JP2717458B2 - Filtration method - Google Patents

Filtration method

Info

Publication number
JP2717458B2
JP2717458B2 JP3086934A JP8693491A JP2717458B2 JP 2717458 B2 JP2717458 B2 JP 2717458B2 JP 3086934 A JP3086934 A JP 3086934A JP 8693491 A JP8693491 A JP 8693491A JP 2717458 B2 JP2717458 B2 JP 2717458B2
Authority
JP
Japan
Prior art keywords
filtration
membrane
pore size
solution
backwashing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3086934A
Other languages
Japanese (ja)
Other versions
JPH04317723A (en
Inventor
純生 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13900700&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2717458(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3086934A priority Critical patent/JP2717458B2/en
Priority to US07/834,801 priority patent/US5221479A/en
Priority to DE4204708A priority patent/DE4204708A1/en
Publication of JPH04317723A publication Critical patent/JPH04317723A/en
Application granted granted Critical
Publication of JP2717458B2 publication Critical patent/JP2717458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、全濾過周期的逆洗シス
テムに関するものであり、特に大きい膜透過流束を維持
するために逆洗を周期的に行う精密濾過領域の全濾過周
期的逆洗システムに関するものである。本発明の全濾過
周期的逆洗システムは、種々の高分子、微生物、酵母、
微粒子を含有あるいは懸濁する流体の分離、精製、回
収、濃縮などに適用され、特に濾過を必要とする微細な
微粒子を含有する流体からその微粒子を分離する必要の
あるあらゆる場合に適用することができ、例えば微粒子
を含有する各種の懸濁液、発酵液あるいは培養液などの
他、顔料の懸濁液などから微粒子を分離する場合にも適
用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a full filtration periodic backwashing system, and more particularly to a full filtration periodic backwash in a microfiltration area where periodic backwashing is performed to maintain a large membrane permeation flux. It relates to a washing system. The whole filtration periodic backwash system of the present invention can be used for various polymers, microorganisms, yeasts,
It is applied to the separation, purification, recovery, concentration, etc. of a fluid containing or suspending fine particles, and in particular, it can be applied to any case where it is necessary to separate the fine particles from a fluid containing fine particles requiring filtration. For example, the present invention can be applied to a case where fine particles are separated from a suspension of a pigment and the like, in addition to various suspensions containing fine particles, a fermentation solution or a culture solution.

【0002】[0002]

【従来の技術】従来、膜を用いて懸濁物質を含有する原
流体から懸濁物質を分離する技術としては、例えば圧力
を駆動力とする逆浸透法、限外濾過法、精密濾過法、電
位差を駆動力とする電気透析法、濃度差を駆動力とする
拡散透析法等がある。これらの方法は、連続操作が可能
であり、分離操作中に温度やpHの条件を大きく変化さ
せることなく分離、精製あるいは濃縮ができ、粒子、分
子、イオン等の広範囲にわたって分離が可能であり、小
型プラントでも処理能力を大きく保つことができるので
経済的であり、分離操作に要するエネルギーが小さく、
かつ他の分離方法では難しい低濃度原流体の処理が可能
であるなどの理由により広範囲に実施されている。そし
てこれらの分離技術に用いられる膜としては、酢酸セル
ロース、硝酸セルロース、再生セルロース、ポリスルホ
ン、ポリアクリロニトリル、ポリアミド、ポリイミド等
の有機高分子等を主体とした高分子膜や耐熱性、耐薬品
性などの耐久性に優れている多孔質セラミック膜などが
あり、主としてコロイドの濾過を対象とする場合は限外
濾過膜が使用され、0.05から10μm の微細な粒子
の濾過を対象とする精密濾過ではそれに適した微孔を有
する精密濾過膜が使用されている。ところで近年、バイ
オテクノロジーの進歩に伴い、高純度化、高性能化、高
精密化が要求されるようになり、精密濾過あるいは限外
濾過技術の応用分野が拡大しつつある。しかしながら、
精密濾過あるいは限外濾過においては膜を用いて微粒子
を分離する場合に、濃度分極の影響によりケーク層が生
じて透過流体の流れに抵抗が生じ、また膜の目詰まりに
よる抵抗が大きくなって膜透過流束が急激にかつ著しく
低下してしまうという問題があり、これが精密濾過ある
いは限外濾過の実用化を妨げる最大の原因であった。ま
たそれに用いられる膜は汚染されやすく、その防止対策
が必要である。
2. Description of the Related Art Conventionally, techniques for separating a suspended substance from a raw fluid containing the suspended substance using a membrane include, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, and a microfiltration method. There are an electrodialysis method using a potential difference as a driving force and a diffusion dialysis method using a concentration difference as a driving force. These methods are capable of continuous operation, can be separated without significantly changing the temperature and pH conditions during the separation operation, can be purified or concentrated, can be separated over a wide range of particles, molecules, ions, etc., It is economical because the processing capacity can be kept large even in a small plant, and the energy required for the separation operation is small.
In addition, the method is widely used because it is possible to treat a low-concentration raw fluid that is difficult with other separation methods. The membranes used for these separation techniques include polymer membranes mainly composed of organic polymers such as cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone, polyacrylonitrile, polyamide, and polyimide, and heat resistance and chemical resistance. There is a porous ceramic membrane etc. which is excellent in the durability of ultrafiltration. Ultrafiltration membrane is mainly used for filtration of colloid, and microfiltration for filtration of fine particles of 0.05 to 10μm. Uses a microfiltration membrane having micropores suitable for it. By the way, in recent years, with the advancement of biotechnology, higher purity, higher performance, and higher precision have been required, and the application field of microfiltration or ultrafiltration technology is expanding. However,
In microfiltration or ultrafiltration, when fine particles are separated using a membrane, a cake layer is formed due to the effect of concentration polarization, causing resistance to the flow of the permeated fluid, and resistance due to membrane clogging is increased. There is a problem that the permeation flux decreases rapidly and remarkably, and this is the biggest cause that hinders the practical use of microfiltration or ultrafiltration. Further, the film used therein is easily contaminated, and it is necessary to take measures to prevent it.

【0003】濾過方法としては、濾過されるべき全ての
流体が濾材(濾布や膜など)とケーク層を通過して流体
中に含まれている微粒子を分離するいわゆる全濾過方法
がある。この従来の全濾過方法では流体が通過して懸濁
物質が濾過膜の内部に捕捉されて分離される段階では高
い透過流束が得られるが、濾過膜の表面で捕捉される段
階になるとケーク層が形成され、大量の原流体を処理す
る場合や形成されるケーク層の比抵抗が極端に高い場合
は大きな濾過抵抗となり、このような全濾過を行うと膜
透過流束が小さくなる。一方排水処理や造水・プール水
の濾過などの分野においては、目詰まりしたフィルター
の透過流束回復のために逆洗をおこなうことが知られて
いる。しかしこの全濾過と逆洗を組み合わせた方法はケ
ーク層の比抵抗が比較的小さな排水処理の分野で開発さ
れた技術であるため、酵素、ビール、ワイン、日本酒、
醤油、抗生物質、アミノ酸、酢酸やしゅう酸の如き有機
酸等の生産を行う醗酵液からの菌体分離の如き、微細で
比抵抗の大きな粒子の濾過にはそのままでは無力であっ
た。このような液に対しては現在、珪藻土やベントナイ
ト等の濾過助剤を用いる濾過方法が最も一般的に使用さ
れている。この方法は、濾過助剤の微粒子をブロック状
に積み上げて精密濾過層を形成し、この粒子の隙間で濾
過する方法である。この方法は古くから使用されている
巧妙な濾過方法であるため、現在でも大量の懸濁液を濾
過するには非常に有効な方法であるが、人手が多くかか
ったり産業廃棄物が多く発生するなどの問題がある。こ
のため、クロスフロー型濾過方式をすることが考えられ
た。このクロスフロー型濾過方式は、濾過膜の膜表面に
平行に濾過すべき原流体を流し、流体は濾過膜を通って
反対側へ透過し、この原流体と透過流体の流れが直交し
ているためにこのように称されている。このクロスフロ
ー型濾過方法は、膜に平行な原流体の流れによって膜面
上に形成されたケーク層がはぎ取られるので従来の全濾
過方法に比べて膜透過流束が大きく、大量の原流体を直
接連続的に分離、精製、濃縮が可能であるが、純水透過
流束の大きいすなわち0.05μm 以上の粒子を除去す
る精密濾過領域の膜を用いた場合は急激に膜透過流束が
低下して濾過開始初期の高い膜透過流束を保つことは困
難であり、結果として全濾過方法と総透過液量を比較す
るとその改善効果は小さく経済的な透過流束を得るには
不十分であった。
[0003] As a filtration method, there is a so-called total filtration method in which all the fluid to be filtered passes through a filter medium (such as a filter cloth or a membrane) and a cake layer to separate fine particles contained in the fluid. In this conventional all-filtration method, a high permeation flux is obtained at a stage where a fluid passes and suspended substances are trapped and separated inside the filtration membrane. When a layer is formed and a large amount of raw fluid is processed, or when the specific resistance of the cake layer to be formed is extremely high, the filtration resistance becomes large, and such total filtration reduces the membrane permeation flux. On the other hand, in the fields of wastewater treatment and filtration of fresh water and pool water, it is known to perform backwashing to recover the permeation flux of a clogged filter. However, this combined filtration and backwashing method is a technology developed in the field of wastewater treatment where the specific resistance of the cake layer is relatively small, so enzymes, beer, wine, sake,
Filtration of fine particles having high specific resistance, such as isolation of bacterial cells from a fermentation solution that produces soy sauce, antibiotics, amino acids, and organic acids such as acetic acid and oxalic acid, is ineffective as it is. At present, for such a liquid, a filtration method using a filter aid such as diatomaceous earth or bentonite is most commonly used. This method is a method in which fine particles of a filter aid are stacked in a block shape to form a microfiltration layer, and the fine particles are filtered through gaps between the particles. Although this method is a sophisticated filtration method that has been used for a long time, it is still a very effective method for filtering a large amount of suspension, but it requires a lot of labor and a lot of industrial waste There is such a problem. For this reason, it has been considered to use a cross flow type filtration system. In this cross-flow filtration method, a raw fluid to be filtered flows in parallel to the membrane surface of the filtration membrane, and the fluid permeates to the opposite side through the filtration membrane, and the flow of the raw fluid and the flow of the permeated fluid are orthogonal to each other. This is why it is so named. In this cross-flow type filtration method, the cake layer formed on the membrane surface is peeled off by the flow of the raw fluid parallel to the membrane, so that the membrane permeation flux is larger than the conventional total filtration method, and a large amount of the raw fluid Can be directly continuously separated, purified, and concentrated, but when a membrane in the microfiltration region that removes particles with a large pure water flux, that is, particles of 0.05 μm or more, is used, the membrane flux rapidly increases. It is difficult to maintain a high membrane permeation flux at the beginning of filtration due to a decrease, and as a result, when compared with the total filtration method and the total permeate volume, the improvement effect is small and insufficient to obtain an economical permeation flux. Met.

【0004】[0004]

【発明が解決しようとする課題】上述のように、クロス
フロー型濾過方式は原理的には高度な分離技術である
が、最大の問題である膜透過流束は、従来の全濾過方法
によりも大きいが、精密濾過方法としてこのクロスフロ
ー方式を採用しても経済的に十分高い膜透過流束が得ら
れないという問題があった。また従来から行われている
懸濁物質と流体との分離の具体的な例を見ても、例えば
発酵液から菌体を分離する場合には、従来から行われて
いる遠心分離法、珪藻土濾過法などに代わってクロスフ
ロー濾過方式を用いても膜面上に形成されたケーク層や
目詰まりによって濾過時間の経過と共に膜透過流束が低
下するばかりでなく、原流体を循環する際の剪断力によ
って菌体の活性が失われるという問題があった。
As described above, the cross-flow filtration method is an advanced separation technique in principle, but the biggest problem, the membrane permeation flux, is lower than that of the conventional total filtration method. Although large, there is a problem that even if this cross-flow method is used as a microfiltration method, a sufficiently high membrane permeation flux cannot be obtained economically. Also, looking at a specific example of the conventional separation of a suspended substance and a fluid, for example, when separating cells from a fermentation broth, the conventional centrifugation method, diatomite filtration, Even if a cross-flow filtration method is used in place of the filtration method, not only does the cake layer formed on the membrane surface and clogging cause a decrease in the membrane permeation flux as the filtration time elapses, but also shearing when circulating the raw fluid There was a problem that the activity of the cells was lost by the force.

【0005】透過流束を高める方法としてはクロスフロ
ー濾過方式と併用して濾過膜への原流体の流入を断続的
に停止したり、濾過膜の透過流体側の弁を閉止すること
により、濾過膜の膜面に垂直にかかる圧力を断続的にな
くすあるいは減少させたり、また濾過膜の透過液側から
圧力を加え透過液側から原流体側へ流体を流すことによ
って、濾過膜の原流体側の膜面上に堆積しているケーク
層や付着層を断続的に取り除く「逆洗」と称する試みが
なされているが、これら逆洗が行われた際も濾過膜から
脱着した懸濁物質を濾過系内に残しておくと原流体中の
懸濁物の濃度が徐々に増加し、場合によっては原流体の
粘度も上昇するため膜透過流束は徐々に低下して逆洗を
行っても透過流束が十分回復しない等の問題があった。
また、透過液を用いて逆洗を行うと実質上逆洗した量だ
け膜透過量は減少するため、膜透過流束を十分回復する
だけの逆洗液を確保できないという問題があった。一方
菌体の活性を低下させない方法として、クロスフロー循
環流速を低下させ剪断力を小さくすることが行われてい
るが、剪断力を小さくするとクロスフロー濾過方式の効
果が小さくなるため、実際に菌体活性を低下させない方
策をとると膜透過流束が低下する問題があった。またポ
ンプでの菌体の破砕を少なくするためダイヤフラムポン
プなどの剪断力の小さいポンプを用いるとポンプの脈動
が大きくクロスフロー濾過方式の効果が小さくなる等の
問題もあった。
[0005] As a method of increasing the permeation flux, the inflow of the raw fluid into the filtration membrane is intermittently stopped in combination with the cross-flow filtration method, or the valve on the permeation fluid side of the filtration membrane is closed, whereby the filtration is performed. The pressure applied perpendicular to the membrane surface of the membrane is intermittently eliminated or reduced, and the pressure is applied from the permeated liquid side of the filtration membrane to flow the fluid from the permeated liquid side to the raw fluid side, so that the raw fluid side of the filtration membrane is removed. Attempts to remove intermittently the cake layer and the adhering layer deposited on the membrane surface have been made as "backwashing", and even when these backwashes are performed, suspended substances desorbed from the filtration membrane are removed. If left in the filtration system, the concentration of the suspension in the raw fluid gradually increases, and in some cases, the viscosity of the raw fluid also increases. There was a problem that the permeation flux did not recover sufficiently.
In addition, when backwashing is performed using a permeate, the membrane permeation amount is reduced by the amount of the backwash substantially, so that there is a problem that a backwash solution that can sufficiently recover the membrane permeation flux cannot be secured. On the other hand, as a method of not lowering the activity of the cells, the cross-flow circulation flow rate is reduced to reduce the shearing force.However, when the shearing force is reduced, the effect of the cross-flow filtration method is reduced. Taking measures not to decrease the body activity, there is a problem that the membrane permeation flux decreases. Further, when a pump having a small shearing force such as a diaphragm pump is used in order to reduce the crushing of bacterial cells by the pump, there is a problem that the pulsation of the pump is large and the effect of the cross flow filtration system is reduced.

【0006】珪藻土やパーライト等の濾過助剤を用いる
ケーク濾過には次の問題がある。即ち、濾過するに先立
ってプレコートと呼ばれる濾過器上に濾過助剤の堆積層
を形成する操作や、ボディーフィードと呼ばれる濾過原
液に濾過助剤を添加し分散する工程、濾過終了後にケー
ク層を洗浄除去する工程などもあり、人手を多く必要と
する。更に、濾過中に濾過圧力や流量の変動があると濾
過助剤のケーク層が脱落して濾過できなくなったり、大
量の産業廃棄物が発生するという問題もある。
[0006] Cake filtration using a filter aid such as diatomaceous earth or perlite has the following problems. That is, prior to filtration, an operation of forming a deposited layer of a filter aid on a filter called a precoat, a process of adding and dispersing a filter aid to a stock solution called a body feed, and washing the cake layer after completion of filtration. There is also a removal step, which requires a lot of manpower. Further, if there is a change in filtration pressure or flow rate during filtration, there is a problem that the cake layer of the filter aid falls off and cannot be filtered, or a large amount of industrial waste is generated.

【0007】[0007]

【課題を解決するための手段】前記問題点は次の方法に
よって解決できた。即ち、濾過原液が最初に膜に接する
表面の孔径が濾過原液中の懸濁粒子の体積平均径の1か
ら10倍であり、かつ膜の最緻密層の孔径が除去したい
粒子径の0.8倍以下であることを特徴とする、膜厚さ
方向の孔径に異方性を有する精密濾過膜を用いる周期的
逆洗を伴う濾過方法である。醗酵液中の懸濁物粒子は、
細菌・酵母・菌糸類の如き菌類と、培地成分や醗酵代謝
物に由来する蛋白質や多糖類等から成る凝集物粒子より
成っている。その粒子径は小さいものは0.1μm 程度
のサブミクロン領域から、大きいものは数10μm まで
の広い範囲に渡り、醗酵液の種類によってもその平均粒
子径や分布および濃度は異なる。また生産物によって濾
過の目的が異なるので、除去すべき最小粒子径も一様で
はない。例えばビールの場合は、粒子の大きさは2〜5
μm が多く、懸濁物濃度は0.1g/リットルから1g
/リットル程度である。これを濾過して液を清澄にする
には、濾過平均孔径が1.5μm 以下の精密濾過膜が必
要である。しかし特開昭55−8887号記載の方法で
製膜されたナイロン膜のように、孔径が膜厚さ方向に均
質に分布している膜では、粒子は全て膜表面に捕捉され
てたちまちに目詰りする。一方濾過の入口側平均孔径が
5〜30μm で、膜の内部の最小孔径層の平均孔径が
0.3〜3μm である異方性構造精密濾過膜を用いて濾
過を行うと、目詰りは著しく改善された。更にこの異方
性構造膜を用いて、5分から60分間濾過をしたのち数
秒間逆洗を行い再び濾過を繰り返すといった、周期的逆
洗を伴う濾過を行うと、全く未濾過の若ビールでも実用
的な濾過が達成できることを発見した。
The above problem can be solved by the following method. That is, the pore size of the surface where the undiluted filtration solution first contacts the membrane is 1 to 10 times the volume average diameter of the suspended particles in the undiluted filtration solution, and the pore size of the densest layer of the membrane is 0.8 of the particle size to be removed. This is a filtration method involving periodic backwashing using a microfiltration membrane having anisotropy in the pore diameter in the thickness direction, characterized in that the filtration is not more than twice. The suspended particles in the fermentation broth are
It is made up of fungi such as bacteria, yeasts and mycelia, and aggregate particles composed of proteins and polysaccharides derived from medium components and fermentation metabolites. The average particle size, distribution and concentration vary depending on the type of fermentation liquid, ranging from a submicron region with a small particle size of about 0.1 μm to a large range of several tens μm with a large particle size. Further, since the purpose of filtration differs depending on the product, the minimum particle size to be removed is not uniform. For example, in the case of beer, the particle size is 2 to 5
μm, and the concentration of the suspension is from 0.1 g / liter to 1 g
Per liter. In order to clarify the solution by filtering it, a microfiltration membrane having an average filtration pore size of 1.5 μm or less is required. However, in a membrane such as a nylon membrane formed by the method described in JP-A-55-8887, pores are uniformly distributed in the thickness direction, and all the particles are trapped on the membrane surface and clogged immediately. I do. On the other hand, when the filtration is performed using an anisotropic microfiltration membrane having an average pore diameter of 5 to 30 μm on the inlet side of the filtration and an average pore diameter of the smallest pore layer inside the membrane of 0.3 to 3 μm, the clogging is remarkable. Improved. Furthermore, if the filtration with periodic backwashing is performed using this anisotropic structure membrane, such as filtering for 5 to 60 minutes, then backwashing for several seconds and repeating the filtration again, practically unfiltered young beer is practical. It has been found that effective filtration can be achieved.

【0008】ビールや日本酒の如きアルコール飲料の濾
過の目的は、液の静澄化と火落ち菌等の雑菌の除去であ
る。前者の目的だけならば、異方性膜の最小孔径層の平
均孔径は1.5μm 前後の0.8〜3μm あれば充分で
ある。後者の目的も含む場合は、異方性膜の最小孔径層
の平均孔径は0.3〜0.6μm まで小さくする必要が
ある。また抗生物質の醗酵のように、糸状菌の如き絡み
合って大きな塊を形成する菌であり、またろ液中に少量
の醗酵菌が脱落してきても後の工程に支障が無い場合
は、異方性膜の最小孔径層の平均孔径は2〜10μm の
ような大きな孔径の方が有利である。一般的には異方性
膜の最小孔径層の平均孔径は、除去したい最小粒子径の
0.8倍以下である必要がある。一方濾過の入口側の孔
径は、濾過原液中の懸濁粒子の体積平均粒子径とその分
布によって最適な孔径が変わる。懸濁粒子体積平均径の
1〜10倍が目安となるが、多くの場合は2倍から6倍
の範囲に最適な孔径が存在する。
[0008] The purpose of filtering alcoholic beverages such as beer and sake is to clarify the liquid and remove various bacteria such as fire-killed bacteria. For the former purpose alone, it is sufficient that the average pore diameter of the minimum pore diameter layer of the anisotropic film is about 1.5 to 0.8 μm to 3 μm. If the latter purpose is also included, the average pore size of the minimum pore size layer of the anisotropic film must be reduced to 0.3 to 0.6 μm. In addition, as in the fermentation of antibiotics, these bacteria are entangled to form large lumps, such as filamentous fungi, and if a small amount of fermentation bacteria falls off in the filtrate, there is no problem in the subsequent process. The average pore size of the minimum pore size layer of the conductive membrane is more preferably as large as 2 to 10 μm. Generally, the average pore size of the minimum pore size layer of the anisotropic film needs to be 0.8 times or less the minimum particle size to be removed. On the other hand, the optimum pore diameter on the inlet side of filtration varies depending on the volume average particle diameter and the distribution of suspended particles in the undiluted solution. The standard value is 1 to 10 times the volume average diameter of the suspended particles, but in most cases, the optimum pore size is in the range of 2 to 6 times.

【0009】膜の厚さ方向で孔径が連続的に変化する異
方性構造の精密濾過膜は、特公昭55−6406号や特
公平1−43619号に記載されているような、膜の片
面から反対面にむかって連続的に孔径が変化しているも
の、特開昭62−27006号に記載されているよう
な、膜内部に最小孔径層が存在するものが、知られてい
る。膜材料としては、酢酸セルローズやポリスルホンが
異方性構造を形成する代表的な材料として知られている
が、塩化ビニル・ポリフッ化ビニリデン等も異方性構造
を形成する。以下異方性膜の製法を詳しく記す。精密濾
過膜の製造は、上記ポリマーを良溶媒、良溶媒と非
溶媒の混合溶媒又はポリマーに対する溶解性の程度が
異なる複数種の溶媒の混合したものに溶解して製膜原液
を作製し、これを支持体上に、又は直接凝固液中に流延
し、洗浄乾燥して行う。この場合に、ポリマーを溶解す
る溶媒の一例としては、ジクロロメタン、アセトン、ジ
メチルホルムアミド、ジメチルアセトアミド、ジメチル
スルホキシド、2−ピロリドン、N−メチル−2−ピロ
リドン、スルホラン等を挙げることができる。上記溶媒
に添加する非溶媒の例としては、セロソルブ類、メタノ
ール、エタノール、イソプロパノールの如きアルコール
類、アセトン、メチルエチルケトンの如きケトン類、テ
トラヒドロフラン、ジオキサンの如きエーテル類、ポリ
エチレングリコール、グリセリン、エチルグリコールの
如きポリオール類等が挙げられる。非溶媒の良溶媒に対
する割合は、混合液が均一状態を保てる範囲ならばいか
なる範囲でも良いが、5〜50重量%が好ましい。
A microfiltration membrane having an anisotropic structure in which the pore size changes continuously in the thickness direction of the membrane is disclosed in Japanese Patent Publication No. 55-6406 and Japanese Patent Publication No. 1-343619, one side of the membrane. From the surface to the opposite surface, and those having a minimum pore diameter layer inside the membrane, as described in JP-A-62-27006. As a film material, cellulose acetate and polysulfone are known as typical materials forming an anisotropic structure, but vinyl chloride, polyvinylidene fluoride and the like also form an anisotropic structure. Hereinafter, the method for producing the anisotropic film will be described in detail. The production of the microfiltration membrane is performed by dissolving the polymer in a good solvent, a mixed solvent of a good solvent and a non-solvent or a mixture of a plurality of solvents having different degrees of solubility in the polymer to prepare a membrane-forming stock solution. Is cast on a support or directly in a coagulating liquid, and washed and dried. In this case, examples of the solvent for dissolving the polymer include dichloromethane, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, N-methyl-2-pyrrolidone, and sulfolane. Examples of the non-solvent to be added to the solvent include cellosolves, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran and dioxane, polyethylene glycol, glycerin and ethyl glycol. Polyols and the like. The ratio of the non-solvent to the good solvent may be any range as long as the mixed solution can maintain a uniform state, but is preferably 5 to 50% by weight.

【0010】又、多孔構造を制御するものとして膨潤剤
と称される無機電解質、有機電解質、高分子電解質等を
加えることもできる。本発明で使用できる電解質として
は、食塩、硝酸ナトリウム、硝酸カリウム、硫酸ナトリ
ウム、塩化亜鉛、臭化マグネシウム等の無機酸の金属
塩、酢酸ナトリウム、ギ酸ナトリウム、酪酸カリウム等
の有機酸塩類、ポリスチレンスルホン酸ナトリウム、ポ
リビニルピロリドン、ポリビニルベンジルトリメチルア
ンモニウムクロライド等の高分子電解質、ジオクチルス
ルホコハク酸ナトリウム、アルキルメチルタウリン酸ナ
トリウム等のイオン系界面活性剤等が用いられる。これ
らの電解質は単独でポリマー溶液に加えてもある程度の
効果を示すものもあるが、これら電解質を水溶液として
添加する場合には、特に顕著な効果を示すことがある。
電解質水溶液の添加量は添加によって溶液の均一性が失
われることがない限り特に制限はないが、通常溶媒に対
して0.5容量%から10容量%である。また電解質水
溶液の濃度についても特に制限はなく、濃度の大きい方
が効果は大きいが、通常用いられる濃度としては1重量
%から60重量%である。製膜原液としてのポリマー濃
度は5から35重量%、好ましくは10から30重量%
である。35重量%を越える時は得られる微孔性膜の透
水性が実用的な意味を持たない程小さくなり、5重量%
よりも小さい時は充分な分離能力を持った精密濾過膜は
得られない。
Further, an inorganic electrolyte, an organic electrolyte, a polymer electrolyte or the like, which is called a swelling agent, can be added to control the porous structure. Examples of the electrolyte that can be used in the present invention include metal salts of inorganic acids such as sodium chloride, sodium nitrate, potassium nitrate, sodium sulfate, zinc chloride, and magnesium bromide; organic acid salts such as sodium acetate, sodium formate, and potassium butyrate; and polystyrene sulfonic acid. Polymer electrolytes such as sodium, polyvinylpyrrolidone and polyvinylbenzyltrimethylammonium chloride, and ionic surfactants such as sodium dioctylsulfosuccinate and sodium alkylmethyltaurate are used. Although some of these electrolytes show a certain effect even when added alone to the polymer solution, when these electrolytes are added as an aqueous solution, a particularly remarkable effect may be exhibited.
The amount of the electrolyte aqueous solution to be added is not particularly limited as long as the uniformity of the solution is not lost by the addition, but is usually 0.5% by volume to 10% by volume based on the solvent. The concentration of the aqueous electrolyte solution is not particularly limited, and the higher the concentration, the greater the effect. However, the concentration generally used is 1% by weight to 60% by weight. The polymer concentration as a stock solution is 5 to 35% by weight, preferably 10 to 30% by weight.
It is. If it exceeds 35% by weight, the water permeability of the obtained microporous membrane becomes so small that it has no practical meaning, and it becomes 5% by weight.
If it is smaller than this, a microfiltration membrane having a sufficient separation ability cannot be obtained.

【0011】上記のようにして調整した製膜原液を支持
体の上に流延し、流延直後あるいは一定時間をおいて凝
固液中に支持体ごとポリマー溶液膜を浸漬する。凝固液
としては水が最も一般的に用いられるが、ポリマーを溶
解しない有機溶媒を用いても良く、またこれら非溶媒を
2種以上混合して用いてもよい。支持体としては、通常
精密濾過膜を製造する場合に支持体として使用できるも
のの中から任意に選択することができるが、特に不織布
を使用した場合には支持体を剥がす必要がないので好ま
しい。本発明で使用できる不織布はポリプロピレン、ポ
リエステル等からなる一般的なものであり、材質の制限
を受けるものではない。凝固浴中でポリマーが析出した
流延膜はこの後水洗、温水洗浄、溶剤洗浄等を行い、乾
燥する。
The membrane-forming stock solution prepared as described above is cast on a support, and the polymer solution membrane together with the support is immersed in the coagulation solution immediately after the casting or after a certain period of time. Water is most commonly used as the coagulation liquid, but an organic solvent that does not dissolve the polymer may be used, or two or more of these non-solvents may be used in combination. The support can be arbitrarily selected from those which can be used as a support in the case of manufacturing a microfiltration membrane. However, it is preferable to use a nonwoven fabric because the support does not need to be peeled off. The nonwoven fabric that can be used in the present invention is a general one made of polypropylene, polyester, or the like, and is not limited by the material. The cast film in which the polymer is precipitated in the coagulation bath is then washed with water, washed with warm water, washed with a solvent, etc., and dried.

【0012】このようにしてできた膜はプリーツカート
リッジ平膜積層構造カートリッジ等公知のモジュールに
組み立てて、濾過に供される。図1は周期的逆洗をしな
がら濾過をするためのライン図である。濾過原液はポン
プ12で濾過器ハウジング11に送られる。濾過された
ろ液は濾過液貯蔵タンクに送られる。一定時間濾過を行
い濾過圧力が高くなると、ポンプ12を停止し、フィル
ターの一次側にガスを導入して残留している液を二次側
へ押し出す。次いでポンプ13によって逆洗水を濾過器
ハウジングに送り、逆洗液排出口へ捕捉した粒子ケーク
共々逆洗液を押し出す。フィルター二次側からガスを導
入し、残留している逆洗液を排出口に押し出した後、再
びポンプ12によって濾過を再開する。ハウジング内に
残留している逆洗水の排除は、抗生物質やアミノ酸の如
き、このあとに更に精製工程が存在する場合には省略し
てもよい。逆洗液には通常は水が使用されるが、ろ液を
使用する場合もある。
The membrane thus obtained is assembled into a known module such as a pleated cartridge flat membrane laminated structure cartridge and is subjected to filtration. FIG. 1 is a line diagram for performing filtration while performing periodic backwashing. The filtrate is sent to the filter housing 11 by the pump 12. The filtered filtrate is sent to a filtrate storage tank. When filtration is performed for a certain period of time and the filtration pressure increases, the pump 12 is stopped, and gas is introduced into the primary side of the filter to push out the remaining liquid to the secondary side. Next, the backwash water is sent to the filter housing by the pump 13, and the backwash liquid is pushed out together with the particle cake captured at the backwash liquid outlet. After gas is introduced from the filter secondary side and the remaining backwash liquid is pushed out to the outlet, the filtration is restarted by the pump 12 again. The elimination of backwash water remaining in the housing may be omitted if further purification steps follow, such as antibiotics and amino acids. Water is usually used for the backwashing liquid, but a filtrate may be used in some cases.

【0013】濾過と逆洗の周期は長い方が好ましいのは
当然であり、そのためには第一に膜の異方性構造が重要
である。一方濾過条件によっても周期を長くすることは
可能である。それは単位膜面積当たりの濾過流束を小さ
くすることで達成できる。濾過圧の上昇速度は流束を減
少させていくと、流束に単純に比例するよりもさらに少
ない上昇速度になるので膜面積をあまり増加させずと
も、必要な濾過量が得られる。適切な濾過流束は醗酵液
の種類や濾過目的によって当然ことなるので特定できな
いが、例えば熟成が終了し大半の酵母が沈降したビール
においては、20L/m2 ・分以下の流束で濾過するこ
とが好ましい。
It is natural that the cycle of filtration and backwashing is preferably longer, and for that purpose, first, the anisotropic structure of the membrane is important. On the other hand, it is possible to lengthen the cycle also depending on the filtering conditions. It can be achieved by reducing the filtration flux per unit membrane area. As the rate of increase of the filtration pressure decreases as the flux decreases, the rate of increase is less than simply proportional to the flux, so that the required amount of filtration can be obtained without increasing the membrane area much. The appropriate filtration flux cannot be specified because it naturally depends on the type of the fermentation solution and the purpose of filtration. For example, in a beer which has been matured and most of the yeast has settled, the filtration is performed at a flux of 20 L / m 2 · min or less. Is preferred.

【0014】[0014]

【実施例】以下に具体例を挙げて本発明をさらに詳しく
説明するが、発明の主旨を越えない限り本発明は実施例
に限定されるものではない。 実施例1 ポリスルホン(アモコ社製P−3500)15部、Nメ
チル−2−ピロリドン70部及びポリビニルピロリドン
15部を均一に溶解して製膜原液を得た。ガラス板上に
厚さが180μm になるように流延し、25℃湿度60
%の空気に6秒間さらした後、15℃の水に浸漬して、
内部緻密層の異方性精密濾過膜を得た。この膜をAST
M−F316の方法で孔径測定をしたところ、平均孔径
は1.4μm であった。膜の断面SEM写真を撮影し、
最小孔径層の平均孔径と表面の最大孔径層の平均孔径を
比較したところ、異方性比は約1対8であった(膜Bと
呼ぶ)。同じ製膜原液を用いて流延し、25℃湿度60
%の空気に5秒間さらした後、45℃の水に浸漬して、
内部緻密層の異方性精密濾過膜を得た。この膜をAST
M−F316の方法で孔径測定をしたところ、平均孔径
は1.5μm であった。膜の断面SEM写真を撮影し、
最小孔径層の平均孔径と表面の最大孔径層の平均孔径を
比較したところ、異方性比は約1対15であった(膜C
と呼ぶ)。
EXAMPLES The present invention will be described in more detail with reference to specific examples, but the present invention is not limited to the examples unless it exceeds the gist of the invention. Example 1 A film forming stock solution was obtained by uniformly dissolving 15 parts of polysulfone (P-3500 manufactured by Amoco), 70 parts of N-methyl-2-pyrrolidone and 15 parts of polyvinylpyrrolidone. It is cast on a glass plate so as to have a thickness of 180 μm.
% For 6 seconds, then immersed in 15 ° C water,
An anisotropic microfiltration membrane with a dense inner layer was obtained. AST
When the pore size was measured by the method of MF316, the average pore size was 1.4 μm. Take a cross-sectional SEM photograph of the membrane,
When the average pore size of the minimum pore size layer and the average pore size of the maximum pore size layer on the surface were compared, the anisotropy ratio was about 1: 8 (referred to as membrane B). Cast using the same film-forming stock solution, 25 ° C, humidity 60
% For 5 seconds, then immersed in 45 ° C water,
An anisotropic microfiltration membrane with a dense inner layer was obtained. AST
When the pore size was measured by the method of MF316, the average pore size was 1.5 μm. Take a cross-sectional SEM photograph of the membrane,
When the average pore size of the minimum pore size layer and the average pore size of the maximum pore size layer on the surface were compared, the anisotropy ratio was about 1:15 (membrane C
).

【0015】実施例2 ドイツ産バイスビール(Hefeweizenbie
r, Oberdorfer)を分析した。懸濁物総量
は0.27g/L,酵母数は5×108 個/L,凝集多
糖類30mg/L、凝集蛋白質70mg/L、酵母菌の
大きさは約5μmであった。このビールを濾過原液に
し、実施例1で製膜した2種類の膜と均質構造のポール
社製NP膜(平均孔径1.4μm 、膜Aと呼ぶ)を用い
て、濾過流束50L/m2 ・分、20L/m2 ・分およ
び5L/m2 ・分の条件で濾過し、濾過圧上昇カーブを
測定した。結果を図2に示し、図中の符号の説明は表1
に示す。
Example 2 German vise beer (Hefeweizenbie)
r, Oberdorfer) were analyzed. The total amount of the suspension was 0.27 g / L, the number of yeasts was 5 × 10 8 / L, the aggregated polysaccharide was 30 mg / L, the aggregated protein was 70 mg / L, and the size of the yeast was about 5 μm. This beer was used as a stock solution for filtration, and a filtration flux of 50 L / m 2 was obtained using two types of membranes formed in Example 1 and an NP membrane (average pore diameter: 1.4 μm, called membrane A) having a uniform structure and manufactured by Pall Corporation. Min, 20 L / m 2 · min and 5 L / m 2 · min, and the filtration pressure rise curve was measured. The results are shown in FIG. 2, and the description of the reference numerals in FIG.
Shown in

【0016】[0016]

【表1】 [Table 1]

【0017】実施例3 実施例1で製膜した膜Bを用いて実施例2と同じバイス
ビールを以下の条件で逆洗を繰り返しながら行った。濾
過流束10L/m2 ・分で8分毎に3秒間の逆洗を行い
ながら濾過した時と、濾過流束20L/m2 ・分で4分
毎に3秒間の逆洗を行いながら濾過した時の濾過圧変化
を図3に示す。この時の逆洗は水を用いて、流束200
L/m2 ・分で行った。この結果から判るように、膜孔
径の異方性比と濾過流束が濾過圧上昇速度に対する影響
が大きく、また定期的な逆洗を行うと大量の濾過が可能
であることが判る。
Example 3 The same vise beer as in Example 2 was produced using the film B formed in Example 1 while repeating backwashing under the following conditions. Filtration while backwashing at a filtration flux of 10 L / m 2 · min for 3 seconds every 8 minutes and filtering while backwashing at a filtration flux of 20 L / m 2 · minute every 4 minutes for 3 seconds FIG. 3 shows the change in the filtration pressure when this was performed. At this time, the backwash was performed using water with a flux of 200
L / m 2 · min. As can be seen from the results, the anisotropy ratio of the membrane pore diameter and the filtration flux have a large influence on the rate of increase of the filtration pressure, and a large amount of filtration is possible by performing regular backwashing.

【0018】[0018]

【発明の効果】濾過原液が最初に膜に接する表面の孔径
が濾過原液中の懸濁粒子の体積平均径の1から10倍で
あり、かつ膜の最緻密層の孔径が除去したい粒子径の
0.8倍以下であることを特徴とする、膜厚さ方向の孔
径に異方性を有する精密濾過膜を用いる周期的逆洗を伴
う濾過方法により、醗酵液からの懸濁物の濾過が効率よ
く且つ高精度でできるようになった。
According to the present invention, the pore size of the surface where the undiluted filtration solution first contacts the membrane is 1 to 10 times the volume average diameter of the suspended particles in the undiluted filtration solution, and the pore size of the densest layer of the membrane is the same as the particle size to be removed. Filtration of the suspension from the fermentation liquor by a filtration method involving periodic backwashing using a microfiltration membrane having anisotropy in the film thickness direction, characterized by being 0.8 times or less, It can be done efficiently and with high precision.

【図面の簡単な説明】[Brief description of the drawings]

【図1】周期的逆洗を伴う濾過フロー図。FIG. 1 is a filtration flow diagram with periodic backwashing.

【図2】膜の異方性と流束を変化させた時の濾過圧上昇
カーブ比較。図中の符号の説明は表1に示す。
FIG. 2 is a comparison of the increase in filtration pressure when the anisotropy and flux of the membrane are changed. The description of the reference numerals in the figure is shown in Table 1.

【図3】周期的に逆洗しながら濾過した時の濾過圧上昇
カーブ。
FIG. 3 is a filtration pressure rise curve when filtering while periodically backwashing.

【符号の説明】[Explanation of symbols]

11 フィルターハウジング 12 濾過ポンプ 13 逆洗ポンプ 14 濾過原液 15 濾過液貯蔵タンク 16 逆洗液 17 ガス供給口 18 逆洗液排出口 DESCRIPTION OF SYMBOLS 11 Filter housing 12 Filtration pump 13 Backwashing pump 14 Filtration stock 15 Filtrate storage tank 16 Backwashing liquid 17 Gas supply port 18 Backwashing liquid outlet

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 濾過原液が最初に膜に接する表面の孔径
が濾過原液中の懸濁粒子の体積平均径の1から10倍で
あり、かつ膜の最緻密層の孔径が除去したい粒子径の
0.8倍以下であることを特徴とする、膜厚さ方向の孔
径に異方性を有する精密濾過膜を用いる周期的逆洗を伴
う濾過方法。
1. The pore size of the surface of the stock solution to be first contacted with the membrane is 1 to 10 times the volume average size of the suspended particles in the stock solution, and the pore size of the densest layer of the membrane is the size of the particle to be removed. A filtration method involving periodic backwashing using a microfiltration membrane having anisotropy in the pore diameter in the thickness direction, which is 0.8 times or less.
【請求項2】 濾過原液が最初に膜に接する表面の孔径
が4から30μmで、且つ膜の最緻密層の孔径が0.8
から4μm であり、濾過原液がアルコール醗酵懸濁液で
ある、請求項1記載の周期的逆洗を伴う濾過方法。
2. The pore size of the surface where the undiluted solution first contacts the membrane is 4 to 30 μm, and the pore size of the densest layer of the membrane is 0.8 μm.
The filtration method with periodic backwashing according to claim 1, wherein the filtration solution is an alcohol fermentation suspension.
【請求項3】 アルコール醗酵懸濁液がビールであり、
流束20L/m2・分以下で濾過する、請求項2記載の
周期的逆洗を伴う濾過方法。
3. The alcoholic fermentation suspension is beer,
The filtration method with periodic backwashing according to claim 2, wherein the filtration is performed at a flux of 20 L / m 2 · min or less.
JP3086934A 1991-02-15 1991-04-18 Filtration method Expired - Fee Related JP2717458B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3086934A JP2717458B2 (en) 1991-04-18 1991-04-18 Filtration method
US07/834,801 US5221479A (en) 1991-02-15 1992-02-13 Filtration system
DE4204708A DE4204708A1 (en) 1991-02-15 1992-02-17 FILTRATION SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3086934A JP2717458B2 (en) 1991-04-18 1991-04-18 Filtration method

Publications (2)

Publication Number Publication Date
JPH04317723A JPH04317723A (en) 1992-11-09
JP2717458B2 true JP2717458B2 (en) 1998-02-18

Family

ID=13900700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3086934A Expired - Fee Related JP2717458B2 (en) 1991-02-15 1991-04-18 Filtration method

Country Status (1)

Country Link
JP (1) JP2717458B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5622253B2 (en) * 2009-01-22 2014-11-12 株式会社Reo研究所 Production method of functional water
CN116946987B (en) * 2023-09-20 2024-01-12 联仕新材料(苏州)股份有限公司 Electronic grade nitric acid preparation device and preparation process thereof

Also Published As

Publication number Publication date
JPH04317723A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
US5221479A (en) Filtration system
JP2961629B2 (en) Manufacturing method of microfiltration membrane
JPH04250834A (en) Precision filter membrane
JP2717458B2 (en) Filtration method
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JPH04317708A (en) New filtration using filtration assistant
JPH0679147A (en) Filtration method
JP3838689B2 (en) Water treatment system
CN110624419B (en) Reverse osmosis membrane environment-friendly recycling method
JPH04271817A (en) Filtering method
JPH05329339A (en) Filtering apparatus
JPH05329336A (en) Filtering method
JP2001321645A (en) Filter membrane element and method for manufacturing permeated water
JPH0557149A (en) Filter system
JPH0679146A (en) Filtration method
JP2004130307A (en) Method for filtration of hollow fiber membrane
JPH0549877A (en) Production of composite filter membrane
JPH04190834A (en) Cross-flow type filter
JPH04267931A (en) Filtering method
JPH05228343A (en) Filtration method
JPH04317730A (en) Composite filtration membrane
JPH06102136B2 (en) Backwash method in cross-flow type microfiltration
JPH04271815A (en) Filtering method
JPH04317728A (en) Composite filtration membrane
JPH0623239A (en) Filtration method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees