JPH0561970B2 - - Google Patents

Info

Publication number
JPH0561970B2
JPH0561970B2 JP61285999A JP28599986A JPH0561970B2 JP H0561970 B2 JPH0561970 B2 JP H0561970B2 JP 61285999 A JP61285999 A JP 61285999A JP 28599986 A JP28599986 A JP 28599986A JP H0561970 B2 JPH0561970 B2 JP H0561970B2
Authority
JP
Japan
Prior art keywords
membrane
solvent
microporous membrane
water
polysulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61285999A
Other languages
Japanese (ja)
Other versions
JPS63141610A (en
Inventor
Jun Sasaki
Narikazu Hashimoto
Kyoichi Naruo
Yukio Shinagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61285999A priority Critical patent/JPS63141610A/en
Publication of JPS63141610A publication Critical patent/JPS63141610A/en
Publication of JPH0561970B2 publication Critical patent/JPH0561970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は微孔性膜の製造方法に関するものであ
り、特に製薬工業における薬剤、食品工業におけ
るアルコール飲料等の濾過、および前記製造工業
及び半導体製造工業を初めとする微細な加工を行
う電子工業分野、原子力工業、さらに諸工業の実
験室等において使用される超純水製造のための精
製水、純水等の濾過に用いられ、10μm以下特に
1μm以下サブミクロンオーダーの微粒子や微生
物を効率よく濾過する精密濾過用微孔性膜の製造
方法に関するものである。 〔従来の技術〕 従来製薬工業、食品工業、電子工業、原子力工
業分野において、水系、非水系の0.1〜5μm程度
の微粒子除去、菌除去などに用いられる精密濾用
微孔性膜およびその製造方法に関してはセルロー
スエステル、脂肪族ポリアミド、ポリフルオロカ
ーボン、ポリスルホン、ポリプロピレン等を原料
とするものが開示されている(例えば特公昭48−
40050号、特開昭58−37842号、特開昭58−91732
号、特開昭56−154051号各公報参照)。 このような微孔性膜は、その内部に存在する微
孔の孔径が膜厚方向に実質的に変化せず、膜の両
表面の孔径が実質的に変わらない所謂対称膜と、
膜厚方向に孔径が連続的または不連続的に変化
し、膜の一方の表面の孔径と他方の表面の孔径と
が異なつている所謂非対称膜と膜厚方向に孔径分
布を有し、膜内部に最小孔径層を有する内部緻密
層膜と呼ばれる構造を有するものとに分類され
る。 これらのうち対称膜は、特開昭58−98015号に
記述されているが、濾過にあたつて膜全体が流体
の流れに対して大きな対抗を示し、小さな流速し
か得られない(即ち、単位面積当たり、単位時間
当たり単位差圧当たり小さな流量しか得られな
い)上、目詰まりがしやすく濾過寿命が短い、耐
ブロツキング性がない等の欠点があつた。 一方非対称膜は特公昭55−6406号、特開昭56−
154051号に記載されている如く緻密層と呼ばれる
孔径の小さい層を膜の片方の表面にもち比較的大
きい穴をもう一方の表面にもつたものである。こ
れを濾過液の流れに対して大きい穴をもつた面を
向けると実質的には濾過除去されうる最小の微粒
子はこの緻密層で捕捉されるというように、膜の
厚みをすべて有効に瀘材として活用することがで
きるので、注意深く使用する場合には、濾過流量
を増加せしめることも膜の寿命を延ばすことも可
能であり、この意味で優れた微孔性膜である。 しかしながら、この場合には緻密層が極めて重
要であるにもかかわらず従来、この緻密層が表面
にあるために擦過その他で傷がつきやすく、微粒
子の漏洩をきたし易いという欠点があつた。 かかる欠点を補うために、内部緻密層膜即ち孔
径の小さな層が濾過膜内部に存在する構造が望ま
れ、特開昭58−150402号には非対称膜を2枚緻密
層同士を密着し重ね合わせる不連続な構造が提案
されている。しかしながら、このように2枚の非
対称膜を重ねる濾過系では、ひだ折りにしてカー
トリツジに収めた場合には、カートリツジ内の濾
過面積が小さくなり、モジユールとしての濾過流
量が小さくなるという欠点がある。 本発明者等は上記の欠点を解決すべく、膜内部
に緻密層を形成する微孔性膜について検討し、か
かる微孔性膜について先に出願を行つた(特願昭
60−166984号)。 この微孔性膜の製造方法としては、ポリマーに
膨潤剤と非溶媒を加えて溶媒に溶解してなる製膜
原液を、全く安定な溶液状態で支持体上に流延
し、該液膜に溶媒の蒸発と空気中の水分の吸収を
行いコアセルベーシヨンを起させた後、該液膜を
凝固浴に浸漬させ、しかる後微孔性膜を前記流延
用支持体上より剥離することを特徴とするもので
ある。 この製造方法で製作出来る膜形成用ポリマーは
特に限定されるものではないが、これらの中でも
特にポリスルホンが好ましく、その膨潤剤として
ポリビニルピロリドンが使用され、非溶媒として
水がよく用いられる。またポリスルホンの良溶媒
としてはN−メチル−2−ピロリドンがよく用い
られる。上記製造方法で製作されたポリスルホン
系微孔性膜は、内部緻密層膜として優れた構造お
よび性能をもつものである。 〔発明が解決しようとする問題点〕 しかしながら、この様にして作られたポリスル
ホン系の内部緻密層をもつた微孔性膜においては
親水性には優れているが、使用していると透水速
度が小さくなるという欠点があつた。 本発明の目的は上記の欠点を解消し、透水速度
が早く、親水性も優れているポリスルホン系の内
部緻密層をもつた微孔性膜の製造方法を提供する
ことにある。 〔問題点を解決するための手段および作用〕 本発明者等は検討結果膜中にポリビニールピロ
リドンの含有量が多いと濾過使用時に膨潤するこ
とによつて孔を塞ぐため透水抵抗が大きくなると
いうことを見い出し、ポリビニールピロリドンを
洗浄処理することに着目した。 本発明の上記目的は、ポリスルホンとポリビニ
ルピロリドンを溶媒に溶解した溶液を支持体に流
延し、凝固浴に浸漬する工程よりなるポリスルホ
ン系微孔性膜の製造方法において、得られた微孔
性膜を多価アルコール例えば、ジエチレングリコ
ール、トリエチレングリコール、ポリエチルング
リコール、グリセリン等で洗浄後、水洗し、膜中
のポリビニルピロリドンの含有量を1〜5%にす
ることを特徴とするポリスルホン系微孔性膜の製
造方法によつて達成される。 なお、多価アルコールは水溶液として用いても
よい。 本発明の微孔性膜の製造方法の最も効果的な1
実施態様について第1図を用いて説明する。 第1図において、ポリスルホンをジヤケツト付
溶解釜1で溶解する。その時微細孔形成に必要な
非溶媒として水、膨潤剤としてポリビニルピロリ
ドン等が添加混合される。この溶液は脱泡後、送
液ポンプ2により流延用の注液器3に送られ、注
液器3より流延用支持体4としてのポリエステル
フイルム上に安定した溶液状態の溶液を液膜5と
して流延する。流延された液膜5の表面に空気調
節装置6で調節した空気を吹出口7より当てた
後、ポリマーに対し非溶媒でありポリマーの溶液
に相溶性を有する液を収容する凝固液槽8に浸漬
させる。 液膜5は流延後調節した空気に吹かれることよ
つて液膜の表面から内部に向つてコアセルベーシ
ヨンを起こし、微細なコアセルベーシヨン相を液
膜5の表面から内部に向つて形成し、凝固液槽
(凝固液としては水)8の中でその微細なコアセ
ルベーシヨン相を微細孔として固定させると同時
に液膜5の相分離によつて、微細孔以外の細孔の
形成し、微孔性膜9を形成する。しかる後、微孔
性膜9を流延用支持体4より剥離させる。 流延用支持体4は流延用支持体巻取機10へ、
剥離した微孔性膜9は水洗槽11で水洗し引続き
多価アルコールによりポリビニルピロリドン(以
下、PVPと称す)を洗い出す多価アルコール洗
浄処理槽12を経て水洗槽13を通りPVPの含
有量を1〜5%にし乾燥機14を経て巻取機15
に巻取られる。 上記の製造方法により、改良されたポリスルホ
ン系微孔性膜を製造することができる。 本発明において用いられるポリスルホン及び/
又はポリエーテルスルホンは または の繰り返し単位で表されるポリマーが好ましい。 本発明のポリスルホン系微孔性膜の製造は、上
記ポリマーを良溶媒、良溶媒と非溶媒の混合
溶媒、またはポリマーに対する溶解性の程度が
異なる複数種の溶媒の混合したものに溶解して製
膜原液を作製する。 この場合のポリスルホンの良溶媒としては、通
常膜形成用ポリマーの良溶媒であり、かつ凝固浴
に浸漬した場合に速やかに凝固液と置換されるも
のが使用される。多くの場合、凝固液としては水
及び/又は水と相溶性のある有機溶媒が使用され
るので、凝固液と相溶性のある極性溶媒を使用す
ることが好ましい。例えば、ジオキサン、テトラ
ヒドロフラン、ジメチルホルムアミド、ジメチル
アセトアミド、N−メチル−2−ピロリドンある
いはこれらの混合溶媒が適当である。 また本発明における非溶媒を混合する場合の非
溶媒としては、水、セルソルブ類、メタノール、
エタノール、プロパノール、アセトン、テトラヒ
ドロフラン、ポリエチレングリコール、グリセリ
ン等が挙げられる。 非溶媒の良溶媒に対する割合は、混合液が均一
状態を保てる範囲ならば如何なる範囲でもよい
が、重量%で5〜50%が好ましい。 また、多孔質構造を制御するものとして膨潤剤
と称される無機電解質、有機電解質または高分子
又はその電解質をポリマー溶液に加える。 膨潤剤としては、ポリビニルピロリドンの外
に、食塩、塩化リチウム、硝酸ナトリウム、硝酸
カリウム、硫酸ナトリウム、塩化亜鉛等の無機酸
の金属塩、酢酸ナトリウム、ギ酸ナトリウム等の
有機酸の金属塩、ポリエチレングリコール、ポリ
スチレンスルホン酸ナトリウム、ポリビニルベン
ジルトリメチルアンモニウムクロライド等の高分
子電解質、ジオクチルスルホコハク酸ナトリウ
ム、アルキルメチルタウリン酸ナトリウム等のイ
オン系界面活性剤等を併用してもよい。これらの
膨潤剤は、単独で溶液に加えてもある程度の効果
を示すが、これらの膨潤剤を水溶液として添加す
る時に、特に顕著な効果を示すものである。膨潤
剤水溶液の添加量は添加によつて溶液の均一性が
失われることがない限り、特に制限はないが、通
常、溶媒に対して0.5容量%〜10容量%である。
また膨潤剤水溶液の濃度についても特に制限はな
く、濃度の大きい方が効果が大きいが、通常用い
られる濃度としては1重量%〜60重量%である。 製膜原液としてのポリマー溶液の濃度は5〜35
重量%、好ましくは10〜30重量%である。35重量
%を超えると、得られる微孔性膜の透水性が実質
的な意味を持たない程小さくなり、また5重量%
より低い濃度では十分な分離能を持つた微孔性膜
は得られない。 本発明の微孔性膜の製造方法は、上記の如くし
て得られた製膜原液を流延支持体上に流延し、流
延された液膜の表面に調節した空気を適当な時間
当てることにより、溶媒蒸気の蒸気量と雰囲気か
らの非溶媒蒸気吸収量(湿分の吸収)を適宜調節
することにより内部緻密層膜を製造することがで
きる。この場合、表面層付近にのみコアセルベー
シヨンをおこさせるために、極めて短時間に、均
一な溶媒の蒸発と非溶媒蒸気の吸収をおこさせ、
直ちに凝固させる必要がある。この溶剤の蒸発と
非溶媒蒸気の吸収を調節することにより、緻密層
の深さおよびその孔径を調節することができる。 また本発明の微孔性膜の内部緻密層膜を効果的
に作るためには、特に製膜原液中にポリマーの良
溶媒だけではなく、非溶媒や膨潤剤をあらかじめ
加えておくことが必要である。これらの非溶媒や
膨潤剤としては、例えば、前述の水、ポリエチレ
ングリコール、そしてポリビニルピロリドン、等
をあげることができる。 上記の製造条件は、ポリマー種、溶媒種、非溶
媒種、膨潤剤種ポリマー濃度および流延時の雰囲
気等により異なるので、ミクロ相分離の時間と、
膜の構造を検討し、最適の条件を見い出す必要が
ある。見い出された条件は、流延膜からの溶媒の
蒸発量と非溶媒蒸気の吸収量を種々の方法により
調節することによつて制御することができる。 流延した液膜から一定量の溶媒が蒸発し、一定
量の非溶媒蒸気を吸収するように調節する方法と
しては、流延部から凝固液までのポリマー溶液の
経路に覆いをかけて、流延後凝固浴に浸漬するま
での時間を調節したり、この雰囲気の溶媒蒸気
圧、非溶媒蒸気圧、温度並びに送風、排風速度等
を調節するなどの方法を取る。 凝固液から離脱したポリマー溶液は自己支持性
をもつに至り、補強のため密着していた流延用支
持体から剥離されて水洗浴に浸漬される。水洗後
は多価アルコールによる洗浄処理後水洗し、膜中
のPVPの含有量を1〜5%に調整するが、PVP
が5%以上微孔性膜の中に残ると濾過使用時に膨
潤して孔を塞ぐため透水抵抗が大きくなる。また
1%以下では親水性の効果がなく濾過膜としての
機能が低下する。その後巻取ることによつて目的
のポリスルホン系微孔性膜を製造することができ
る。 〔実施例〕 以下、本発明の実施例を示すが、本発明はこれ
に限定されるものではない。 実施例1〜4比較例1 ポリスルホン(UCC社製P−3500)15部、N
−メチル−2−ピロリドン72部、ポリビニルピロ
リドン13部、水1.2部を均一に溶解して製膜原液
を得る。この溶液を安定した溶液状態でガラス板
上に製品厚さ180μmになるようキヤステイング
コーターを通して流延し、25℃相対湿度50%に調
節した空気を風速1.2m/secで流延した液膜表面
に当てた後、直ちに25℃の水を満たした凝固浴槽
へ浸漬して微孔製膜を作つた。 微孔性膜は凝固後水中でガラス板より剥離し、
ジエチレングリコール75℃中で5分間処理を行な
い、次いで水洗いを行い微孔性膜を得た。得られ
た膜の平均孔径は0.2μmであつた。 ジエチレングリコール処理温度を変化させた場
合の膜中のポリビニルピロリドン残留量と膜の親
水性、純水の透水速度の変化を第1表に示した。
[Industrial Application Field] The present invention relates to a method for producing a microporous membrane, and in particular, it is used in the filtration of drugs in the pharmaceutical industry, alcoholic beverages in the food industry, and microporous membranes, including the aforementioned manufacturing industry and semiconductor manufacturing industry. It is used for filtration of purified water, pure water, etc. for the production of ultrapure water used in the electronics industry, nuclear industry, and laboratories of various industries, where processing is carried out.
The present invention relates to a method for producing a microporous membrane for precision filtration that efficiently filters microparticles and microorganisms on the submicron order of 1 μm or less. [Prior art] A microporous membrane for precision filtration, which is conventionally used in the fields of pharmaceutical, food, electronic, and nuclear power industries to remove microparticles of about 0.1 to 5 μm in aqueous and non-aqueous systems, and to remove bacteria, and its manufacturing method. For example, those using cellulose ester, aliphatic polyamide, polyfluorocarbon, polysulfone, polypropylene, etc. as raw materials have been disclosed (for example, Japanese Patent Publication No.
No. 40050, JP-A-58-37842, JP-A-58-91732
(Refer to Japanese Patent Application Laid-Open No. 56-154051). Such a microporous membrane is a so-called symmetric membrane in which the diameter of the micropores existing inside the membrane does not substantially change in the film thickness direction, and the pore diameters on both surfaces of the membrane do not substantially change.
There are so-called asymmetric membranes in which the pore diameter changes continuously or discontinuously in the membrane thickness direction, and the pore diameter on one surface of the membrane is different from the pore diameter on the other surface. It is classified as having a structure called an internal dense layer membrane, which has a layer with the smallest pore size. Among these, symmetrical membranes are described in JP-A No. 58-98015, but during filtration, the entire membrane presents a large resistance to the fluid flow, and only a small flow rate can be obtained (i.e., the unit (Only a small flow rate can be obtained per unit area, per unit time, and per unit differential pressure), and it also has disadvantages such as easy clogging, short filtration life, and lack of blocking resistance. On the other hand, the asymmetric membrane is disclosed in Japanese Patent Publication No. 55-6406 and Japanese Patent Publication No. 56-
As described in No. 154051, the membrane has a layer with small pores called a compact layer on one surface and relatively large pores on the other surface. If the side with large holes faces the flow of the filtrate, the smallest particles that can be filtered out will be captured in this dense layer, making the entire thickness of the membrane an effective filtration material. When used carefully, it is possible to increase the filtration flow rate and extend the life of the membrane, making it an excellent microporous membrane in this sense. However, although the dense layer is extremely important in this case, conventionally, this dense layer has been disadvantageous in that it is easily scratched by abrasion or other causes and easily causes leakage of fine particles because it is located on the surface. In order to compensate for such drawbacks, a structure in which an internal dense layer membrane, that is, a layer with a small pore size exists inside the filtration membrane, is desired, and Japanese Patent Application Laid-open No. 150402/1983 discloses a structure in which two asymmetric membranes are stacked with the dense layers in close contact with each other. Discontinuous structures have been proposed. However, such a filtration system in which two asymmetric membranes are stacked has the disadvantage that when folded and placed in a cartridge, the filtration area in the cartridge becomes small, and the filtration flow rate as a module becomes small. In order to solve the above-mentioned drawbacks, the present inventors studied a microporous membrane that forms a dense layer inside the membrane, and filed an application for such a microporous membrane (Japanese Patent Application No.
No. 60-166984). The method for manufacturing this microporous membrane is to cast a membrane-forming stock solution, which is made by adding a swelling agent and a non-solvent to a polymer and dissolving it in a solvent, onto a support in a completely stable solution state, and then to form the liquid membrane. After evaporating the solvent and absorbing moisture in the air to cause coacelvation, the liquid film is immersed in a coagulation bath, and then the microporous film is peeled off from the casting support. It is characterized by: The membrane-forming polymer that can be produced by this production method is not particularly limited, but among these, polysulfone is particularly preferred, polyvinylpyrrolidone is used as the swelling agent, and water is often used as the nonsolvent. N-methyl-2-pyrrolidone is often used as a good solvent for polysulfone. The polysulfone-based microporous membrane manufactured by the above manufacturing method has an excellent structure and performance as an internal dense layer membrane. [Problems to be solved by the invention] However, although the polysulfone-based microporous membrane with an internal dense layer produced in this way has excellent hydrophilicity, the water permeation rate decreases when used. The disadvantage was that it became smaller. An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for producing a microporous membrane having a polysulfone-based inner dense layer that has a high water permeation rate and excellent hydrophilicity. [Means and effects for solving the problems] The present inventors have found that when the content of polyvinyl pyrrolidone in the membrane is high, it swells during filtration and closes the pores, resulting in increased water permeation resistance. We discovered this and focused on cleaning polyvinyl pyrrolidone. The above object of the present invention is to provide a method for producing a polysulfone-based microporous membrane, which comprises a step of casting a solution of polysulfone and polyvinylpyrrolidone dissolved in a solvent onto a support, and immersing it in a coagulation bath. A polysulfone-based microporous membrane characterized by washing the membrane with a polyhydric alcohol, such as diethylene glycol, triethylene glycol, polyethyl glycol, glycerin, etc., and then washing with water to adjust the polyvinylpyrrolidone content in the membrane to 1 to 5%. This is achieved by a method for producing a transparent film. Note that the polyhydric alcohol may be used as an aqueous solution. The most effective method for producing a microporous membrane of the present invention
An embodiment will be explained using FIG. 1. In FIG. 1, polysulfone is melted in a jacketed melting pot 1. At this time, water as a non-solvent and polyvinylpyrrolidone as a swelling agent necessary for forming micropores are added and mixed. After defoaming, this solution is sent to a casting injector 3 by a liquid pump 2, and the solution in a stable solution state is poured onto a polyester film as a casting support 4 from the injector 3 into a liquid film. Cast as 5. After air regulated by an air conditioning device 6 is applied to the surface of the cast liquid film 5 from the blow-off port 7, a coagulation liquid tank 8 containing a liquid that is a non-solvent for the polymer and is compatible with the polymer solution is applied. soak it in. After casting, the liquid film 5 is blown by conditioned air to cause coacelvation from the surface of the liquid film toward the inside, thereby causing a fine coacelvation phase from the surface of the liquid film 5 toward the inside. The fine coacelvation phase is fixed as micropores in the coagulation liquid tank (water is used as the coagulation liquid), and at the same time, due to the phase separation of the liquid film 5, pores other than the micropores are A microporous membrane 9 is formed. Thereafter, the microporous membrane 9 is peeled off from the casting support 4. The casting support 4 is transferred to a casting support winding machine 10,
The peeled microporous membrane 9 is washed with water in a water washing tank 11, and then passed through a polyhydric alcohol washing treatment tank 12 where polyvinylpyrrolidone (hereinafter referred to as PVP) is washed out with polyhydric alcohol, and then passed through a water washing tank 13 to reduce the PVP content to 1. ~5% and passed through the dryer 14 and then the winder 15
It is wound up. By the above manufacturing method, an improved polysulfone microporous membrane can be manufactured. Polysulfone used in the present invention and/or
Or polyether sulfone or Polymers represented by repeating units are preferred. The polysulfone microporous membrane of the present invention is produced by dissolving the above polymer in a good solvent, a mixed solvent of a good solvent and a non-solvent, or a mixture of multiple types of solvents having different degrees of solubility for the polymer. Prepare membrane stock solution. In this case, a good solvent for polysulfone is usually one that is a good solvent for membrane-forming polymers and that quickly replaces the coagulating liquid when immersed in the coagulating bath. In many cases, water and/or an organic solvent compatible with water is used as the coagulating liquid, and therefore it is preferable to use a polar solvent that is compatible with the coagulating liquid. For example, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, or a mixed solvent thereof is suitable. In addition, in the case of mixing nonsolvents in the present invention, examples of nonsolvents include water, cellosolves, methanol,
Examples include ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, and glycerin. The ratio of the non-solvent to the good solvent may be in any range as long as the mixed liquid can maintain a uniform state, but it is preferably 5 to 50% by weight. In addition, an inorganic electrolyte, an organic electrolyte, or a polymer or an electrolyte thereof called a swelling agent is added to the polymer solution to control the porous structure. In addition to polyvinylpyrrolidone, swelling agents include common salt, metal salts of inorganic acids such as lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate, and zinc chloride, metal salts of organic acids such as sodium acetate and sodium formate, polyethylene glycol, Polymer electrolytes such as sodium polystyrene sulfonate and polyvinylbenzyltrimethylammonium chloride, ionic surfactants such as sodium dioctyl sulfosuccinate and sodium alkylmethyl taurate, etc. may be used in combination. Although these swelling agents exhibit some effect even when added alone to a solution, they exhibit a particularly remarkable effect when added as an aqueous solution. The amount of the swelling agent aqueous solution added is not particularly limited as long as the addition does not impair the uniformity of the solution, but it is usually 0.5% to 10% by volume based on the solvent.
Further, there is no particular restriction on the concentration of the swelling agent aqueous solution, and the higher the concentration, the greater the effect, but the concentration usually used is 1% by weight to 60% by weight. The concentration of the polymer solution as a membrane forming stock solution is 5 to 35
% by weight, preferably 10-30% by weight. If it exceeds 35% by weight, the water permeability of the resulting microporous membrane becomes so small that it has no practical meaning;
At lower concentrations, microporous membranes with sufficient separation power cannot be obtained. In the method for producing a microporous membrane of the present invention, the membrane forming stock solution obtained as described above is cast onto a casting support, and conditioned air is applied to the surface of the cast liquid film for an appropriate period of time. By applying this method, an internal dense layer film can be produced by appropriately adjusting the amount of solvent vapor and the amount of non-solvent vapor absorbed from the atmosphere (moisture absorption). In this case, in order to cause coacervation only in the vicinity of the surface layer, uniform evaporation of the solvent and absorption of non-solvent vapor takes place in an extremely short period of time.
Needs to solidify immediately. By controlling the evaporation of this solvent and the absorption of non-solvent vapors, the depth of the compact layer and its pore size can be controlled. In addition, in order to effectively create the internal dense layer membrane of the microporous membrane of the present invention, it is necessary to add not only a good solvent for the polymer but also a non-solvent and a swelling agent to the membrane-forming stock solution in advance. be. Examples of these nonsolvents and swelling agents include the aforementioned water, polyethylene glycol, and polyvinylpyrrolidone. The above manufacturing conditions vary depending on the polymer type, solvent type, non-solvent type, swelling agent type, polymer concentration, atmosphere during casting, etc., so the time for microphase separation,
It is necessary to examine the structure of the membrane and find the optimal conditions. The conditions found can be controlled by adjusting the amount of solvent evaporation and absorption of non-solvent vapor from the cast membrane in various ways. A method of adjusting the flow so that a certain amount of solvent evaporates from the cast liquid film and absorbs a certain amount of non-solvent vapor is to cover the path of the polymer solution from the casting part to the coagulation liquid. Methods include adjusting the time until immersion in the coagulation bath after rolling, and adjusting the solvent vapor pressure, non-solvent vapor pressure, temperature, air blowing and air exhaust speed, etc. of this atmosphere. The polymer solution separated from the coagulation solution becomes self-supporting, and is peeled off from the casting support to which it was adhered for reinforcement and immersed in a water washing bath. After washing with water, wash with polyhydric alcohol and then wash with water to adjust the PVP content in the membrane to 1 to 5%.
If 5% or more of the microporous membrane remains in the microporous membrane, it will swell during filtration and close the pores, resulting in increased water permeation resistance. Moreover, if it is less than 1%, there will be no hydrophilic effect and the function as a filter membrane will deteriorate. The desired polysulfone-based microporous membrane can then be manufactured by winding it up. [Example] Examples of the present invention will be shown below, but the present invention is not limited thereto. Examples 1 to 4 Comparative Example 1 15 parts of polysulfone (P-3500 manufactured by UCC), N
- 72 parts of methyl-2-pyrrolidone, 13 parts of polyvinylpyrrolidone, and 1.2 parts of water are uniformly dissolved to obtain a membrane-forming stock solution. This solution was cast in a stable solution state onto a glass plate through a casting coater to a product thickness of 180 μm, and air adjusted to 25°C and relative humidity of 50% was cast at a wind speed of 1.2 m/sec onto the liquid film surface. After exposure to water, the membrane was immediately immersed in a coagulation bath filled with water at 25°C to form a microporous membrane. After solidifying, the microporous membrane peels off from the glass plate in water.
The mixture was treated in diethylene glycol at 75°C for 5 minutes, and then washed with water to obtain a microporous membrane. The average pore diameter of the obtained membrane was 0.2 μm. Table 1 shows the changes in the amount of polyvinylpyrrolidone remaining in the membrane, the hydrophilicity of the membrane, and the water permeation rate of pure water when the diethylene glycol treatment temperature was changed.

【表】【table】

【表】 実施例5〜7比較例3 実施例1〜4と同じ条件で微孔性膜を作り、
PVPを洗出する多価アルコールとしてジエチレ
ングリコールの代りに50%グリセリン水溶液を用
いて処理温度を変えて10分間処理をする。他はす
べて実施例1〜4と同様にして得られた膜の特性
を第2表に示す。
[Table] Examples 5 to 7 Comparative Example 3 A microporous membrane was made under the same conditions as Examples 1 to 4,
A 50% glycerin aqueous solution is used instead of diethylene glycol as a polyhydric alcohol for washing out PVP, and the treatment is performed for 10 minutes at different treatment temperatures. Table 2 shows the properties of the films obtained in the same manner as in Examples 1 to 4 in all other respects.

〔発明の効果〕〔Effect of the invention〕

本発明のポリスルホンとポリビニルピロリドン
を溶媒に溶解した溶液を支持体に流延し、凝固浴
に浸漬する工程よりなるポリスルホン系微孔性膜
の製造方法において、得られた微孔性膜を多価ア
ルコールで洗浄後、水洗し、膜中のポリビニルピ
ロリドンの含有量を1〜5%にすることを特徴と
するポリスルホン系微孔性膜の製造方法により、
透水速度が早く濾過流量の大きい、微粒子ならび
に細菌等を効率良く捕捉できる濾過寿命の長い微
孔性膜を得ることができた。 また少量のポリビニルピロリドンがポリスルホ
ンの可塑剤として膜に柔軟性を与え、カートリツ
ジ加工適性(プリーツ状に加工する)に優れた膜
を得ることができた。
In the method for producing a polysulfone-based microporous membrane comprising the steps of casting a solution of polysulfone and polyvinylpyrrolidone dissolved in a solvent on a support and immersing it in a coagulation bath, the obtained microporous membrane is A method for producing a polysulfone-based microporous membrane, which is characterized by washing with alcohol and then washing with water to adjust the content of polyvinylpyrrolidone in the membrane to 1 to 5%,
We were able to obtain a microporous membrane that has a high water permeation rate, a large filtration flow rate, and a long filtration life that can efficiently trap fine particles and bacteria. In addition, a small amount of polyvinylpyrrolidone acts as a plasticizer for polysulfone, giving flexibility to the membrane, making it possible to obtain a membrane with excellent cartridge processing suitability (processing into pleats).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による微孔性膜の製造方法の1
実施例の説明図である。 1……溶解釜、2……送液ポンプ、3……注液
器、4……流延用支持体、5……液膜、6……空
気調節装置、7……吹出口、8……凝固液槽、9
……微孔性膜、10……流延用支持体巻取機、1
1……水洗槽、12……多価アルコール洗浄処理
槽、13……水洗槽、14……乾燥機、15……
巻取機。
Figure 1 shows a method for manufacturing a microporous membrane according to the present invention.
It is an explanatory diagram of an example. DESCRIPTION OF SYMBOLS 1...Dissolution pot, 2...Liquid pump, 3...Liquid injection device, 4...Support for casting, 5...Liquid film, 6...Air conditioning device, 7...Blowout port, 8... ...Coagulation liquid tank, 9
...Microporous membrane, 10... Support winder for casting, 1
1... Washing tank, 12... Polyhydric alcohol cleaning treatment tank, 13... Washing tank, 14... Dryer, 15...
Winding machine.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリスルホンとポリビニルピロリドンを溶媒
に溶解した溶液を支持体に流延し、凝固浴に浸漬
する工程よりなるポリスルホン系微孔性膜の製造
方法において、得られた微孔性膜を多価アルコー
ルで洗浄後、水洗し、膜中のポリビニルピロリド
ンの含有量を1〜5%にすることを特徴とするポ
リスルホン系微孔性膜の製造方法。
1. A method for producing a polysulfone-based microporous membrane comprising a step of casting a solution of polysulfone and polyvinylpyrrolidone dissolved in a solvent onto a support and immersing it in a coagulation bath. A method for producing a polysulfone-based microporous membrane, which comprises washing with water after washing to adjust the content of polyvinylpyrrolidone in the membrane to 1 to 5%.
JP61285999A 1986-12-02 1986-12-02 Production of microporous membrane Granted JPS63141610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285999A JPS63141610A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285999A JPS63141610A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Publications (2)

Publication Number Publication Date
JPS63141610A JPS63141610A (en) 1988-06-14
JPH0561970B2 true JPH0561970B2 (en) 1993-09-07

Family

ID=17698697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285999A Granted JPS63141610A (en) 1986-12-02 1986-12-02 Production of microporous membrane

Country Status (1)

Country Link
JP (1) JPS63141610A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901090A (en) * 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE
US5279739A (en) * 1991-08-19 1994-01-18 Koch Membrane Systems, Inc. Durable filtration membrane having optimized molecular weight
EP0940427A1 (en) * 1998-03-06 1999-09-08 Imation Corp. Method of preparing a microporous film, and image accepting member
KR100850116B1 (en) 2006-03-06 2008-08-04 웅진케미칼 주식회사 Method for manufacturing Polyethersulfone membrane by air coagulation
WO2020175416A1 (en) 2019-02-26 2020-09-03 富士フイルム株式会社 Hydrophilic porous membrane and method for producing hydrophilic porous membrane

Also Published As

Publication number Publication date
JPS63141610A (en) 1988-06-14

Similar Documents

Publication Publication Date Title
US4933081A (en) Asymmetric micro-porous membrane containing a layer of minimum size pores below the surface thereof
US4840733A (en) Fine porous membrane and process for producing the same
GB2199786A (en) Polymeric micro-porous membranes and their production
TWI576148B (en) Membrane with plurality of charges
JPH06166116A (en) Porous polymer structure and production of said structure by thermally-induced phase separation
JP2961629B2 (en) Manufacturing method of microfiltration membrane
JPS63139930A (en) Production of microporous membrane
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
CN112830549B (en) Filter for removing silica from ultrapure water and method of using the same
JP2530133B2 (en) Microporous membrane
JPH0561970B2 (en)
JP2004105804A (en) Polysulfone microporous membrane and its manufacturing method
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
JP3681219B2 (en) Polysulfone porous separation membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JPS63141611A (en) Production of microporous membrane
JP3169404B2 (en) Method for producing semipermeable membrane with high water permeability
JP4015653B2 (en) Method for producing porous separation membrane
JPH0468010B2 (en)
JPS63277251A (en) Production of microporous film
JPH01139116A (en) Asymmetric microporous membrane
JPS62160109A (en) Manufacture of microporous filter membrane
JPS63139929A (en) Production of microporous membrane
JPS636033A (en) Microporous membrane composed of polysulfone
JPH02298323A (en) Microporous membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees