JPH0549877A - Production of composite filter membrane - Google Patents

Production of composite filter membrane

Info

Publication number
JPH0549877A
JPH0549877A JP21239191A JP21239191A JPH0549877A JP H0549877 A JPH0549877 A JP H0549877A JP 21239191 A JP21239191 A JP 21239191A JP 21239191 A JP21239191 A JP 21239191A JP H0549877 A JPH0549877 A JP H0549877A
Authority
JP
Japan
Prior art keywords
membrane
woven fabric
filtration membrane
liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21239191A
Other languages
Japanese (ja)
Inventor
Masahiro Eto
雅弘 江藤
Yuko Kozono
祐子 小園
Satoshi Isoda
慧 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP21239191A priority Critical patent/JPH0549877A/en
Publication of JPH0549877A publication Critical patent/JPH0549877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To increase the membrane permeating flux at the time of filtering a raw fluid contg. suspended matter by using a composite filter membrane having an anisotropic structure. CONSTITUTION:A filter membrane forming liq. is cast over a continuously traveling support consisting of filter paper, nonwoven fabric, woven fabric and glass fiber through a casting coater to form a filter liq. membrane, the support is traveled so that the liq. membrane is brought into contact with the surface of a liq. coagulant to solidify the liq. membrane. Consequently, a composite filter membrane with the diameter of the hole of the filter membrane changed continuously or discontinuously in the membrane thickness direction and having an anisotropic structure in which the diameter of the hole on one surface of the precision filter membrane is different from that on the other surface is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は精密濾過膜の製造方法に
関するものであり、特に製薬工業における薬剤、食品工
業におけるアルコール飲料、前記製造工業及び半導体製
造工業をはじめとする微細な加工を行なう電子工業分
野、さらに諸工業の実験室などにおいて使用される超純
水製造のための精製水、純水などの濾過、その他の精密
濾過に用いられ、10μm以下特に1μm以下サブミク
ロンオーダーの微粒子や微生物を効率よくろ過する精密
濾過膜に関するものである。本発明の製造方法によって
得られた精密濾過膜は、種々の高分子、微生物、酵母、
微粒子を含有あるいは懸濁する液体の分離、精製、回
収、濃縮などに適用され、特に濾過を必要とする微細な
微粒子を含有する液体からその微粒子を分離する必要の
ある場合に適用することができ、例えば微粒子を含有す
る各種の懸濁液、発酵液あるいは培養液などの他、顔料
の懸濁液などから微粒子を分離する、原子力発電の復水
からクラッドを分離除去する場合にも適用される。また
近年バイオテクノロジーの急速な発展に伴い、培養、発
酵、酵素反応等による生化学物質の生産は、医薬品・食
品・化学製品など多くの分野で盛んに行われるようにな
ってきた。これらの生産物質は精製することによって付
加価値が高まるが、この精製操作に多くのコストがかけ
られるのが現状である。本発明の製造方法によって得ら
れた精密濾過膜はこれらの分野で特に有効であり、例え
ば培養液中から反応阻害物質を連続的に除去することに
より高密度培養を行う、菌体外酵素生産菌を用いた時に
酵素を連続回収する、菌体内酵素生産菌を破砕した溶液
から酵素を回収する、バッチ式で得られた培養液から除
去する、など多岐にわたって適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a microfiltration membrane, and more particularly to a drug in the pharmaceutical industry, an alcoholic beverage in the food industry, an electronic device for fine processing including the above-mentioned manufacturing industry and semiconductor manufacturing industry. It is used for filtration of purified water, pure water, etc. for the production of ultrapure water used in industrial fields and laboratories of various industries, and other microfiltration, and fine particles and microorganisms of submicron order of 10 μm or less, especially 1 μm or less. The present invention relates to a microfiltration membrane that efficiently filters water. Microfiltration membranes obtained by the production method of the present invention, various polymers, microorganisms, yeast,
It can be applied to separation, purification, recovery, concentration, etc. of a liquid containing or suspending fine particles, and especially when it is necessary to separate the fine particles from a liquid containing fine fine particles that requires filtration. For example, it is also applied to separate fine particles from various suspensions containing fine particles, fermentation broth, culture solution, etc., as well as to separate fine particles from pigment suspension, and to remove clad from condensate of nuclear power generation. .. In addition, with the rapid development of biotechnology in recent years, production of biochemical substances by culture, fermentation, enzyme reaction, etc. has become popular in many fields such as pharmaceuticals, foods, and chemical products. Although the added value of these produced substances is increased by refining, the refining operation is currently expensive. The microfiltration membrane obtained by the production method of the present invention is particularly effective in these fields. For example, high-density culture is carried out by continuously removing a reaction-inhibiting substance from the culture broth, extracellular enzyme-producing bacteria. When the enzyme is used, the enzyme is continuously recovered, the enzyme is recovered from a solution obtained by crushing the intracellular enzyme-producing bacteria, and the enzyme is removed from the culture solution obtained in a batch method.

【0002】[0002]

【従来の技術】従来、膜を用いて懸濁物質を含有する原
液体から懸濁物質を分離する技術としては、たとえば圧
力を駆動力とする逆浸透法、限外濾過法、精密濾過法、
電位差を駆動力とする電気透析法、濃度差を駆動力とす
る拡散透析法等がある。これらの方法は、連続操作が可
能であり、分離操作中に温度やpHの条件を大きく変化
させることなく分離、精製あるいは濃縮ができ、粒子、
分子、イオン等の広範囲にわたって分離が可能であり、
小型プラント処理能力を大きく保つことができるので経
済的であり、分離操作に要するエネルギーが小さく、か
つ他の分離方法では難しい低濃度原液体の処理が可能で
あるなどの理由により広範囲に実施されている。更にバ
イオテクノロジーの進歩に伴い、高純度化、高性能化、
高精密化が要求されるようになり、従来から行なわれて
いる遠心分離や珪藻土濾過に代わって連続操作が可能で
大量処理できる、濾過助剤や凝集剤の添加が必要ない、
分離の効率は菌体と懸濁液の比重差に無関係であり培養
液の物性や菌体の種類に関係なく清澄な濾液が得られ
る、高濃度培養ができ生産効率が向上する、完全密閉系
が可能で菌の漏れがない、濃縮後菌体の洗浄が可能であ
る、スケールアップが用容易で経済性が高い等の理由で
精密濾過あるいは限外濾過技術の応用分野が拡大しつつ
ある。
2. Description of the Related Art Conventionally, as a technique for separating a suspended substance from a raw liquid containing a suspended substance using a membrane, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, a microfiltration method,
There are an electrodialysis method using a potential difference as a driving force, a diffusion dialysis method using a concentration difference as a driving force, and the like. These methods are capable of continuous operation, and can be separated, purified or concentrated without greatly changing the temperature and pH conditions during the separation operation, and particles,
A wide range of molecules, ions, etc. can be separated,
It is economical because it can keep the processing capacity of a small plant large, the energy required for the separation operation is small, and it is possible to process low concentration raw liquid that is difficult with other separation methods. There is. Furthermore, with the progress of biotechnology, high purity, high performance,
High precision is required, continuous operation is possible instead of conventional centrifugal separation and diatomaceous earth filtration, and large-scale processing is possible, and no addition of filter aid or coagulant is required.
Separation efficiency is independent of the difference in specific gravity between the cells and the suspension, a clear filtrate can be obtained regardless of the physical properties of the culture fluid and the type of cells, high-concentration culture is possible, and production efficiency is improved. The application field of microfiltration or ultrafiltration technology is expanding for the reasons that it is possible to do so, there is no leakage of bacteria, the cells can be washed after concentration, scale-up is easy and economical is high.

【0003】以上のような分離技術に用いられる膜とし
ては、酢酸セルロース、硝酸セルロース、再生セルロー
ス、ポリスルホン、ポリアクリロニトリル、ポリアミ
ド、ポリイミド等の有機高分子等を主体とした高分子膜
(例えば特公昭48−40050号、特開昭58−37
842号,特開昭58−91732号、特開昭56−1
54051号各公報参照)や耐熱性、耐薬品性などの耐
久性に優れている多孔質セラミック膜などがあり主とし
てコロイドの濾過を対象とする場合は限外濾過膜が使用
され、微細な粒子の濾過を対象とする精密濾過ではそれ
に適した微孔を有する精密濾過膜が使用されている。こ
のような精密濾過膜は、その内部に存在する微孔の孔径
が実質的に変化せず、膜の両表面の孔径が実質的に変わ
らない所謂等方性膜と、膜厚方向に孔径が連続的または
不連続的に変化し、膜の一方の表面の孔径と他方の表面
の孔径とが異なっている所謂異方性膜と呼ばれる構造を
有するものとに分類される。これらのうち等方性膜は、
特開昭58−98015号に記載されているが、濾過に
あたって膜全体が流体の流れに対して大きな抵抗を示
し、小さな流速しか得られない(即ち、単位面積当り、
単位時間当り、単位差圧当り小さな流量しか得られな
い)上、目詰まりがしやすく濾過寿命が短い、耐ブロッ
キング性がない等の欠点があった。一方異方性膜は特公
昭55−6406、特開昭56−154051号に記載
されている緻密層と呼ばれている孔径の小さな層を膜の
片方の表面または膜の内部に持ち、比較的大きな孔をあ
るいは極端に大きな指型ボイドを膜の内部からもう一方
の表面にかけて持ったものである。懸濁物質は等方性膜
を用いるかまたは異方性膜の孔径の小さい側に原液体を
供給する場合は微孔性膜表面で捕捉され、一方異方性膜
の孔径の大きい側に原液体を供給する場合は懸濁物質は
微孔性膜の内部で捕捉される。すなわち懸濁物質を精密
濾過膜の表面で阻止する場合は阻止された懸濁物質が非
常に大きな濾過抵抗となって透過流速が急激に低下し結
果として総濾過量は低くなるが、精密濾過膜が膜厚方向
に孔径が連続的または不連続的に変化し精密濾過膜の一
方の表面の孔径と他方の孔径とが異なる構造を有するい
わゆる異方性膜の表面孔径の大きい側を原液体側に向け
て使用することにより、精密濾過膜内部で懸濁物質が阻
止できるため大きな総濾過量を得ることが可能となる。
Membranes used in the above separation techniques include polymer membranes mainly composed of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide and polyimide (for example, Japanese Patent Publication No. 48-40050, JP-A-58-37.
842, JP-A-58-91732, JP-A-56-1.
No. 54051) and porous ceramic membranes having excellent durability such as heat resistance and chemical resistance. When mainly filtering colloid, an ultrafiltration membrane is used, In microfiltration intended for filtration, a microfiltration membrane having suitable micropores is used. Such a microfiltration membrane has a so-called isotropic membrane in which the pore size of the micropores existing therein does not substantially change and the pore sizes on both surfaces of the membrane do not substantially change, and the pore size in the film thickness direction is It is classified as having a structure called a so-called anisotropic film, which changes continuously or discontinuously, and the pore size of one surface of the membrane is different from the pore size of the other surface. Among these, the isotropic membrane is
As described in JP-A-58-98015, the entire membrane exhibits a large resistance to the flow of fluid during filtration, and only a small flow velocity can be obtained (that is, per unit area,
Only a small flow rate can be obtained per unit time and unit differential pressure), and there are drawbacks such as easy clogging, short filtration life, and no blocking resistance. On the other hand, an anisotropic film has a layer having a small pore size, which is called a dense layer described in JP-B-55-6406 and JP-A-56-154051, on one surface of the film or inside the film, and It has large holes or extremely large finger voids from the inside of the membrane to the other surface. Suspended substances are trapped on the surface of the microporous membrane when using an isotropic membrane or when the raw liquid is supplied to the side of the anisotropic membrane with a smaller pore size, while the suspended material is trapped on the side of the anisotropic membrane with a larger pore size. When supplying a liquid, the suspended matter is trapped inside the microporous membrane. That is, when the suspended substance is blocked on the surface of the microfiltration membrane, the suspended substance becomes a very large filtration resistance and the permeation flow velocity is rapidly reduced, resulting in a decrease in the total filtration amount. Is a so-called anisotropic membrane having a structure in which the pore size changes continuously or discontinuously in the film thickness direction so that the pore size on one surface of the microfiltration membrane and the pore size on the other side are different from each other on the raw liquid side. When used for the purpose, suspended substances can be prevented inside the microfiltration membrane, and thus a large total filtration amount can be obtained.

【0004】[0004]

【発明が解決しようとする課題】前述のように、精密濾
過膜が膜厚方向に孔径が連続的または不連続的に変化し
精密濾過膜の一方の表面の孔径と他方の孔径とが異なる
構造を有するいわゆる異方性膜の表面孔径の大きい側を
原液体側に向けて使用することにより、精密濾過膜内部
で懸濁物質が阻止できるため大きな総濾過量を得ること
が可能となる。しかし、発酵液や培養液のように圧縮性
の懸濁物質の濃度が非常に高い場合は懸濁物質を膜内部
の断層方向に大量にまた均一に分散して捕捉する必要が
あり、従来の異方性膜のみでは十分高い透過流束が得ら
れないなどの問題があった。また、周期的に逆洗を行う
場合は、逆洗時に濾過膜に対して大きな負荷がかかり濾
過膜強度が弱いときは濾過膜に亀裂が生じるなどの問題
がおこった。これらの問題を解決するために、従来より
濾紙や不織布等の支持体上に濾過膜を形成させて濾過膜
強度を高くしたり濾紙や不織布で捕捉効果を高めること
が試みられている。濾過膜と不織布等とを一体化する方
法は、点状または線状に接着剤で行うかヒートシールで
溶融接着を行ってもよいが、特公昭45−13931の
ごとく濾過膜を製膜する際に濾過膜原液を直接不織布等
にキャスティングして濾過膜が不織布等に一部侵入した
状態で多孔質構造を形成した方が効果は大きい。 しか
し、濾過膜が等方性構造の場合は比較的容易に上記の複
合濾過膜が得られるが、異方性膜の孔径の大きい側に濾
紙や不織布を形成させる場合は不織布等との界面に孔径
の小さい緻密層が形成されるため、連続した異方性構造
にならず結果として異方性膜の十分な効果が得られなか
った。
As described above, the microfiltration membrane has a structure in which the pore size changes continuously or discontinuously in the film thickness direction, and the pore size on one surface of the microfiltration membrane and the pore size of the other differ from each other. By using the so-called anisotropic membrane having a large surface pore size facing the raw liquid side, it is possible to prevent suspended substances inside the microfiltration membrane and obtain a large total filtration amount. However, when the concentration of the compressive suspended substance is very high, such as the fermentation broth or the culture medium, it is necessary to disperse the suspended substance in a large amount and evenly in the fault direction inside the membrane. There was a problem that a sufficiently high permeation flux could not be obtained only with an anisotropic membrane. Further, when backwashing is performed periodically, a large load is applied to the filtration membrane during backwashing, and when the strength of the filtration membrane is weak, cracks occur in the filtration membrane. In order to solve these problems, it has hitherto been attempted to form a filtration membrane on a support such as a filter paper or a nonwoven fabric to increase the strength of the filtration membrane or to enhance the trapping effect with the filter paper or the nonwoven fabric. The method for integrating the filtration membrane and the non-woven fabric, etc. may be carried out by dot-shaped or linear adhesive bonding or heat-sealing, but when the filtration membrane is formed as in JP-B-45-13931. It is more effective to cast the undiluted solution of the filtration membrane directly onto a non-woven fabric or the like to form a porous structure in a state where the filtration membrane partially penetrates into the non-woven fabric or the like. However, when the filtration membrane has an isotropic structure, the above composite filtration membrane can be obtained relatively easily, but when a filter paper or a non-woven fabric is formed on the side of the anisotropic membrane having a large pore size, the composite membrane is not formed at the interface with the non-woven fabric. Since a dense layer having a small pore size was formed, a continuous anisotropic structure was not obtained, and as a result, the sufficient effect of the anisotropic film was not obtained.

【0005】[0005]

【課題を解決するための手段】本発明は、上述した従来
技術にあった問題点を解決するために施されたものであ
って、懸濁物質の捕捉性が高いすなわち透過流束が高く
強度の高い新規な濾過膜の製膜技術を提供することを目
的とするものである。以下、本発明を詳細に説明する。
本発明の複合濾過膜は、精密濾過膜と濾紙、不織布、織
布またはガラス繊維を一体化した複合構造であり、不織
布等側を原液側にすることにより懸濁物質の捕捉性およ
び逆洗による洗浄性が高まる。特に、懸濁物質の粒径分
布が広い場合は大きい懸濁物質は不織布内部に、小さい
懸濁物質は多孔質濾過膜内部に捕捉されるため効果は大
きい。一般的な複合濾過膜の製造方法は、濾過膜原液を
支持体上にキャスティングコーターを通して流延し、そ
の後ポリマーの貧溶剤を満たした凝固液槽へ浸漬して作
成する。不織布等の支持体に濾過膜原液をキャスティン
グする製膜方法の場合、等方性膜を形成する場合は支持
体上に流延した後凝固液へ浸漬しても濾過膜構造に影響
を与えないが、異方性膜を形成する場合は凝固液に浸漬
することが濾過膜構造に影響を与える。すなわち濾過膜
の異方性は凝固液に浸漬する過程において、キャスティ
ングした濾過液膜が凝固液と接触する側、すなわち凝固
液が侵入する側の孔径が小さく、凝固液が侵入する深さ
方向に徐々に孔径が大きくなる。従来まではガラス板や
プレーンフィルム上に濾過膜原液をキャスティングして
いたが、本発明の濾紙、不織布、織布、ガラス繊維へ濾
過膜原液をキャスティングする方法では、凝固液に浸漬
すると支持体側からも凝固液が侵入するため、濾過膜表
面と支持体との界面の2箇所に孔径の最も小さい緻密層
が形成される。すなわち異方性膜の効果が全くなくなる
ばかりでなく、複合濾過膜の純水透過流束が極端に低下
するという現象が起こる。
The present invention has been made in order to solve the above-mentioned problems in the prior art, and has a high trapping property of suspended substances, that is, a high permeation flux and a high strength. It is an object of the present invention to provide a novel membrane forming technology of a high filtration membrane. Hereinafter, the present invention will be described in detail.
The composite filtration membrane of the present invention has a composite structure in which a microfiltration membrane and filter paper, non-woven fabric, woven fabric or glass fiber are integrated, and by making the non-woven fabric side the undiluted solution side, the trapping property of the suspended substance and backwashing Cleanability is enhanced. In particular, when the particle size distribution of the suspended substance is wide, a large suspended substance is trapped inside the nonwoven fabric and a small suspended substance is trapped inside the porous filtration membrane, which is very effective. A general method for producing a composite filtration membrane is prepared by casting a stock solution of a filtration membrane on a support through a casting coater, and then immersing it in a coagulation bath filled with a poor solvent for the polymer. In the case of a film-forming method in which a filtration membrane stock solution is cast on a support such as a non-woven fabric, when forming an isotropic membrane, it does not affect the structure of the filtration membrane even if it is cast on the support and then immersed in a coagulation solution. However, when forming an anisotropic membrane, dipping in a coagulation liquid affects the filtration membrane structure. That is, the anisotropy of the filtration membrane is such that, in the process of being immersed in the coagulation liquid, the diameter of the pores on the side where the cast filtration liquid film comes into contact with the coagulation liquid, that is, the side where the coagulation liquid penetrates is small, and the anisotropy of the coagulation liquid penetrates in the depth direction. The pore size gradually increases. Conventionally, the filtration membrane stock solution was cast on a glass plate or a plain film, but in the method of casting the filtration membrane stock solution on the filter paper, the nonwoven fabric, the woven fabric, and the glass fiber of the present invention, from the support side when immersed in the coagulating solution. Also, since the coagulation liquid invades, a dense layer having the smallest pore size is formed at two locations on the interface between the surface of the filtration membrane and the support. That is, not only the effect of the anisotropic membrane disappears, but also the pure water permeation flux of the composite filtration membrane extremely decreases.

【0006】本発明の製膜方法では凝固液で濾過液膜を
凝固せしめる際、凝固液を支持体側から侵入させずに濾
過液膜側からのみ侵入させるところに特徴がある。すな
わち濾紙、不織布、織布およびガラス繊維に濾過膜原液
をキャスティングした後、濾過膜原液側を凝固液に接す
るようにして搬送することにより達成される。凝固時間
は濾過膜原液、凝固液の種類によって異なるが基本的に
濾過膜原液が凝固すればよく、一般的に10秒以上、好
ましくは30秒以上である。本発明に用いられる支持体
の濾紙、不織布、織布またはガラス繊維はそれらを形成
する繊維の太さ、空隙率、厚みによって懸濁物質の阻止
性能が異なる。すなわち繊維の太さが細く、空隙率が低
くなるほど細かい懸濁物質を阻止し、また厚みが厚くな
るほど多量の懸濁物質を阻止できる。繊維の太さは不織
布等が接する濾過膜の表面孔径と相関がある。すなわち
不織布等の実質的な孔径が不織布等が接する濾過膜の表
面孔径とほぼ同じか若干大きいことが好ましい。濾過膜
と不織布の界面で孔径がほぼ連続的となるための不織布
等の繊維の太さは濾過膜表面孔径の0.5倍以上5倍以
下である。すなわち濾過膜表面の平均孔径が2μmの場
合、不織布等の繊維太さは1μm以上5μm以下である
ことが好ましい。不織布等の空隙率は極端に低くすると
濾過抵抗が大きくなり、逆に高すぎると懸濁物質を阻止
しなくなるため、通常は50%以上90%以下が好まし
く、さらに60%以上75%以下が好ましい。また不織
布等の厚みが薄いと懸濁物質の捕捉効果は得られず、濾
過膜の厚みの1/2以上であることが好ましい。不織布
等の材質は特に限定されるものではないが、一般的にポ
リエステル、ポリプロピレン、ポリアミド、ステンレス
などが用いられる。
The membrane forming method of the present invention is characterized in that, when the filtrate film is coagulated with the coagulating liquid, the coagulating liquid does not enter from the support side but only from the filtrate film side. That is, it can be achieved by casting a filter membrane stock solution on filter paper, a non-woven fabric, a woven fabric and glass fiber, and then transporting the solution with the filter membrane stock solution side in contact with the coagulation solution. The coagulation time varies depending on the types of the filtration membrane stock solution and the coagulation solution, but basically, the filtration membrane stock solution may coagulate, and is generally 10 seconds or more, preferably 30 seconds or more. The filter paper, the non-woven fabric, the woven fabric or the glass fiber of the support used in the present invention has different ability to prevent suspended substances depending on the thickness, porosity and thickness of the fibers forming them. That is, the thinner the fiber and the lower the porosity, the finer suspended substances can be blocked, and the thicker the fiber, the more suspended substances can be blocked. The thickness of the fiber correlates with the surface pore size of the filtration membrane with which the non-woven fabric or the like contacts. That is, it is preferable that the substantial pore size of the non-woven fabric or the like is substantially the same as or slightly larger than the surface pore size of the filtration membrane with which the non-woven fabric or the like contacts. The thickness of the fibers of the non-woven fabric or the like so that the pore size becomes substantially continuous at the interface between the filtration membrane and the non-woven fabric is 0.5 times or more and 5 times or less the pore size of the filtration membrane surface. That is, when the average pore diameter on the surface of the filtration membrane is 2 μm, the fiber thickness of the nonwoven fabric or the like is preferably 1 μm or more and 5 μm or less. If the porosity of the non-woven fabric is extremely low, the filtration resistance becomes large, and if it is too high, the suspended solids are not blocked. Therefore, it is usually preferably 50% or more and 90% or less, more preferably 60% or more and 75% or less. .. Further, if the thickness of the non-woven fabric or the like is thin, the effect of trapping suspended matter cannot be obtained, and it is preferably 1/2 or more of the thickness of the filtration membrane. The material of the non-woven fabric is not particularly limited, but generally polyester, polypropylene, polyamide, stainless steel or the like is used.

【0007】本発明において用いられる膜形成用ポリマ
ーは、多孔質膜の用途や他の目的の合わせて選択するこ
とが出来る。このようなポリマ−としてセルロースアセ
テート、ニトロセルロース、ポリスルホン、スルホン化
ポリスルホン、ポリエーテルスルホン、ポリアクリロニ
トリル、スチレン−アクリロニトリルコポリマー、スチ
レン−ブタジエンコポリマー、エチレン−酢酸ビニルコ
ポリマーのケン化物、ポリビニルアルコール、ポリカー
ボネート、オルガノシロキサン−ポリカーボネートコポ
リマー、ポリエステルカーボネート、オルガノポリシロ
キサン、ポリフェニレンオキシド、ポリアミド、ポリイ
ミド、ポリアミドイミド、ポリベンズイミダゾール等を
挙げることができる。
The film-forming polymer used in the present invention can be selected depending on the application of the porous film and other purposes. Examples of such polymers include cellulose acetate, nitrocellulose, polysulfone, sulfonated polysulfone, polyether sulfone, polyacrylonitrile, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, saponified ethylene-vinyl acetate copolymer, polyvinyl alcohol, polycarbonate, and organo. Examples thereof include siloxane-polycarbonate copolymer, polyester carbonate, organopolysiloxane, polyphenylene oxide, polyamide, polyimide, polyamideimide, and polybenzimidazole.

【0008】また、多孔質構造を制御するものとして膨
潤剤と称される無機電解質、有機電解質、高分子または
その電解質は、ポリビニルピロリドン、食塩、塩化リチ
ウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウ
ム、塩化亜鉛等の無機酸の金属塩、酢酸ナトリウム、ギ
酸ナトリウム等の有機酸の金属塩、ポリエチレングリコ
ール、ポリビニルピロリドン等の高分子、ポリスチレン
スルホン酸ナトリウム、ポリビニルベンジルトリメチル
アンモニウムクロライド等の高分子電解質、ジオクチル
スルホコハク酸ナトリウム、アルキルメチルタウリン酸
ナトリウム等のイオン系界面活性剤等を挙げることがで
きる膜形成用ポリマーの良溶媒として、通常膜形成用ポ
リマーの溶媒でありかつ凝固液に浸漬した場合速やかに
凝固液と置換されるものが使用され、膜形成用ポリマー
の種類によって選択出来る。膜形成用ポリマーがポリス
ルホンの場合、N−メチル−2−ピロリドン、ジオキサ
ン、テトラヒドロフラン、ジメチルホルムアミド、ジメ
チルアセトアミドあるいはこれらの混合溶媒が適当であ
り、ポリアクリロニトリルの場合にはジオキサン、N−
メチル−2−ピロリドン、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルホキシド等が、ポリア
ミドの場合にはジメチルホルムアミドやジメチルアセト
アミド等が、セルロースアセテートの場合はアセトン、
ジオキサン、テトラヒドロフラン、N−メチル−2−ピ
ロリドン等が適当である。
Inorganic electrolytes, organic electrolytes, polymers or their electrolytes called swelling agents for controlling the porous structure are polyvinylpyrrolidone, sodium chloride, lithium chloride, sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride. Inorganic acid metal salts such as, sodium acetate, sodium formate and other organic acid metal salts, polyethylene glycol, polyvinylpyrrolidone and other polymers, sodium polystyrene sulfonate, polyvinylbenzyltrimethylammonium chloride and other polymer electrolytes, dioctylsulfosuccinic acid Sodium, a good solvent for the film-forming polymer that can include ionic surfactants such as sodium alkylmethyl taurate, is usually a solvent for the film-forming polymer, and is rapidly mixed with the coagulating liquid when immersed in the coagulating liquid. Will be replaced The are used can be selected depending on the kind of the film forming polymer. When the film-forming polymer is polysulfone, N-methyl-2-pyrrolidone, dioxane, tetrahydrofuran, dimethylformamide, dimethylacetamide or a mixed solvent thereof is suitable, and when polyacrylonitrile is used, dioxane, N-
Methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc., in the case of polyamide, dimethylformamide, dimethylacetamide, etc .; in the case of cellulose acetate, acetone,
Dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone and the like are suitable.

【0009】本発明における非溶媒としては、水、セル
ソルブ類、メタノール、エタノール、プロパノール、ア
セトン、テトラヒドロフラン、ポリエチレングリコー
ル、グリセリン等が挙げられる。 製膜原液としてのポ
リマー濃度は5重量%以上35重量%以下、好ましくは
10重量%以上30重量%以下である。35重量%を超
えると、得られる精密濾過膜の透水性が実用的に意味を
持たない程小さくなり、5重量%以下より低い濃度では
十分な分離機能を持った精密濾過膜は得られない。また
膨潤剤の添加量は添加によって製膜原液の均一性が失わ
れることが無い限り特に制限は無いが、通常溶媒に対し
て0.5容量%以上10容量%以下である。非溶媒の良
溶媒に対する割合は混合液が均一状態を保てる範囲なら
ば如何なる範囲でもよいが5重量%以上50重量%以下
が好ましい。凝固浴としては、水、メタノール、エタノ
ール、ブタノールなどのアルコール類。エチレングリコ
ール、ジエチレングリコールなどのグリコール類エーテ
ル、n−ヘキサン、n−ヘプタン、等の脂肪族炭化水素
類、グリセリン等のグリセロール類などポリマーを溶解
しないものなら何でも用いることが出来る。好ましいの
は水、アルコール類またはこれらの液体との2種以上の
混合液体である。
Examples of the non-solvent in the present invention include water, cellosolves, methanol, ethanol, propanol, acetone, tetrahydrofuran, polyethylene glycol, glycerin and the like. The polymer concentration of the stock solution for film formation is 5% by weight or more and 35% by weight or less, preferably 10% by weight or more and 30% by weight or less. If it exceeds 35% by weight, the water permeability of the obtained microfiltration membrane is so small as to have no practical meaning, and if the concentration is lower than 5% by weight, a microfiltration membrane having a sufficient separation function cannot be obtained. Further, the addition amount of the swelling agent is not particularly limited as long as the uniformity of the stock solution for film formation is not lost by the addition, but it is usually 0.5% by volume or more and 10% by volume or less with respect to the solvent. The ratio of the non-solvent to the good solvent may be any range as long as the mixed solution can maintain a uniform state, but is preferably 5% by weight or more and 50% by weight or less. As the coagulation bath, water, alcohols such as methanol, ethanol and butanol are used. Any glycol ether such as ethylene glycol and diethylene glycol, aliphatic hydrocarbons such as n-hexane and n-heptane, and glycerols such as glycerin can be used as long as they do not dissolve the polymer. Preferred is water, alcohols or a mixed liquid of two or more kinds of these liquids.

【0010】次に本発明の複合濾過膜の製造方法を図面
に基づいて説明する。図1は支持体に濾過膜原液をキャ
スティングして凝固液に浸漬する従来の製膜機を示して
おり、凝固液は液膜側および支持体側両方から侵入す
る。そのため、完成した濾過膜は液膜側表面、支持体側
両方が緻密層となる。図2は本発明の製造方法であり、
凝固液は液膜側からのみ侵入して凝固する。そのため、
完成した濾過膜は液膜側が緻密層となり、支持体側にい
くに従って孔径が大きくなるいわゆる異方性膜が支持体
と合体した形で形成される。
Next, a method for producing the composite filtration membrane of the present invention will be described with reference to the drawings. FIG. 1 shows a conventional film forming machine in which a stock solution of a filtration membrane is cast on a support and immersed in a coagulating liquid, and the coagulating liquid enters from both the liquid film side and the support side. Therefore, the completed filtration membrane has a dense layer on both the liquid membrane side surface and the support side. FIG. 2 shows the manufacturing method of the present invention.
The coagulation liquid enters and coagulates only from the liquid film side. for that reason,
The completed filtration membrane has a dense layer on the liquid membrane side, and a so-called anisotropic membrane whose pore size increases toward the support side is formed in a form integrated with the support.

【0011】[0011]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。 実施例1 ポリスルホン(アモコ社製 P3500)15部、ポリ
ビニルピロリドン15部、水3部をNーメチルー2ーピ
ロリドン67部に溶解して製膜原液を得る。連続走行さ
せた空隙率70%、厚み150μmのポリプロピレン製
の不織布に液膜厚さ180μmでキャスティングコータ
ーを通して、流延しその液膜表面に25℃相対湿度45
%に調節した空気を2m/secで5秒間当て、その後
直ちに水を満たした凝固液槽水面に液膜が接するように
約60秒搬送した。得られた複合濾過膜は異方性構造を
持ち、表面から徐々に孔径が大きくなり不織布と結合し
ており、平均孔径は2.0μmとなった。 比較例1 実施例1と同様の条件で凝固液槽に浸漬した状態で搬送
して濾過膜を形成させた。得られた複合濾過膜は表面お
よび不織布との界面に緻密層を持ち、平均孔径は0.5
μmとなった。なお、ここで示す平均孔径はASTM−
316−80法により測定したものである。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 15 parts of polysulfone (P3500 manufactured by Amoco), 15 parts of polyvinylpyrrolidone and 3 parts of water are dissolved in 67 parts of N-methyl-2-pyrrolidone to obtain a stock solution for film formation. A polypropylene non-woven fabric having a porosity of 70% and a thickness of 150 μm that was continuously run was cast with a liquid film thickness of 180 μm through a casting coater, and the liquid film surface was cast at 25 ° C. and a relative humidity of 45.
% Of air was applied at 2 m / sec for 5 seconds, and immediately thereafter, it was conveyed for about 60 seconds so that the liquid film was in contact with the water surface of the coagulating liquid tank filled with water. The obtained composite filtration membrane had an anisotropic structure, the pore size gradually increased from the surface, and it was bonded to the nonwoven fabric, and the average pore size was 2.0 μm. Comparative Example 1 Under the same conditions as in Example 1, the film was conveyed while being immersed in a coagulation bath to form a filtration membrane. The obtained composite filtration membrane has a dense layer on the surface and the interface with the non-woven fabric, and has an average pore diameter of 0.5.
became μm. The average pore size shown here is ASTM-
It is measured by the 316-80 method.

【0012】[0012]

【発明の効果】本発明により、異方性構造を持つ複合濾
過膜が容易に得られ、これを用いることにより高い膜透
過流束が得られ、それによって種々の懸濁物質を含有す
る液体から各懸濁成分の分離、回収、精製、濃縮などが
きわめて効率的しかも経済的に行われる。そしてさらに
プロセスの連続化及び装置の小型化が可能であり、膜の
選択性を利用して目的物のみを連続的に選択的に分離す
ることができ、酵母や菌体などのバイオリアクターへの
応用ができ、従来技術に比べて運転管理が容易であるな
ど諸々の効果が奏せられる。
INDUSTRIAL APPLICABILITY According to the present invention, a composite filtration membrane having an anisotropic structure can be easily obtained, and by using it, a high membrane permeation flux can be obtained, whereby liquids containing various suspended substances can be obtained. Separation, recovery, purification, concentration, etc. of each suspension component are performed very efficiently and economically. Further, the process can be continued and the device can be downsized, and the selectivity of the membrane can be used to continuously and selectively separate only the target substance, which can be applied to bioreactors such as yeast and cells. It can be applied and has various effects such as easier operation management than the conventional technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】凝固液に浸漬する従来の製膜機を示している。FIG. 1 shows a conventional film forming machine immersed in a coagulating liquid.

【図2】本発明の製膜機を示している。FIG. 2 shows a film forming machine of the present invention.

【符号の説明】[Explanation of symbols]

1 濾過膜原液 2 支持体送りだしロール 3 キャスティングギーサー 4 凝固液槽 5 凝固液 6 凝固液の侵入方向 7 凝固液面 8 複合濾過膜の搬送方向 9 濾過液膜 10 支持体 11 不織布部分断面 12 異方性膜部分断面 13 緻密層部分断面 1 Filtration Membrane Undiluted Liquid 2 Support Feeding Roll 3 Casting Gisers 4 Coagulation Liquid Tank 5 Coagulation Liquid 6 Coagulation Liquid Penetration Direction 7 Coagulation Liquid Surface 8 Composite Filtration Film Transport Direction 9 Filtration Liquid Membrane 10 Support 11 Nonwoven Part Cross Section 12 Different Partial cross section of isotropic film 13 Partial cross section of dense layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続走行する支持体にキャスティングコ
ーターを通して濾過膜原液を流延して濾過液膜を形成
し、該液膜を凝固液面に接するように搬送し、該液膜を
凝固せしめることを特徴とする複合濾過膜の製造方法。
1. A filtration membrane stock solution is cast on a continuously running support through a casting coater to form a filtration fluid film, and the liquid membrane is conveyed so as to be in contact with the surface of the coagulation liquid to coagulate the liquid film. A method for producing a composite filtration membrane, comprising:
【請求項2】 該支持体が濾紙、不織布、織布またはガ
ラス繊維であり、該液膜の一部が該支持体に含浸するこ
とを特徴とする請求項第1項記載の複合濾過膜の製造方
法。
2. The composite filtration membrane according to claim 1, wherein the support is a filter paper, a non-woven fabric, a woven fabric or glass fiber, and a part of the liquid membrane impregnates the support. Production method.
【請求項3】 該濾過膜が膜厚方向に孔径が連続的また
は不連続的に変化し、精密濾過膜の一方の表面孔径と他
方の表面孔径とが異なる異方性構造を有し、表面孔径の
大きい側に不織布、織布またはガラス繊維が存在するこ
とを特徴とする請求項第1項記載の複合濾過膜の製造方
法。
3. The filtration membrane has a pore size which continuously or discontinuously changes in the film thickness direction, has an anisotropic structure in which one surface pore diameter of the microfiltration membrane and the other surface pore diameter are different, The method for producing a composite filtration membrane according to claim 1, wherein a non-woven fabric, a woven fabric, or a glass fiber is present on the side having a large pore diameter.
JP21239191A 1991-08-23 1991-08-23 Production of composite filter membrane Pending JPH0549877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21239191A JPH0549877A (en) 1991-08-23 1991-08-23 Production of composite filter membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21239191A JPH0549877A (en) 1991-08-23 1991-08-23 Production of composite filter membrane

Publications (1)

Publication Number Publication Date
JPH0549877A true JPH0549877A (en) 1993-03-02

Family

ID=16621810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21239191A Pending JPH0549877A (en) 1991-08-23 1991-08-23 Production of composite filter membrane

Country Status (1)

Country Link
JP (1) JPH0549877A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1563895A1 (en) * 2002-11-12 2005-08-17 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method of manufacturing the membrane
US7562778B2 (en) 2002-11-12 2009-07-21 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method for producing the same
CN103570103A (en) * 2012-08-10 2014-02-12 株式会社东芝 Desalination treatment membrane, desalination treatment method, and desalination treatment apparatus
CN112892229A (en) * 2021-01-27 2021-06-04 广州中国科学院先进技术研究所 Virus composite filtering membrane and preparation method thereof
CN112892238A (en) * 2019-11-15 2021-06-04 山东工业陶瓷研究设计院有限公司 Continuous glass fiber reinforced ceramic fiber filter element and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1563895A1 (en) * 2002-11-12 2005-08-17 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method of manufacturing the membrane
EP1563895A4 (en) * 2002-11-12 2008-07-02 Mitsubishi Rayon Co Composite porous membrane and method of manufacturing the membrane
US7562778B2 (en) 2002-11-12 2009-07-21 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method for producing the same
US7807221B2 (en) 2002-11-12 2010-10-05 Mitsubishi Rayon Co., Ltd. Composite porous membrane and method for producing the same
CN103570103A (en) * 2012-08-10 2014-02-12 株式会社东芝 Desalination treatment membrane, desalination treatment method, and desalination treatment apparatus
JP2014036911A (en) * 2012-08-10 2014-02-27 Toshiba Corp Desalination treatment membrane, desalination treatment method, and desalination treatment apparatus
CN112892238A (en) * 2019-11-15 2021-06-04 山东工业陶瓷研究设计院有限公司 Continuous glass fiber reinforced ceramic fiber filter element and preparation method thereof
CN112892229A (en) * 2021-01-27 2021-06-04 广州中国科学院先进技术研究所 Virus composite filtering membrane and preparation method thereof

Similar Documents

Publication Publication Date Title
US5221479A (en) Filtration system
Wenten Mechanisms and control of fouling in crossflow microfiltration
JP2961629B2 (en) Manufacturing method of microfiltration membrane
Zhao et al. Formation of dynamic membranes for oily water separation by crossflow filtration
Shao et al. Control of organic and surfactant fouling using dynamic membranes in the separation of oil-in-water emulsions
JPH04250834A (en) Precision filter membrane
JPH0549877A (en) Production of composite filter membrane
KR101357670B1 (en) Forward osmosis membrane packed with draw material, the preparing method thereof and the forward osmosis apparatus comprising the same
CN114618312B (en) Dual porous ion selective permeable membrane and preparation method thereof
JP4803341B2 (en) Flat membrane pore diffusion separator
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JP3151817B2 (en) Composite porous membrane
JPS5814904A (en) Support sheet for liquid separation membrane and continuous preparation thereof
JP2717458B2 (en) Filtration method
JPH04317730A (en) Composite filtration membrane
CA1157712A (en) Dynamic membrane process on moving porous support
JPH0557149A (en) Filter system
JPH04317729A (en) Composite filtration membrane
JPH0679147A (en) Filtration method
JPH04190834A (en) Cross-flow type filter
JPH04317728A (en) Composite filtration membrane
JPH05329339A (en) Filtering apparatus
JPH04317708A (en) New filtration using filtration assistant
JPH04118032A (en) Jet flow type filter
JPH04190835A (en) Cross-flow type filter