentration membrane, concentration device, concentration system, concentration method for biological particles, and detection method for biological particles

Also Published As

Publication number Publication date
GB8701193D0 (en) 1987-02-25
GB2199786B (en) 1990-03-28
DE3701633A1 (en) 1988-08-04
GB2199786A (en) 1988-07-20
JPS6214905A (en) 1987-01-23

Similar Documents

Publication Publication Date Title
JPH057047B2 (en)
JPH0468966B2 (en)
US5886059A (en) Highly asymmetric polyethersulfone filtration membranes
JP3200095B2 (en) Hydrophilic heat-resistant film and method for producing the same
US4147622A (en) Process for manufacturing membranes for osmotic separation
TW201526979A (en) Membrane with plurality of charges
JP2013215724A (en) Antimicrobial filter
JP2010082573A (en) Porous film and method for manufacturing the same
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JPH04349927A (en) Preparation of precise filter membrane
JPS63139930A (en) Production of microporous membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JPS62160109A (en) Manufacture of microporous filter membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JP2530133B2 (en) Microporous membrane
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPS6289745A (en) Production of microporous membrane
JPS6393309A (en) Treatment of micro porous membrane
JPS62160110A (en) Manufacture of microporous membrane having large water permeability
Hwang et al. Characteristics and separation efficiencies of PPSU/PEI/PEG blend membranes with different compositions for water treatment
JP2003251152A (en) Precision porous poly(ether sulfone) filter membrane
JPH0561970B2 (en)
JPS636033A (en) Microporous membrane composed of polysulfone
JPS60250049A (en) Production of microporous filter membrane composed of polysulfone
KR930003740B1 (en) Producing method of polysulfon membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees