JPH04190834A - Cross-flow type filter - Google Patents
Cross-flow type filterInfo
- Publication number
- JPH04190834A JPH04190834A JP31974090A JP31974090A JPH04190834A JP H04190834 A JPH04190834 A JP H04190834A JP 31974090 A JP31974090 A JP 31974090A JP 31974090 A JP31974090 A JP 31974090A JP H04190834 A JPH04190834 A JP H04190834A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- fluid
- flow
- cross
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 claims abstract description 100
- 239000012530 fluid Substances 0.000 claims abstract description 76
- 238000009792 diffusion process Methods 0.000 claims abstract description 11
- 238000001914 filtration Methods 0.000 claims description 60
- 230000004907 flux Effects 0.000 abstract description 15
- 238000011001 backwashing Methods 0.000 abstract description 9
- 230000008021 deposition Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 239000012466 permeate Substances 0.000 description 10
- 238000009295 crossflow filtration Methods 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000001471 micro-filtration Methods 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、クロスフロー型濾過方法に関するものであり
、特に大きい膜透過流束を維持するクロスフロー型濾過
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cross-flow filtration method, and particularly to a cross-flow filtration method that maintains a large membrane permeation flux.
本発明のクロスフロー型濾過方法は、種々の高分子、微
生物、酵母、微粒子を含有あるいは懸濁する流体の分離
、精製、回収、濃縮などに適用され、特に濾過を必要と
する微細な微粒子を含有する流体からその微粒子を分離
する必要のあるあらゆる場合に適用することができ、例
えば微粒子を含有する各種の懸濁液、発酵液あるいは培
養液などの他、顔料の懸濁液などから微粒子を分離する
場合にも適用され、また微粒子を含む懸濁気体から微粒
子を分離、除去して気体を精製する、例えば医薬用アン
プルへ充填する無菌化窒素ガス、超純水製造装置への陽
圧用ガスとして充填する無塵、無菌のガスあるいはIC
!!造ラインにおける空調陽無塵、無菌の空気などの製
造のためにも適用される。The cross-flow filtration method of the present invention is applied to the separation, purification, recovery, concentration, etc. of fluids containing or suspending various polymers, microorganisms, yeast, and fine particles. It can be applied in any case where it is necessary to separate fine particles from a fluid containing them, such as in various suspensions containing fine particles, fermentation liquids or culture liquids, as well as suspensions of pigments, etc. It is also applied in the case of separation, and purifies the gas by separating and removing fine particles from suspended gas containing fine particles.For example, sterilizing nitrogen gas to be filled into pharmaceutical ampoules, positive pressure gas for ultrapure water production equipment. dust-free, sterile gas or IC to fill as
! ! It is also applied to the production of air-conditioned, dust-free, and sterile air in production lines.
(従来の技術)
従来、膜を用いて懸濁物質を含有する原流体から懸濁物
質を分離する技術としては、例えば圧力を駆動力とする
逆浸透法、限外濾過法、精密濾過法、電位差を駆動力と
する電気透析法、濃度差を駆動力とする拡散透析法等が
ある。これらの方法は、連続操作が可能であり、分離操
作中に温度やpHの条件を大きく変化させることなく分
離、精製あるいは濃縮ができ、粒子、分子、イオン等の
広範囲にわたって分離が可能であり、小型プラント処理
能力を大きく保つことができるので経済的であり、分離
操作に要するエネルギーが小さく、かつ他の分離方法で
は難しい低濃度原流体の処理が可能であるなどの理由に
より広範囲に実施されている。そしてこれらの分離技術
に用いられる膜としては、酢酸セルロース、硝酸セルロ
ース、再生セルロース、ポリスルホン、ポリアクリロニ
トリル、ポリアミド、ポリイミド等の有機高分子等を主
体とした高分子膜や耐熱性、耐薬品性などの耐久性に優
れている多孔質セラミ、り膜などがあり、主としてコロ
イドの濾過を対象とする場合は限外tL過膜が使用され
、微細な粒子の濾過を対象とする精密lII過ではそれ
に適した微孔を有する精密濾過膜が使用されている。(Prior Art) Conventionally, techniques for separating suspended solids from a raw fluid containing suspended solids using a membrane include, for example, reverse osmosis, ultrafiltration, microfiltration, which uses pressure as a driving force. There are electrodialysis methods that use a potential difference as a driving force, and diffusion dialysis methods that use a concentration difference as a driving force. These methods can be operated continuously, can separate, purify, or concentrate without significantly changing temperature or pH conditions during the separation operation, and can separate a wide range of particles, molecules, ions, etc. It is economical because it can maintain a large processing capacity in a small plant, requires little energy for separation operations, and can process low-concentration raw fluids that are difficult to use with other separation methods, so it has been widely implemented. There is. The membranes used in these separation techniques include polymer membranes mainly made of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, and polyimide, as well as those with heat resistance, chemical resistance, etc. There are porous ceramics, membranes, etc. that have excellent durability.Ultra tL filtration membranes are used mainly for colloid filtration, and precision III filtration membranes are used for fine particle filtration. Microfiltration membranes with suitable micropores are used.
ところで近年、バイオテクノOノーの進歩に伴い、高純
度化、間性能化、高tI?’E化が要求されるようにな
り、精密濾過あるいは限外!過技術の応用分野が拡大し
つつある。しかしながら、精密濾過あるいは限外濾過に
おいては膜を用いて微粒子を分離する場合に、濃度分極
の影響によりケーク層が生して透過流体の流れに抵抗が
生し、また膜の目詰まりによる抵抗が大きくなって膜i
!i過流束が急激にかつ著しく低下してしまうという問
題があり、これが精宙a過あるいは限外濾過の実用化を
妨げる最大の原因であった。またそれに用いられる膜は
汚染されやすく、その防止対策が必要である。濾過方法
としては、a過されるべき全ての流体が濾材(濾布や膜
など)とケーク層を通過して流体中に含まれている微粒
子を分離するいわゆるプントエンド型濾過方式がある。By the way, in recent years, with the progress of biotechnology, high purity, high performance, and high tI? 'E is now required, and precision filtration or ultra-filtration! The field of application of advanced technology is expanding. However, when separating fine particles using a membrane in precision filtration or ultrafiltration, a cake layer forms due to the influence of concentration polarization, creating resistance to the flow of the permeate fluid, and resistance due to membrane clogging. growing bigger and membrane i
! There is a problem in that the i-filtration flux decreases rapidly and significantly, and this has been the biggest cause of hindering the practical application of fine air filtration or ultrafiltration. Furthermore, the membrane used therein is easily contaminated, and measures to prevent this are required. As a filtration method, there is a so-called Punto End filtration method in which all the fluid to be filtered passes through a filter medium (filter cloth, membrane, etc.) and a cake layer to separate fine particles contained in the fluid.
このデッドエンド型濾過方式では流体が通過して懸濁物
質が分離されるためには濾材とケーク層が含有する流体
の流れを妨げる抵抗に打ち勝つ圧力が必要であり、この
ため精密濾過あるいは限外濾過においては、このような
デッドエンド濾過を行うと膜透過流束が小さくなってし
まうのである。このため、クロスフロー型濾過方式をす
ることが考えられた。このクロスフロー型濾過方式は、
濾過膜の膜表面に平行にa過すべき原流体を流し、流体
は濾過膜を通って反対側へ透過し、この原流体と透過流
体の流れが直交しているためにこのように称されている
。In this dead-end filtration system, in order for the fluid to pass through and the suspended solids to be separated, pressure must be applied to overcome the resistance of the filter medium and cake layer that impedes the flow of the fluid, and for this reason, microfiltration or ultrafiltration is required. In filtration, if such dead-end filtration is performed, the membrane permeation flux becomes small. For this reason, a cross-flow type filtration method was considered. This cross-flow filtration method
The raw fluid to be filtered is passed parallel to the membrane surface of the filtration membrane, and the fluid permeates through the filtration membrane to the opposite side. It is so called because the flow of the raw fluid and the permeated fluid are perpendicular to each other. There is.
このクロスフロー型a、過方法は、膜に平行な原流体の
流れによって膜面上に形成されたケーク層がはぎ取られ
るので従来のデッドエンド型濾過方式に比べてWJ、透
過流束が大きく、大量の原流体を直接連続的に分離、精
製、濃縮が可能であり、濾過性向上のためのフロック生
成側をl・要と廿ず、そのため捕集された!l!濁物質
物質剤が混入せず、膜の微孔径と目的物質との相互作用
をコントロールすることによりきわめて純粋な濾過流体
が得られる等の特徴を有する。In this cross-flow type filtration method, the cake layer formed on the membrane surface is stripped off by the flow of the raw fluid parallel to the membrane, so the WJ and permeation flux are larger than in the conventional dead-end type filtration method. , it is possible to directly and continuously separate, purify, and concentrate a large amount of raw fluid, and there is no need for floc generation to improve filtration, so it is collected! l! It has the characteristics of not being contaminated with turbid substances, and by controlling the interaction between the membrane's micropore size and the target substance, an extremely pure filtration fluid can be obtained.
(発明が解決しようとするf題)
上述のように、クロスフロー型濾過方式は原理的には高
度な分離技術であるが、最大の問題である膜透過流束は
、デッドエンド型濾過方式に比べて大きいが、精密濾過
方法としてこのクロスフロー方式を採用しても十分高い
膜透過流束が得られないという問題があった。(Problem to be solved by the invention) As mentioned above, the cross-flow filtration system is an advanced separation technology in principle, but the biggest problem, the membrane permeation flux, is due to the dead-end filtration system. Although this is relatively large, there is a problem in that even if this cross-flow method is adopted as a precision filtration method, a sufficiently high membrane permeation flux cannot be obtained.
また従来から行われているQi動物質流体との分離の具
体的な例を見ても、例えば発酵液から菌体を分離する場
合には、従来遠心分離法、ケーキ濾過法、珪藻土濾過法
などの一次濾過と精密濾過法等の二次濾過が併用されて
いるが、菌体等の分離ではプロセスの連続化が困難であ
り、酵素などの生成物が濾過助剤に強く吸着することに
より回収率が低下し、二次濾過である精密濾過による菌
体の収集の際には、膜面上に形成されたケーク層や目詰
まりによって濾過時間の経過と共に膜透過流束が低下し
、さらに遠心分離法により菌体の活性が失われるという
問題があった。In addition, looking at specific examples of conventional methods for separating Qi from animal fluids, for example, when separating bacterial cells from fermentation liquid, conventional centrifugation methods, cake filtration methods, diatomaceous earth filtration methods, etc. Primary filtration and secondary filtration such as microfiltration are used together, but it is difficult to make the process continuous when separating bacterial cells, etc., and products such as enzymes are strongly adsorbed to the filter aid, making it difficult to recover them. When bacterial cells are collected by microfiltration, which is secondary filtration, the membrane permeation flux decreases as the filtration time passes due to a cake layer or clogging that forms on the membrane surface, and further centrifugation. There was a problem that the isolation method resulted in loss of bacterial activity.
これらの問題を解決するために、従来から濾過膜への原
流体の流入を断続的に停止したり、濾過膜の透過流体側
の弁を閉止することにより、濾過膜の膜面に垂直にかか
る圧力を断続的になくすあるいは減少させたり、また濾
過膜の透過液側から圧力を加え透過液側から原流体側へ
流体を流すことによって、濾過膜の原流体側の膜面上に
堆積しているケーク層や付着層を断続的に取り除く「逆
洗Jと称する試みがなされている。しかし、これら逆洗
が行われた際、濾過膜の原流体側と透過液側の圧力差が
変動し、濾過膜がのびて原流体側の膜面が濾過器と接触
しケーク層や付着層が十分取り除けなかったり、濾過膜
の阻止性能を低下させるなどの障害が生し、さらに濾過
膜の強度が弱い場合には濾過膜が破断して懸′/@物質
が透過液側に通過してしまう危険もあった。In order to solve these problems, conventional methods have been used to intermittently stop the flow of raw fluid into the filtration membrane, or to close the valve on the permeate side of the filtration membrane. By intermittently removing or reducing the pressure, or by applying pressure from the permeate side of the filtration membrane to flow the fluid from the permeate side to the raw fluid side, the membrane surface on the raw fluid side of the filtration membrane is deposited. Attempts have been made to remove the cake layer and adhesion layer intermittently called "backwashing". However, when these backwashings are performed, the pressure difference between the raw fluid side and the permeate side of the filtration membrane changes , the filtration membrane stretches and the membrane surface on the raw fluid side comes into contact with the filter, causing problems such as not being able to remove the cake layer or adhesion layer sufficiently, and reducing the blocking performance of the filtration membrane.Furthermore, the strength of the filtration membrane decreases. If it was weak, there was a risk that the filtration membrane would break and the substance would pass through to the permeate side.
一方、濾過器の原流体流入口から膜面へ達するまでの流
路抵抗および膜面から流出口までの流路抵抗が必ずしも
等しくないため、膜面上で流れが不均一となり有効膜面
積が事実上低下し、経済的な透過流束が得られない問題
が起こった。On the other hand, since the flow path resistance from the raw fluid inlet to the membrane surface of the filter and from the membrane surface to the outlet are not necessarily equal, the flow becomes uneven on the membrane surface and the effective membrane area is reduced. This caused the problem that an economical permeation flux could not be obtained.
(課題を解決するための手段)
本発明は、上述した従来技術にあった問題点を解決する
ために為されたものであって、実用性のある高い膜透過
流束を持つ新規なりロスフロー型濾過器を提供すること
を目的とするものである。(Means for Solving the Problems) The present invention has been made to solve the problems of the prior art described above, and is a novel loss-flow type that has a practical and high membrane permeation flux. The purpose is to provide a filter.
すなわち本発明は、濾過膜に対してクロスフロー方式で
懸濁物を含む流体からなる原流体を供給し濾過すること
により流体と懸濁物質とを分離するクロスフロー型濾過
方式において、濾過膜の原流体側に濾過膜の支持体を設
け、しかも原流体を膜面上に均一に供給するための拡散
板を設けたことを特徴とするクロスフロー型濾過器であ
る。That is, the present invention provides a cross-flow type filtration method in which a raw fluid consisting of a fluid containing suspended matter is supplied to a filtration membrane in a cross-flow manner and filtered to separate the fluid and suspended matter. This is a cross-flow type filter characterized in that a support body for a filtration membrane is provided on the raw fluid side, and a diffusion plate is provided for uniformly supplying the raw fluid onto the membrane surface.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は、従来技術のクロスフロー型濾過器を改良した
ものであり、基本となる工程は既に「従来技術」の項に
おいて詳細に説明した通りである。The present invention is an improvement on the prior art cross-flow type filter, and the basic steps have already been explained in detail in the "Prior Art" section.
そして本発明の特徴は、クロスフロー型濾過方式におい
てクロスフロー型濾過器の濾過膜の原流体側に濾過膜の
支持体を設けたことである。原流体側に設けた支持体は
原流体の流れを妨げないものが好ましく、原流体の流れ
に平行な方向に膜に接するあるいは膜に接近した位置に
突起物を設ける。A feature of the present invention is that in the cross-flow filtration system, a support for the filtration membrane is provided on the raw fluid side of the filtration membrane of the cross-flow filtration device. The support provided on the source fluid side is preferably one that does not obstruct the flow of the source fluid, and protrusions are provided at positions in contact with or close to the membrane in a direction parallel to the flow of the source fluid.
突起物の形状は原流体の流れを著しく阻害しなければ良
いが、線状、点状の形のものが好ましく、膜面から5m
m以下の位置に存在することが好ましい。また、支持体
は原流体の流れを著しく阻害しなければ網状体あるいは
不織布でも良い。The shape of the protrusions should not significantly obstruct the flow of the raw fluid, but linear or dot-like shapes are preferable, and the protrusions should be placed 5m from the membrane surface.
It is preferable to exist at a position of m or less. Further, the support may be a mesh body or a nonwoven fabric as long as it does not significantly impede the flow of the raw fluid.
このように原流体側に濾過膜支持体を設けることにより
、濾過膜の膜面に垂直にかかる圧力を断続的になくすあ
るいは減少させる「逆洗」を行った時に起こる圧力変動
を生じた場合でも、膜の変形を起こさすケーク層や付着
層を容易に取り除き、結果として高い膜透過流束が得ら
れるのである。By providing a filtration membrane support on the raw fluid side in this way, even if pressure fluctuations occur during "backwashing", which intermittently eliminates or reduces the pressure applied perpendicular to the membrane surface of the filtration membrane, , cake layers and adhesion layers that cause membrane deformation can be easily removed, resulting in a high membrane permeation flux.
また、本発明の拡散板は、膜面上を原流体が均一に流れ
るために原流体の流入口から膜面へ達する流路抵抗を小
さくし、膜面に原流体が接する直前で比較的抵抗の大き
い流路を膜面に対して均一に形成することを特徴とする
。拡散板の形状は、原流体が膜面に接する直前で流動抵
抗を大きくするため、流入口の開孔率より低い開花率を
有する導通口を膜面に対して均一に複数個設けるか、網
状体や不織布などを用いてもよい。In addition, in the diffusion plate of the present invention, since the raw fluid flows uniformly on the membrane surface, the flow path resistance from the raw fluid inlet to the membrane surface is reduced, and the raw fluid has a relatively high resistance just before it comes into contact with the membrane surface. It is characterized by forming a large flow path uniformly over the membrane surface. In order to increase the flow resistance just before the raw fluid contacts the membrane surface, the shape of the diffusion plate is determined by either providing a plurality of conductive holes uniformly across the membrane surface, or by providing a network of conductive holes with a lower opening rate than the inlet opening. A body or non-woven fabric may also be used.
次に本発明のクロスフロー濾過器を図面に基づいて説明
する。図1は通常のクロスフロー濾過器の膜面上での原
流体の流れを、図2は回1のA断面を示しており、逆洗
を行った際の膜の変形を示している。このように従来の
クロスフロー濾過器では膜面上の原流体の流れは不均一
で、逆洗時には膜の変形により堆積物が取り除けないこ
とがわかる。図3は本発明のクロスフロー濾過器の膜面
上での原流体の流れを、図4は図3のA断面を逆洗した
状態で示しており、流れは均一であり、しかも逆洗時に
堆積物は容易に除去できる。Next, the cross-flow filter of the present invention will be explained based on the drawings. FIG. 1 shows the flow of raw fluid on the membrane surface of a normal cross-flow filter, and FIG. 2 shows the A cross section of cycle 1, which shows the deformation of the membrane when backwashing is performed. In this manner, it can be seen that in conventional cross-flow filters, the flow of raw fluid on the membrane surface is non-uniform, and deposits cannot be removed due to deformation of the membrane during backwashing. Figure 3 shows the flow of raw fluid on the membrane surface of the cross-flow filter of the present invention, and Figure 4 shows the cross-section A in Figure 3 in a backwashed state, and the flow is uniform and during backwashing. Deposits can be easily removed.
さらに、本発明を具体的に説明する。圓5は本発明のク
ロスフロー型濾過器の構成図であり、上板、拡散板、下
板、i3過液側膜支持体から構成されている。図6は本
発明のクロスフロー濾過器の上板を原流体の流れる側か
ら見た図であり、原流体の流動方向と平行な方向に濾過
膜支持体を設けている。図7.8は図6のA、B断面を
表しており、濾過膜支持体は濾過膜にほぼ接したところ
に原液流体の流動を阻害しないように位置している。こ
の濾過膜支持体は原流体の流動を阻害しなければ特に形
状を問わず、圧力変動の際濾過膜の変形を防げれば良い
0図9は本発明のクロスフロー濾過器の下板を透過液の
流れる側から見た図であり、透過流体が流れる溝が形成
されている。図10.11は図9のA、B断面を表して
いる。図12は上板にはめ込まれる拡散板を示しており
、原流体の膜面での流路を形成するための複数の導通口
が設けられている。図13は図12のA断面を表してい
る。Furthermore, the present invention will be specifically explained. Circle 5 is a block diagram of the cross-flow type filter of the present invention, which is composed of an upper plate, a diffusion plate, a lower plate, and an i3 filtrate side membrane support. FIG. 6 is a view of the upper plate of the cross-flow filter of the present invention viewed from the side where the raw fluid flows, and a filtration membrane support is provided in a direction parallel to the flow direction of the raw fluid. FIG. 7.8 shows cross sections A and B in FIG. 6, and the filtration membrane support is located almost in contact with the filtration membrane so as not to impede the flow of the stock fluid. The shape of this filtration membrane support does not matter as long as it does not impede the flow of the raw fluid, as long as it can prevent the filtration membrane from deforming during pressure fluctuations. Figure 9 shows permeation through the lower plate of the cross-flow filter of the present invention. It is a view seen from the side through which the liquid flows, and grooves are formed through which the permeated fluid flows. Figure 10.11 shows cross sections A and B in Figure 9. FIG. 12 shows a diffusion plate that is fitted into the upper plate, and is provided with a plurality of communication ports for forming flow paths for raw fluid on the membrane surface. FIG. 13 shows cross section A in FIG. 12.
(実施例)
以下に具体例をあげて本発明を更に詳しく説明するが、
本発明はこれに限定されるものではない。(Example) The present invention will be explained in more detail by giving specific examples below.
The present invention is not limited to this.
実施例
大腸菌(IFO−3301)をQ、9wt/%の生理食
塩水にldryg/Iの含有率で分散させたものを懸濁
液として用い、公称孔径0.2μmの精密濾過膜を用い
てクロスフロー濾過を行った。Example Escherichia coli (IFO-3301) was dispersed in Q, 9 wt/% physiological saline at a content of ldryg/I and filtered through a microfiltration membrane with a nominal pore size of 0.2 μm. Flow filtration was performed.
使用したモジュールは有効膜面積100cm”の薄層流
路式のもので、実験条件は圧力差0.5X10’Pa、
原流体の流量101 /+sin 、液温度25°Cで
あった。a過は図14に示すフローに従って行い、濾過
開始後原流体を送るポンプを断続的に停止して逆洗をお
こなった。ポンプ運転150秒、停止30秒で操作した
結果を圓15に濾過膜を支える支持体を設けない場合の
比較例とともに示した。The module used was a thin layer flow channel type with an effective membrane area of 100 cm, and the experimental conditions were a pressure difference of 0.5 x 10'Pa,
The raw fluid flow rate was 101/+sin, and the liquid temperature was 25°C. A filtration was performed according to the flow shown in FIG. 14, and after the start of filtration, the pump for feeding the raw fluid was intermittently stopped to perform backwashing. The results of an operation in which the pump was operated for 150 seconds and stopped for 30 seconds are shown together with a comparative example in which the ring 15 is not provided with a support for supporting the filtration membrane.
比較例では濾過開始後1時間後には透過流束は初期の1
/4以下に低下するのに対し、支持体を設けた場合は初
期の透過流束を維持した。In the comparative example, one hour after the start of filtration, the permeation flux decreased to the initial level of 1.
In contrast, when the support was provided, the initial permeation flux was maintained.
(発明の効果)
本発明によれば、基本的にはクロスフロー型濾過方式に
おいて高い膜透過流束が得られ、それによって種々の懸
濁物質を含有する液体から各懸濁成分の分離、回収、精
製、濃縮などがきわめて効率的しかも経済的に行われる
。そしてさらにプロセスの連続化及び装置の小型化が可
能であり、膜の選択性を利用して目的物のみを連続的に
選択的に分離することができ、酵母や菌体などを反応液
中に固定することによりバイオリアクターへの応用がで
き、従来技術に比べて運転管理が容易でかつ高濃度で運
転が可能であり、膜の透過性を回復させるために特別な
洗浄などを必要としないなど諸々の効果が奏せられる。(Effects of the Invention) According to the present invention, basically a high membrane permeation flux can be obtained in a cross-flow type filtration system, thereby making it possible to separate and recover each suspended component from a liquid containing various suspended substances. , purification, concentration, etc. can be carried out extremely efficiently and economically. Furthermore, it is possible to make the process continuous and downsize the equipment, and by utilizing the selectivity of the membrane, it is possible to continuously and selectively separate only the target substance, making it possible to remove yeast and bacterial cells from the reaction solution. By immobilizing it, it can be applied to bioreactors, and compared to conventional technology, it is easier to manage and operate at higher concentrations, and there is no need for special cleaning to restore membrane permeability. Various effects can be produced.
第1圓は通常のクロスフロー濾過器の膜面上での原流体
の流れを、第2図は第1図のA断面を示しており、逆洗
を行った際の膜の変形を示している。第3図は本発明の
クロスフロー濾過器の膜面上での原流体の流れを、第4
図は第3図のA断面を逆洗した状態で示している。第5
図は本発明のクロスフロー濾過器の構成図であり、上板
、拡散板、下板、透過液側膜支持体から構成されている
。
図6は本発明のクロスフロー濾過器の上板を原流体の流
れる側から見た図であり、原流体の流動方向と平行な方
向に濾過膜支持体を設けている。第7図、第8図は第6
図のA、B断面を表している。
第9図は本発明のクロスフロー濾過器の下板を透過液の
流れる側から見た図であり、透過流体が流れる溝が形成
されている。第10図、第11図は第9図のA、B断面
を表している。第12図は上板にはめ込まれる拡散板を
示しており、原流体の膜面での流路を形成するための複
数の導通口が設けられている。第13図は第12図のA
断面を表している。
第14図は、本発明の濾過器を実施するためのクロスフ
ロー濾過装置の一例を示している。第15図は本発明の
濾過器と従来の濾過器を用いた場合の透過流束の経時変
化の比較を示している。
(符号の説明)
1・・・・・・原流体流入口
2・・・・・・原流体流出口
3・・・・・・+3過ti、流出口
4・・・・・・濾過膜
5・・・・・・堆積物
6・・・・・・拡散板
7・・・・・・原流体側膜支持体
8 ・・・・・・上奢反
9・・・・・・下板
10・・・・・・透過液側膜支持体
11・・・・・・ネジ止用穴
特許出願人 冨士写真フィルム株式会社第1図
I
第2図
第3図
第4図
第6図
第8図
−! 疋The first circle shows the flow of the raw fluid on the membrane surface of a normal cross-flow filter, and the second figure shows the A section in Figure 1, which shows the deformation of the membrane when backwashing is performed. There is. Figure 3 shows the flow of the raw fluid on the membrane surface of the cross-flow filter of the present invention.
The figure shows cross-section A in FIG. 3 in a backwashed state. Fifth
The figure is a block diagram of the cross-flow filter of the present invention, which is composed of an upper plate, a diffusion plate, a lower plate, and a membrane support on the permeate side. FIG. 6 is a view of the upper plate of the cross-flow filter of the present invention viewed from the side where the raw fluid flows, and a filtration membrane support is provided in a direction parallel to the flow direction of the raw fluid. Figures 7 and 8 are 6
It shows cross sections A and B in the figure. FIG. 9 is a view of the lower plate of the cross-flow filter of the present invention viewed from the side through which the permeate flows, and grooves are formed through which the permeate flows. 10 and 11 show cross sections A and B in FIG. 9. FIG. 12 shows a diffusion plate that is fitted into the upper plate, and is provided with a plurality of communication ports for forming flow paths for raw fluid on the membrane surface. Figure 13 is A of Figure 12.
It represents a cross section. FIG. 14 shows an example of a cross-flow filtration device for implementing the filter of the present invention. FIG. 15 shows a comparison of changes in permeation flux over time when using the filter of the present invention and a conventional filter. (Explanation of symbols) 1...raw fluid inlet 2...raw fluid outlet 3...+3 filter, outlet 4...filter membrane 5 ... Deposit 6 ... Diffusion plate 7 ... Raw fluid side membrane support 8 ... Upper layer 9 ... Lower plate 10 ... Permeated liquid side membrane support 11 ... Screw fixing holes Patent applicant Fuji Photo Film Co., Ltd. Figure 1 I Figure 2 Figure 3 Figure 4 Figure 6 Figure 8 -! Hiki
Claims (1)
流体からなる原流体を供給し濾過することにより、流体
と懸濁物質とを分離する濾過方法において、該原流体が
流れる側に濾過膜の支持体を設けたことを特徴とするク
ロスフロー濾過器。 2)支持体が原流体の流れに対して平行な方向に位置す
る複数本の突起物である特許請求第1項記載のクロスフ
ロー濾過器。 3)原流体が突起物の間を膜面に均一に流れるための拡
散板を設けた特許請求第2項記載のクロスフロー濾過器
。[Scope of Claims] 1) A filtration method in which a fluid and suspended matter are separated by supplying a raw fluid consisting of a fluid containing suspended matter to a filtration membrane in a cross-flow manner and filtering the raw fluid. A cross-flow filter characterized in that a support for a filtration membrane is provided on the side through which fluid flows. 2) The cross-flow filter according to claim 1, wherein the support is a plurality of projections located in a direction parallel to the flow of the raw fluid. 3) The cross-flow filter according to claim 2, further comprising a diffusion plate for allowing the raw fluid to flow uniformly over the membrane surface between the protrusions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31974090A JPH04190834A (en) | 1990-11-22 | 1990-11-22 | Cross-flow type filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31974090A JPH04190834A (en) | 1990-11-22 | 1990-11-22 | Cross-flow type filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04190834A true JPH04190834A (en) | 1992-07-09 |
Family
ID=18113649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31974090A Pending JPH04190834A (en) | 1990-11-22 | 1990-11-22 | Cross-flow type filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04190834A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2027911A1 (en) | 2007-08-24 | 2009-02-25 | FUJIFILM Corporation | Cross-flow filtration method and cross-flow filtration device |
US20140341792A1 (en) * | 2012-02-03 | 2014-11-20 | Omya International Ag | Installation for the purification of minerals, pigments and/or fillers and/or the preparation of precipitated earth alkali carbonate |
EP2752445B1 (en) | 2011-08-30 | 2016-10-19 | Carbon Fiber Recycle Industry Ltd. | Device for manufacturing recycled carbon fibers, and method for manufacturing recycled carbon fibers |
JP2018531779A (en) * | 2015-08-28 | 2018-11-01 | アイデックス ヘルス アンド サイエンス エルエルシー | Membrane gas-liquid contactor |
-
1990
- 1990-11-22 JP JP31974090A patent/JPH04190834A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2027911A1 (en) | 2007-08-24 | 2009-02-25 | FUJIFILM Corporation | Cross-flow filtration method and cross-flow filtration device |
US8231789B2 (en) | 2007-08-24 | 2012-07-31 | Fujifilm Corporation | Cross-flow filtration method and cross-flow filtration device |
EP2752445B1 (en) | 2011-08-30 | 2016-10-19 | Carbon Fiber Recycle Industry Ltd. | Device for manufacturing recycled carbon fibers, and method for manufacturing recycled carbon fibers |
US20140341792A1 (en) * | 2012-02-03 | 2014-11-20 | Omya International Ag | Installation for the purification of minerals, pigments and/or fillers and/or the preparation of precipitated earth alkali carbonate |
US10053582B2 (en) * | 2012-02-03 | 2018-08-21 | Omya International Ag | Installation for the purification of minerals, pigments and/or fillers and/or the preparation of precipitated earth alkali carbonate |
JP2018531779A (en) * | 2015-08-28 | 2018-11-01 | アイデックス ヘルス アンド サイエンス エルエルシー | Membrane gas-liquid contactor |
US10953348B2 (en) | 2015-08-28 | 2021-03-23 | Idex Health & Science, Llc | Membrane gas/liquid contactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Introduction to membrane processes for water treatment | |
Aptel et al. | Categories of membrane operations | |
JP3924926B2 (en) | Hollow fiber membrane filtration membrane module | |
US5221479A (en) | Filtration system | |
JPH04349927A (en) | Preparation of precise filter membrane | |
Wang et al. | Understand the basics of membrane filtration | |
WO2020169883A1 (en) | Feed spacer for cross-flow membrane element | |
JPH04190834A (en) | Cross-flow type filter | |
Gullinkala et al. | Membranes for water treatment applications–an overview | |
US20060254984A1 (en) | Hollow Fiber Membrane Adsorber and Process for the Use Thereof | |
KR100954427B1 (en) | Advanced membrane filtration device for combining treated water by using a plurality of filteration membranes and the method thereof | |
JPH05329339A (en) | Filtering apparatus | |
Michaels | Fifteen years of ultrafiltration: problems and future promises of an adolescent technology | |
JP3838689B2 (en) | Water treatment system | |
JPH04190835A (en) | Cross-flow type filter | |
JPH04145929A (en) | Cross-flow filter | |
JPH04118032A (en) | Jet flow type filter | |
JPS63126513A (en) | Backwashing method in cross flow type precision filtration | |
JP2717458B2 (en) | Filtration method | |
JPH04150930A (en) | Cross flow filtering apparatus | |
JPH0549877A (en) | Production of composite filter membrane | |
JPH0557149A (en) | Filter system | |
JPH04317730A (en) | Composite filtration membrane | |
JPS63126511A (en) | Cross flow type precision filtering method | |
JPH04271818A (en) | Hollow yarn membrane filtering system |