JPS62160110A - Manufacture of microporous membrane having large water permeability - Google Patents

Manufacture of microporous membrane having large water permeability

Info

Publication number
JPS62160110A
JPS62160110A JP136786A JP136786A JPS62160110A JP S62160110 A JPS62160110 A JP S62160110A JP 136786 A JP136786 A JP 136786A JP 136786 A JP136786 A JP 136786A JP S62160110 A JPS62160110 A JP S62160110A
Authority
JP
Japan
Prior art keywords
membrane
solvent
microporous membrane
solution
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP136786A
Other languages
Japanese (ja)
Inventor
Jun Sasaki
純 佐々木
Kyoichi Naruo
成尾 匡一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP136786A priority Critical patent/JPS62160110A/en
Publication of JPS62160110A publication Critical patent/JPS62160110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To enhance filter flow without lowering separation power of micro porous membrane and offer a much longer life by casting and solidifying poly mer solution melted in polar organic solvent solution. CONSTITUTION:Resin of polysulfone and fluorine bases, polyamide of aliphatic family and the like are solved in good solvent, mixed solvent of good and non-solvents and mixture of several kinds of solvents carrying different dissolving degrees against polymer. Concentration is preferably 5-30 weight % and 1-60 weight % of electrolytic water solution having 0.5-10 volume % may be added. The said raw liquid for preparing membrane is cast over the substrate, which is impregnated immediately after casting or after a specified time. The membrane thus prepared is impregnated in non-solvent or non-solvent solution, and ultrasonic treatment for the same is carried out in the room temperature -60 deg.C for 5-30 minutes, which is then dried in the temperature under 80 deg.C. The porous membrane thus prepared can increase filter flow without lowering separation power.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体の精密濾過に使用される微孔性膜の製造方
法に関する。更に詳しくは、本発明は濾過速度の大きい
微孔性膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a microporous membrane used for precision filtration of liquids. More specifically, the present invention relates to a method for producing a microporous membrane with a high filtration rate.

(従来の技術) 微孔性膜は古くから知られており(例えば、アール・ケ
スティング(R,にesting)著、シンセティック
・ポリマー・メンプラン(Synthetic Pol
ymer Membrane) 、マグロウヒル社(M
c Graw Hill  社)発行)濾過用フィルタ
ー等に広く利用されている。微孔性膜は、たとえば米国
特許第1.421,341号、同3,133゜132号
、同2,944,017号、特公昭43−15698号
、特公昭45−33313号、同48−39586号、
同48−40050号等に記載されているように、セル
ローズエステルを原料として製造されるもの、米国特許
第2,783゜894号、同3,408,315号、同
4,340.479号、同4,340.480号、同4
゜450.126号、ドイツ特許DE3,138,52
5号、特開昭58−37842号等に記載されているよ
うに脂肪族ポリアミドを原料として製造されるもの、米
国特許第4,196,070号、同4,340,482
号、特開昭55−99934号、特開昭58−9173
2号等に記載されているようにポリフルオロカーボンを
原料として製造されるもの、特開昭56−154051
号、特開昭56−86941号、特開昭56−1264
0号等に記載されているポリスルホンを原料とするもの
、ドイツ特許oLs3,003.400号等に記載され
ているポリプロピレンを原料とするものなどがある。こ
れら微孔性膜は電子工業用洗浄水、医薬用水、医薬製造
工程用水、食品水等の濾過、滅菌に用いられ近年その用
途と使用量は拡大しており、特に粒子捕捉の点から信頼
性の高い微孔性膜が注目され多用されている。
(Prior Art) Microporous membranes have been known for a long time (for example, in Synthetic Pol.
ymer Membrane), McGraw-Hill Company (M
(Published by Graw Hill Co.)) Widely used in filtration filters, etc. Microporous membranes are disclosed in, for example, U.S. Pat. No. 1,421,341, U.S. Pat. No. 39586,
As described in U.S. Pat. No. 48-40050, etc., those manufactured using cellulose ester as a raw material, U.S. Pat. 4,340.480, 4
No. 450.126, German patent DE 3,138,52
5, those manufactured using aliphatic polyamide as raw materials as described in JP-A-58-37842, etc., U.S. Pat. Nos. 4,196,070 and 4,340,482
No., JP-A-55-99934, JP-A-58-9173
Those manufactured using polyfluorocarbon as a raw material as described in No. 2, etc., JP-A-56-154051
No., JP-A-56-86941, JP-A-56-1264
There are those using polysulfone as a raw material as described in No. 0, etc., and those using polypropylene as a raw material as described in German patent oLs 3,003.400 and the like. These microporous membranes are used for filtration and sterilization of electronic industry cleaning water, medical water, water for pharmaceutical manufacturing processes, food water, etc., and their applications and usage have expanded in recent years, especially in terms of particle capture. Highly microporous membranes are attracting attention and are widely used.

(発明が解決しようとする問題点) しかしながら従来の微孔性膜は、単位面積当たりの濾過
速度が十分とは言えず、必要濾過流量を得るにはより高
い圧力で濾過する必要があり、又は膜面積を増すべく多
くの濾過ユニットを並列して使用することを余儀無くさ
れている。そこで濾過工程のコストダウンの面で濾過速
度を上げる事は当業界の技術的課題であった。
(Problems to be Solved by the Invention) However, conventional microporous membranes cannot be said to have a sufficient filtration rate per unit area, and in order to obtain the required filtration flow rate, it is necessary to filter at a higher pressure, or In order to increase the membrane area, it is necessary to use many filtration units in parallel. Therefore, increasing the filtration speed in order to reduce the cost of the filtration process has been a technical challenge in the industry.

このような観点から、従来微孔性膜の改質のために、出
来上がった膜をアルコール等の有機溶媒によって処理す
る事が知られており、例えば特開昭55−147108
号には、ポリスルホン半透膜をアルコール処理し、濾過
速度を上げる方法が記載されている。しかしながらこの
方法の場合には、濾過速度の増大が膜の孔径の増大によ
るものであるために、膜が本来維持せねばならない分離
能の低下を伴い好ましくない。
From this point of view, it has been known to treat the finished membrane with an organic solvent such as alcohol in order to modify the microporous membrane.
The issue describes a method for increasing the filtration rate by treating polysulfone semipermeable membranes with alcohol. However, in the case of this method, since the increase in filtration rate is due to the increase in the pore size of the membrane, this is not preferable as it involves a decrease in the separation ability that the membrane should originally maintain.

そこで本発明者等は、微孔性膜に対する超音波の影響を
詳細に調べた結果、微孔性膜を非溶媒の存在下に超音波
処理した場合には、透過水量の大きな微孔性膜が得られ
ることを見いだし本発明に到達した。
As a result of detailed investigation into the influence of ultrasound on microporous membranes, the present inventors found that when microporous membranes are subjected to ultrasonic treatment in the presence of a non-solvent, microporous membranes with a large amount of water permeate. The present invention was achieved by discovering that the following can be obtained.

従って本発明の第1の目的は、単位面積当たりの濾過流
量を増大することのできる微孔性膜の製造方法を提供す
ることにある。
Therefore, a first object of the present invention is to provide a method for manufacturing a microporous membrane that can increase the filtration flow rate per unit area.

本発明の第2の目的は、微粒子、ならびに細菌等を効率
良く捕捉することができる濾過寿命の長い微孔性膜の製
造方法を提供することにある。
A second object of the present invention is to provide a method for producing a microporous membrane with a long filtration life that can efficiently trap fine particles, bacteria, and the like.

(問題を解決するための手段) 本発明の上記の諸口的は、少なくとも、ポリマーを極性
有機溶媒に溶解してなる製膜原液を流延する工程と、流
延と同時又は流延した後に凝固浴に浸漬して微孔を形成
せしめる工程を経て得られた微孔性膜を、該微孔性膜の
非溶媒又は非溶媒を主とする液体中に浸漬した状態で、
微孔サイズが実質的に変化しない程度に超音波処理する
ことを特徴とする、透過水量の大きい微孔性膜の製造方
法によって達成された。
(Means for Solving the Problems) The above aspects of the present invention include at least a step of casting a film-forming stock solution prepared by dissolving a polymer in a polar organic solvent, and a step of casting a film-forming solution prepared by dissolving a polymer in a polar organic solvent, and solidifying the solution at the same time as or after the casting. A microporous membrane obtained through a step of immersing in a bath to form micropores is immersed in a nonsolvent of the microporous membrane or a liquid mainly containing a nonsolvent,
This was achieved by a method for manufacturing a microporous membrane with a large permeation rate, which is characterized by ultrasonication to such an extent that the micropore size does not substantially change.

本発明で使用することのできる微孔性膜には、ポリ弗化
ビニリデン、ポリテトラフルオロエチレンの如き弗素系
樹脂、ポリスルホン、ポリエーテルスルホン、脂肪族ポ
リアミド、セルローズエステル、ポリプロピレンポリイ
ミド等の公知のポリマーを単独又は混合して原料とする
ことができる。
Microporous membranes that can be used in the present invention include known polymers such as polyvinylidene fluoride, fluorine-based resins such as polytetrafluoroethylene, polysulfone, polyethersulfone, aliphatic polyamide, cellulose ester, and polypropylene polyimide. These can be used alone or in combination as raw materials.

本発明においては、これらの中でもポリスルホンが好ま
しく、特に 又は、 の繰り返し単位で表されるポリマーが好ましい。
In the present invention, polysulfones are preferred among these, and polymers represented by the repeating units of or are particularly preferred.

微孔性膜の製造は、通常、上記ポリマーを■良溶媒、■
良溶媒と非溶媒の混合溶媒又は■ポリマーに対する溶解
性の程度が異なる複数種の溶媒の混合したものに溶解し
て製膜原液を作製し、これを支持体上に、又は直接凝固
液中に流延し洗浄、乾燥して行う。この場合に、ポリマ
ーを溶解する溶媒の一例としては、ジクロロメタンアセ
トン、ジメチルホルムアミド、ジメチルアセトアミド、
ジメチルスルホキシド、2−ピロリドン、N−メチル−
2−ピロリドン、スルホラン、ヘキサメチルホスホルア
ミド等を挙げることができる。
In the production of microporous membranes, the above polymers are usually mixed with ■ a good solvent, and ■
Prepare a membrane-forming stock solution by dissolving it in a mixed solvent of a good solvent and a non-solvent, or a mixture of multiple types of solvents with different degrees of solubility for the polymer, and apply it on a support or directly into a coagulation solution. Cast, wash, and dry. In this case, examples of solvents that dissolve the polymer include dichloromethaneacetone, dimethylformamide, dimethylacetamide,
Dimethyl sulfoxide, 2-pyrrolidone, N-methyl-
Examples include 2-pyrrolidone, sulfolane, hexamethylphosphoramide, and the like.

上記溶媒に添加する非溶媒の一例としては、セロソルフ
類、メタノール、エタノール、プロパツール、アセトン
、テトラヒドロフラン、ポリエチレングリコール、グリ
セリン等が挙げられる。非溶媒の良溶媒に対する割合は
、混合液が均一状態を保てる範囲ならばいかなる範囲で
もよいが、5重量%〜50重量%が好ましい。
Examples of nonsolvents added to the above solvent include cellosols, methanol, ethanol, propatool, acetone, tetrahydrofuran, polyethylene glycol, glycerin, and the like. The ratio of the nonsolvent to the good solvent may be in any range as long as the mixed liquid can maintain a uniform state, but is preferably 5% to 50% by weight.

又、多孔構造を制御するものとして膨潤剤と称される無
機電解質、有機電解質、高分子又はその電解質等を加え
ることもできる。
In addition, an inorganic electrolyte, an organic electrolyte, a polymer, or an electrolyte thereof called a swelling agent may be added to control the porous structure.

本発明で使用することのできる電解質としては、食塩、
硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、塩化
亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ酸ナトリ
ウム等の有機酸の金属塩、ポリスチレンスルホン酸ナト
リウム、ポリビニルベンジルトリメチルアンモニウムク
ロライド、ポリビニルアルコール、ポリエチレングリコ
ール、ポリビニルピロリドン等の高分子又はその電解質
、ジオクチルスルホコハク酸ナトリウム、アルキルメチ
ルタウリン酸ナトリウム等のイオン系界面活性剤等が用
いられる。これらの電解質は、単独でポリマー溶液に加
えてもある程度の効果を示すものであるが、これら電解
質を水溶液として添加する場合には、特に顕著な効果を
示すものである。
Electrolytes that can be used in the present invention include salt,
Metal salts of inorganic acids such as sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride, metal salts of organic acids such as sodium acetate, sodium formate, sodium polystyrene sulfonate, polyvinylbenzyltrimethylammonium chloride, polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidone Polymers such as or electrolytes thereof, ionic surfactants such as sodium dioctyl sulfosuccinate, sodium alkylmethyl taurate, etc. are used. Although these electrolytes exhibit some effects even when added alone to a polymer solution, they exhibit particularly remarkable effects when added as an aqueous solution.

電解質水溶液の添加量は添加によって溶液の均一性が失
われることがない限り、特に制限はないが、通常、電解
質水溶液の固形分が溶媒に対して0゜5容量%〜10容
量%である。又、電解質水溶液の濃度についても特に制
限はなく、濃度の大きい方が効果が大きいが、通常用い
られる濃度は1重量%〜60重量%である。
The amount of the electrolyte aqueous solution to be added is not particularly limited as long as the addition does not impair the uniformity of the solution, but usually the solid content of the electrolyte aqueous solution is 0.5% to 10% by volume relative to the solvent. Further, there is no particular restriction on the concentration of the electrolyte aqueous solution, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight.

製膜原液としてのポリマー溶液の濃度は5〜35重量%
、好ましくは10〜30重量%である。
The concentration of the polymer solution as a membrane forming stock solution is 5 to 35% by weight.
, preferably 10 to 30% by weight.

35重量%を越えると、得られる微孔性膜の透水性が実
用的な意味を持たない程小さくなり、又5重量%より低
い濃度では十分な分離能を持った微孔性膜は得られない
If the concentration exceeds 35% by weight, the water permeability of the resulting microporous membrane becomes so low that it has no practical meaning, and if the concentration is lower than 5% by weight, a microporous membrane with sufficient separation ability cannot be obtained. do not have.

上記のようにして調整した製膜原液を支持体の上に流延
し、流延直後或いは一定時間をおいて、凝固液中に支持
体ごとポリマー溶液膜を浸漬する。
The membrane-forming stock solution prepared as described above is cast onto a support, and the polymer solution membrane together with the support is immersed in a coagulation solution immediately after casting or after a certain period of time.

凝固液としては、水が最も一般的に用いられるが、ポリ
マーを熔解しない有機溶媒を用いても良く、又これら非
溶媒を2種以上混合して用いても良い。
As the coagulating liquid, water is most commonly used, but an organic solvent that does not dissolve the polymer may also be used, or a mixture of two or more of these non-solvents may be used.

支持体としては、通常微孔性膜を製造する場合に支持体
として使用できるものの中から任意に選択することがで
きるが、特に不織布を使用した場合には支持体を剥がす
必要がないので好ましい。
The support can be arbitrarily selected from those that can be used as a support in the production of microporous membranes, but it is particularly preferable to use a nonwoven fabric since there is no need to peel off the support.

本発明で使用することのできる不織布はポリプロピレン
、ポリエステル、等から成る一般的なものであり、材質
の限定を受けるものではない。
The nonwoven fabric that can be used in the present invention is generally made of polypropylene, polyester, etc., and is not limited in material.

凝固液中でポリマーが析出した流延膜は、通常、この後
水洗、温水洗、を機溶媒洗等が行われる。
The cast membrane in which the polymer has precipitated in the coagulation liquid is usually subsequently washed with water, warm water, machine solvent washing, etc.

本発明で行う超音波処理は、微孔の孔径が実質的に変化
しない程度であれば、微孔が形成された後の任意の時に
行うことができる。即ち、上記のような洗浄工程の直後
であっても、洗浄工程の前であっても、又、乾燥工程迄
経た後であっても良い、この場合、上記の通常の洗浄工
程を省略することもできる。
The ultrasonic treatment performed in the present invention can be performed at any time after the micropores are formed, as long as the pore diameter of the micropores does not substantially change. That is, it may be done immediately after the above-mentioned washing step, before the washing step, or after the drying step; in this case, the above-mentioned normal washing step may be omitted. You can also do it.

本発明においては、超音波処理をすることによって微孔
の孔径を変化せしめないために、該処理は、微孔性膜を
微孔性膜の非溶媒又は非溶媒を主とする溶液に浸漬した
上で、一定の条件に従って行う必要がある。このような
処理条件は、処理温度が室温〜60℃好ましくは40℃
〜55℃、処理時間は5分〜30分、好ましくは10分
〜20分であり、このような超音波処理の後は、80℃
以下、好ましくは40℃以下で乾燥する。
In the present invention, in order to prevent the pore size of the micropores from changing due to the ultrasonic treatment, the treatment is performed by immersing the microporous membrane in a nonsolvent of the microporous membrane or a solution mainly containing a nonsolvent. This must be done according to certain conditions. Such processing conditions include a processing temperature ranging from room temperature to 60°C, preferably 40°C.
~55°C, the treatment time is 5 minutes to 30 minutes, preferably 10 minutes to 20 minutes, and after such ultrasonic treatment, the temperature is 80°C.
Thereafter, it is preferably dried at 40°C or lower.

上記処理時に使用する非溶媒は、微孔性膜の種類によっ
て適宜選択されるが、特に、水、メタノール、エタノー
ル、イソプロピルパノール、ter−ブタノール、エチ
レングリコール、ジエチレングリコール、トリエチレン
グリコールが好ましく、これらは単独で使用しても、任
意の2種以上を混合して使用しても良い。又、本発明に
おいてはこれらの非溶媒に溶媒を加えた混合溶媒を使用
して、処理時間を短縮せしめることもできる。この場合
、溶媒の量が多すぎると超音波処理に際し微孔径が太き
(なる傾向が生ずるので好ましくない。溶媒の種類によ
っても異なるが、溶媒の添加量は5重量%以下であるこ
とが好ましい。このような溶媒は、使用するポリマーの
種類に応じて適宜選択されるが、特に、ジメチルアセト
アミド、ジメチルホルムアミド、ジメチルスルホキサイ
ド、テトラヒドロフラン、スルホラン、エチレンカーボ
ネート、N−メチル−2−ピロリドン、2−ピロリドン
及びヘキサメチルホスホルアミドが好ましい。
The nonsolvent used during the above treatment is appropriately selected depending on the type of microporous membrane, but water, methanol, ethanol, isopropylpanol, ter-butanol, ethylene glycol, diethylene glycol, and triethylene glycol are particularly preferred. may be used alone or in combination of two or more. Further, in the present invention, a mixed solvent in which a solvent is added to these non-solvents can be used to shorten the processing time. In this case, if the amount of solvent is too large, the micropore diameter will become thick during ultrasonic treatment, which is undesirable.Although it varies depending on the type of solvent, it is preferable that the amount of solvent added is 5% by weight or less. Such solvents are appropriately selected depending on the type of polymer used, but in particular, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, sulfolane, ethylene carbonate, N-methyl-2-pyrrolidone, 2 -Pyrrolidone and hexamethylphosphoramide are preferred.

本発明で使用する超音波は、膜構造を破壊しない上限の
出力で発生せしめることが好ましいが、一般に、周波数
20KHz 〜40KHz、好ましくは25 K Hz
 〜28 K Hzで、撮動子の出力が3〜l0KW、
’n?のものを約1耐の媒体に供給するのが適当である
The ultrasonic waves used in the present invention are preferably generated at an upper limit output that does not destroy the membrane structure, but generally have a frequency of 20 KHz to 40 KHz, preferably 25 KHz.
At ~28 KHz, the output of the camera is 3~10KW,
'n? It is appropriate to supply a medium with a resistance of about 1.

(発明の効果) 本発明によれば、極めて容易に微孔性膜本来の分離能を
低下させることなく、微孔性膜の濾過流量を向上させる
ことができる。本発明によって得られた膜の濾過効率は
極めて大きいので、濾過流量に対する微孔性膜の寿命も
大きく改善される。
(Effects of the Invention) According to the present invention, the filtration flow rate of the microporous membrane can be improved very easily without reducing the inherent separation ability of the microporous membrane. Since the filtration efficiency of the membrane obtained according to the present invention is extremely high, the life of the microporous membrane with respect to the filtration flow rate is also greatly improved.

以下、本発明を実施例に従って更に詳述するが、本発明
はこれによって限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail according to Examples, but the present invention is not limited thereto.

尚、孔径測定はASTM−316−70の方法に従って
行った。
Note that the pore size measurement was performed according to the method of ASTM-316-70.

実施例1゜ ポリフッ化ビニリデン23部、ジメチルアセトアミド(
DMA)68部、及びポリビニルアルコール9部よりな
る混合溶液を、ガラス板上にドクターブレードを用いて
200μm厚味に流延し、30秒間空気中に放置した後
、水/DMA=1/1 (重量比)の凝固液に浸漬し、
2分間凝固させた。次に水洗を10分間行い40℃にて
乾燥させた。得られた膜の孔径は0.08μ、濾過流量
は20mj!/cj−min−atmであった。この膜
20gを25℃の水を張った21の水槽中で、周波数2
5KHz、出力200Wの超音波で20分間処理を行っ
た。処理後の膜の孔径は0.08μであり処理前と変化
無かったが、濾過流量は34m l /−・m i n
 −a t mであり、透過水量が大幅に改、善された
ことが実証された。
Example 1 23 parts of polyvinylidene fluoride, dimethylacetamide (
A mixed solution consisting of 68 parts of DMA) and 9 parts of polyvinyl alcohol was cast onto a glass plate to a thickness of 200 μm using a doctor blade, and after being left in the air for 30 seconds, water/DMA = 1/1 ( weight ratio) in a coagulating solution,
Allowed to solidify for 2 minutes. Next, it was washed with water for 10 minutes and dried at 40°C. The resulting membrane had a pore size of 0.08μ and a filtration flow rate of 20 mJ! /cj-min-atm. 20g of this membrane was placed at a frequency of 2 in 21 water tanks filled with water at 25°C.
Ultrasonic treatment was performed for 20 minutes at 5 KHz and an output of 200 W. The pore size of the membrane after treatment was 0.08μ, which was unchanged from before treatment, but the filtration flow rate was 34ml/-min.
-a t m, and it was demonstrated that the amount of permeated water was significantly improved.

実施例2゜ ポリスルホン(UCC社P3500)15部、N−メチ
ル−2−ピロリドン65部、ポリビニルピロリドン(分
子量4万)15部及びLiCl3部よりなる均一溶液を
ガラス板上に150μ厚に流延した後直ちに冷水に浸漬
し、10分間水洗を行った後40℃で乾燥した。得られ
た膜の孔径は0゜2μであり、濾過流量は3 Q m 
1 / cri −m i n ・atmであった。こ
の膜について実施例1と同様の処理を行ったところ、濾
過流量は42mβ/cIII・m i n −a t 
mと大幅に増大したが、処理後の孔径は0.2μであり
処理前の孔径と同じであった。
Example 2 A homogeneous solution consisting of 15 parts of polysulfone (UCC P3500), 65 parts of N-methyl-2-pyrrolidone, 15 parts of polyvinylpyrrolidone (molecular weight 40,000) and 3 parts of LiCl was cast onto a glass plate to a thickness of 150 μm. Immediately thereafter, it was immersed in cold water, rinsed with water for 10 minutes, and then dried at 40°C. The pore size of the obtained membrane was 0°2μ, and the filtration flow rate was 3Q m
1/cri-min・atm. When this membrane was subjected to the same treatment as in Example 1, the filtration flow rate was 42 mβ/cIII·min -a t
The pore diameter after treatment was 0.2μ, which was the same as the pore diameter before treatment.

実施例3゜ 実施例2.と同様にして得た超音波処理前の微孔性膜を
3日間室温で放置した後、実施例2と同様にして超音波
処理したところ、実施例2の場合と同様の結果を得た。
Example 3゜Example 2. The microporous membrane obtained in the same manner as in Example 2 before being subjected to ultrasonic treatment was left at room temperature for 3 days, and then subjected to ultrasonic treatment in the same manner as in Example 2. The same results as in Example 2 were obtained.

Claims (1)

【特許請求の範囲】 1)少なくとも、ポリマーを極性有機溶媒に溶解してな
る製膜原液を流延する工程と、流延と同時又は流延した
後に凝固浴に浸漬して微孔を形成せしめる工程を経て得
られた微孔性膜を、該微孔性膜の非溶媒又は非溶媒を主
とする液体中に浸漬した状態で、微孔サイズが実質的に
変化しない程度に超音波処理することを特徴とする、透
過水量の大きい微孔性膜の製造方法。 2)非溶媒が、水、メタノール、エタノール、イソプロ
パノール、ter−ブタノール、エチレングリコール、
ジエチレングリコール、トリエチレングリコールの中か
ら選択された1種又は2種以上の混合物である特許請求
の範囲第1項に記載の透過水量の大きい微孔性膜の製造
方法。 3)溶媒が、ジメチルアセトアミド、ジメチルホルムア
ミド、ジメチルスルホキシド、テトラヒドロフラン、ス
ルホラン、エチレンカーボネート、N−メチル−2−ピ
ロリドン、2−ピロリドン、ヘキサメチルホスホルアミ
ドの中から選択された1種又は2種以上の混合物である
特許請求の範囲第1項又は第2項に記載の透過水量の大
きい微孔性膜の製造方法。
[Claims] 1) At least a step of casting a film-forming stock solution prepared by dissolving a polymer in a polar organic solvent, and immersing it in a coagulation bath at the same time as or after the casting to form micropores. The microporous membrane obtained through the process is subjected to ultrasonic treatment while immersed in the nonsolvent of the microporous membrane or a liquid mainly consisting of a nonsolvent to the extent that the micropore size does not substantially change. A method for producing a microporous membrane with a large amount of permeated water, characterized by: 2) The nonsolvent is water, methanol, ethanol, isopropanol, ter-butanol, ethylene glycol,
The method for producing a microporous membrane with a large permeate amount according to claim 1, wherein the membrane is one or a mixture of two or more selected from diethylene glycol and triethylene glycol. 3) The solvent is one or more selected from dimethylacetamide, dimethylformamide, dimethylsulfoxide, tetrahydrofuran, sulfolane, ethylene carbonate, N-methyl-2-pyrrolidone, 2-pyrrolidone, and hexamethylphosphoramide. A method for producing a microporous membrane with a large permeable water amount according to claim 1 or 2, which is a mixture of.
JP136786A 1986-01-09 1986-01-09 Manufacture of microporous membrane having large water permeability Pending JPS62160110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP136786A JPS62160110A (en) 1986-01-09 1986-01-09 Manufacture of microporous membrane having large water permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP136786A JPS62160110A (en) 1986-01-09 1986-01-09 Manufacture of microporous membrane having large water permeability

Publications (1)

Publication Number Publication Date
JPS62160110A true JPS62160110A (en) 1987-07-16

Family

ID=11499524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP136786A Pending JPS62160110A (en) 1986-01-09 1986-01-09 Manufacture of microporous membrane having large water permeability

Country Status (1)

Country Link
JP (1) JPS62160110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062986A1 (en) * 1998-06-04 1999-12-09 Lenzing Aktiengesellschaft Method for producing cellulosic shaped bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062986A1 (en) * 1998-06-04 1999-12-09 Lenzing Aktiengesellschaft Method for producing cellulosic shaped bodies

Similar Documents

Publication Publication Date Title
JPS6214905A (en) Process of manufacturing microporous
EP1007195B1 (en) Highly asymmetric polyethersulfone filtration membrane
CN105327623A (en) Cellulose acetate nanofiltration membrane and preparing method thereof
JPH0468966B2 (en)
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS63139930A (en) Production of microporous membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
JP3681219B2 (en) Polysulfone porous separation membrane
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JPS62160109A (en) Manufacture of microporous filter membrane
JP2530133B2 (en) Microporous membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JPS62160110A (en) Manufacture of microporous membrane having large water permeability
JPH0929078A (en) Production of hollow yarn membrane
JP2013031832A (en) Method for manufacturing porous membrane, and microfiltration membrane
JPH0468010B2 (en)
JPH11217459A (en) Production of porous membrane
JPS6289745A (en) Production of microporous membrane
JP2003251152A (en) Precision porous poly(ether sulfone) filter membrane
JPS63277251A (en) Production of microporous film
JPS6393309A (en) Treatment of micro porous membrane
JPH05168878A (en) Antimicrobial liquid separation membrane
JPH0561970B2 (en)
JPS636033A (en) Microporous membrane composed of polysulfone