JPH05329339A - Filtering apparatus - Google Patents

Filtering apparatus

Info

Publication number
JPH05329339A
JPH05329339A JP9467591A JP9467591A JPH05329339A JP H05329339 A JPH05329339 A JP H05329339A JP 9467591 A JP9467591 A JP 9467591A JP 9467591 A JP9467591 A JP 9467591A JP H05329339 A JPH05329339 A JP H05329339A
Authority
JP
Japan
Prior art keywords
filtration
membrane
backwashing
fluid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9467591A
Other languages
Japanese (ja)
Inventor
Masahiro Eto
雅弘 江藤
Sumio Otani
純生 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP9467591A priority Critical patent/JPH05329339A/en
Publication of JPH05329339A publication Critical patent/JPH05329339A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance transmission flux by cyclically backwashing a filter membrane in such a state that the pressure on the transmitted fluid side of the filter membrane is made higher than that on the raw fluid side of the filter membrane and discharging a backwashing solution and a desorbed suspended substance out of a filtering system. CONSTITUTION:In a dead end type filtering system wherein a raw fluid containing a suspended substance is supplied to a filter membrane to be filtered to separate the suspended substance from the fluid, the pressure on the transmitted fluid side of the filter membrane 16 is made higher than that on the raw fluid side thereof to cyclically perform backwashing. The filter membrane is backwashed and a backwashing solution (sterilized water) and the suspended substance desorbed from the filter membrane 16 are discharged out of the filtering system. Thereafter, the sterilized water remaining in the filtering system is discharged by gas and filtration is again performed. By this constitution, transmission flux is restored and, since backwashing is cyclically performed, the transmission flux can be held to a high value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デッドエンド型濾過方
法に関するものであり、特に大きい膜透過流束を維持す
るために逆洗を周期的に行う新しいデッドエンド型濾過
方法に関するものである。本発明のデッドエンド型濾過
方法は、種々の高分子、微生物、酵母、微粒子を含有あ
るいは懸濁する流体の分離、精製、回収、濃縮などに適
用され、特に濾過を必要とする微細な微粒子を含有する
流体からその微粒子を分離する必要のあるあらゆる場合
に適用することができ、例えば微粒子を含有する各種の
懸濁液、発酵液あるいは培養液などの他、顔料の懸濁液
などから微粒子を分離する場合にも適用され、また微粒
子を含む懸濁気体から微粒子を分離、除去して気体を精
製する、例えば医薬用アンプルへ充填する無菌化窒素ガ
ス、超純水製造装置への陽圧用ガスとして充填する無
塵、無菌のガスあるいは1C製造ラインにおける空調陽
無塵、無菌の空気などの製造のためにも適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dead end type filtration method, and more particularly to a new dead end type filtration method in which backwash is periodically performed to maintain a large membrane permeation flux. The dead end type filtration method of the present invention is applied to separation, purification, recovery, concentration, etc. of various macromolecules, microorganisms, yeasts, fluids containing or suspending fine particles, and particularly fine particles requiring filtration. It can be applied to any case where it is necessary to separate the fine particles from the fluid containing the fine particles, for example, various suspensions containing fine particles, a fermentation solution or a culture solution, and fine particles from a suspension of a pigment. It is also applied when separating, and the gas is purified by separating and removing the particles from the suspended gas containing the particles, for example, sterilized nitrogen gas to be filled into ampules for medical use, gas for positive pressure to ultrapure water production equipment. It is also applicable to the production of dust-free, aseptic gas to be filled as, or air-conditioned positive dust-free in the 1C production line, aseptic air, etc.

【0002】[0002]

【従来の技術】従来、膜を用いて懸濁物質を含有する原
流体から懸濁物質を分離する技術としては、例えば圧力
を駆動力とする逆浸透法、限外濾過法、精密濾過法、電
位差を駆動力とする電気透析法、濃度差を駆動力とする
拡散透析法等がある。これらの方法は、連続操作が可能
であり、分離操作中に温度やpHの条件を大きく変化さ
せることなく分離、精製あるいは濃縮ができ、粒子、分
子、イオン等の広範囲にわたって分離が可能であり、小
型プラント処理能力を大きく保つことができるので経済
的であり、分離操作に要するエネルギーが小さく、かつ
他の分離方法では難しい低濃度原流体の処理が可能であ
るなどの理由により広範囲に実施されている。そしてこ
れらの分離技術に用いられる膜としては、酢酸セルロー
ス、硝酸セルロース、再生セルロース、ポリスルホン、
ポリアクリロニトリル、ポリアミド、ポリイミド等の有
機高分子等を主体とした高分子膜や耐熱性、耐薬品性な
どの耐久性に優れている多孔質セラミック膜などがあ
り、主としてコロイドの濾過を対象とする場合は限外濾
過膜が使用され、微細な粒子の濾過を対象とする精密濾
過ではそれに適した微孔を有する精密濾過膜が使用され
ている。ところで近年、バイオテクノロジーの進歩に伴
い、高純度化、高性能化、高精密化が要求されるように
なり、精密濾過あるいは限外濾過技術の応用分野が拡大
しつつある。しかしながら、精密濾過あるいは限外濾過
においては膜を用いて微粒子を分離する場合に、濃度分
極の影響によりケーク層が生じて透過流体の流れに抵抗
が生じ、また膜の目詰まりによる抵抗が大きくなって膜
透過流束が急激にかつ著しく低下してしまうという問題
があり、これが精密濾過あるいは限外濾過の実用化を妨
げる最大の原因であった。またそれに用いられる膜は汚
染されやすく、その防止対策が必要である。
2. Description of the Related Art Conventionally, as a technique for separating a suspended substance from a raw fluid containing a suspended substance by using a membrane, for example, a reverse osmosis method using pressure as a driving force, an ultrafiltration method, a microfiltration method, There are an electrodialysis method using a potential difference as a driving force, a diffusion dialysis method using a concentration difference as a driving force, and the like. These methods are capable of continuous operation, can be separated, purified or concentrated without greatly changing the temperature and pH conditions during the separation operation, and can be separated over a wide range of particles, molecules, ions, etc., It is economical because it can keep the processing capacity of a small plant large, the energy required for the separation operation is small, and it is possible to process a low concentration raw fluid that is difficult with other separation methods. There is. And as the membrane used in these separation techniques, cellulose acetate, cellulose nitrate, regenerated cellulose, polysulfone,
There are polymer membranes mainly composed of organic polymers such as polyacrylonitrile, polyamide, polyimide, etc. and porous ceramic membranes with excellent durability such as heat resistance and chemical resistance. In some cases, an ultrafiltration membrane is used, and in microfiltration intended for the filtration of fine particles, a microfiltration membrane having suitable micropores is used. By the way, in recent years, with the progress of biotechnology, high purification, high performance, and high precision have been required, and the application fields of microfiltration or ultrafiltration technology are expanding. However, in microfiltration or ultrafiltration, when fine particles are separated using a membrane, a cake layer is generated due to the effect of concentration polarization, which causes resistance to the flow of the permeated fluid, and resistance due to clogging of the membrane increases. Therefore, there is a problem that the membrane permeation flux is drastically and remarkably reduced, which is the biggest cause of impeding the practical application of microfiltration or ultrafiltration. Further, the film used for it is easily contaminated, and it is necessary to take preventive measures against it.

【0003】濾過方法としては、濾過されるべき全ての
流体が濾材(濾布や膜など)とケーク層を通過して流体
中に含まれている微粒子を分離するいわゆるデッドエン
ド型濾過方式がある。この従来のデッドエンド型濾過方
式では流体が通過して懸濁物質が濾過膜の内部に捕捉さ
れて分離される段階では高い透過流束が得られるが、濾
過膜の表面で捕捉される段階になるとケーク層が形成さ
れ、大量の原流体を処理する場合や形成されるケーク層
の比抵抗が極端に高い場合は大きな濾過抵抗となり、こ
のようなデッドエンド濾過を行うと膜透過流束が小さく
なる。このためクロスフロー型濾過方式をすることが考
えられた。このクロスフロー型濾過方式は、濾過膜の膜
表面に平行に濾過すべき原流体を流し、流体は濾過膜を
通って反対側へ透過し、この原流体と透過流体の流れが
直交しているためにこのように称されている。このクロ
スフロー型濾過方法は、膜に平行な原流体の流れによっ
て膜面上に形成されたケーク層がはぎ取られるので従来
のデッドエンド型濾過方式に比べて膜透過流束が大き
く、大量の原流体を直接連続的に分離、精製、濃縮が可
能であるが、純水透過流束の大きいすなわち分画分子量
の大きい限外濾過膜や精密濾過膜を用いた場合は急激に
膜透過流束が低下して濾過開始初期の高い膜透過流束を
保つことは困難であり、結果としてデッドエンド型濾過
方式と総透過液量を比較すると効果は小さく経済的な透
過流束を得るには不十分であった。
As a filtering method, there is a so-called dead end type filtering method in which all the fluid to be filtered passes through a filter material (filter cloth, membrane, etc.) and a cake layer to separate fine particles contained in the fluid. .. In this conventional dead-end type filtration method, a high permeation flux is obtained at the stage where the fluid passes and the suspended substances are trapped inside the filtration membrane and separated, but at the stage where they are trapped at the surface of the filtration membrane. In that case, a cake layer is formed, and when a large amount of raw fluid is processed or when the specific resistance of the formed cake layer is extremely high, the filtration resistance becomes large.When such dead end filtration is performed, the membrane permeation flux becomes small. Become. For this reason, it was considered to use a cross flow type filtration system. In this cross-flow type filtration system, the raw fluid to be filtered flows in parallel to the membrane surface of the filtration membrane, the fluid permeates to the opposite side through the filtration membrane, and the flow of the raw fluid and the permeated fluid are orthogonal to each other. This is why it is so called. In this cross-flow type filtration method, the cake layer formed on the membrane surface is stripped off by the flow of the raw fluid parallel to the membrane, so that the membrane permeation flux is large compared to the conventional dead end type filtration method, and a large amount of The raw fluid can be directly and continuously separated, purified, and concentrated, but when an ultrafiltration membrane or a microfiltration membrane with a high pure water permeation flux, that is, a high molecular weight cutoff, is used, the membrane permeation flux is suddenly increased. It is difficult to maintain a high membrane permeation flux at the initial stage of filtration, and as a result, comparing the dead-end type filtration system with the total permeate flow rate, the effect is small and it is not possible to obtain an economical permeation flux. Was enough.

【0004】[0004]

【発明が解決しようとする課題】上述のように、クロス
フロー型濾過方式は原理的には高度な分離技術である
が、最大の問題である膜透過流束は、従来のデッドエン
ド型濾過方式に僅かに大きい程度で、精密濾過方法とし
てこのクロスフロー方式を採用しても十分高い膜透過流
束が得られないという問題があった。また従来から行わ
れている懸濁物質と流体との分離の具体的な例を見て
も、例えば発酵液から菌体を分離する場合には、従来か
ら行われている遠心分離法、珪藻土濾過法などに代わっ
てクロスフロー濾過方式を用いても膜面上に形成された
ケーク層や目詰まりによって濾過時間の経過と共に膜透
過流束が低下するばかりでなく、原流体を循環する際の
剪断力によって菌体の活性が失われるという問題があっ
た。
As described above, the cross-flow type filtration system is in principle an advanced separation technique, but the biggest problem is the membrane permeation flux, which is a conventional dead-end type filtration system. However, there is a problem in that even if this cross-flow method is used as a microfiltration method, a sufficiently high membrane permeation flux cannot be obtained even though it is slightly large. In addition, even if you look at a concrete example of separation of suspended solids and fluid that has been performed conventionally, for example, when separating bacterial cells from a fermentation broth, the conventional centrifugation method and diatomaceous earth filtration are used. Even if a cross-flow filtration method is used instead of the method, the membrane permeation flux decreases as the filtration time elapses due to the cake layer formed on the membrane surface and clogging, as well as shearing when circulating the raw fluid. There was a problem that the activity of the cells was lost due to the force.

【0005】透過流束を高める方法としてはクロスフロ
ー濾過方式と併用して濾過膜への原流体の流入を断続的
に停止したり、濾過膜の透過流体側の弁を閉止すること
により、濾過膜の膜面に垂直にかかる圧力を断続的にな
くすあるいは減少させたり、また濾過膜の透過液側から
圧力を加え透過液側から原流体側へ流体を流すことによ
って、濾過膜の原流体側の膜面上に堆積しているケーク
層や付着層を断続的に取り除く「逆洗」と称する試みが
なされているが、これら逆洗が行われた際も濾過膜から
脱着した懸濁物質を濾過系内に残しておくと原流体中の
懸濁物の濃度が徐々に増加し、場合によっては原流体の
粘度も上昇するため膜透過流束は徐々に低下して逆洗を
行っても透過流束が十分回復しない等の問題があった。
また、透過液を用いて逆洗を行うと実質上逆洗した量だ
け膜透過量は減少するため、膜透過流束を十分回復する
だけの逆洗液を確保できないという問題があった。一方
菌体の活性を低下させない方法として、クロスフロー循
環流速を低下させ剪断力を小さくすることが行われてい
るが、剪断力を小さくするとクロスフロー濾過方式の効
果が小さくなるため、実際に菌体活性を低下させない方
策をとると膜透過流束が低下する問題があった。またポ
ンプでの菌体の破砕を少なくするためダイヤフラムポン
プなどの剪断力の小さいポンプを用いるとポンブの脈動
が大きくクロスフロー濾過方式の効果が小さくなる等の
問題もあった。
As a method for increasing the permeation flux, the filtration is carried out by intermittently stopping the inflow of the raw fluid into the filtration membrane or closing the valve on the permeation fluid side of the filtration membrane in combination with the cross flow filtration method. The pressure perpendicular to the membrane surface of the membrane is intermittently eliminated or reduced, and pressure is applied from the permeate side of the filtration membrane to flow the fluid from the permeate side to the raw fluid side. An attempt to intermittently remove the cake layer and the adhering layer accumulated on the membrane surface of the so-called “backwashing” has been made, but even when these backwashing is performed, the suspended substances desorbed from the filtration membrane are removed. If left in the filtration system, the concentration of suspended solids in the raw fluid will gradually increase, and in some cases the viscosity of the raw fluid will also increase, so the membrane permeation flux will gradually decrease and even if backwashing is performed. There was a problem that the permeation flux was not fully recovered.
In addition, when backwashing is performed using a permeate, the amount of membrane permeation is substantially reduced by the amount of backwashing, so that there is a problem in that a backwash that can sufficiently restore the membrane permeation flux cannot be secured. On the other hand, as a method that does not reduce the activity of the bacterial cells, it has been attempted to reduce the cross-flow circulation flow rate to reduce the shearing force.However, if the shearing force is reduced, the effect of the cross-flow filtration method will be reduced. There is a problem that the permeation flux of the membrane is reduced if a measure that does not reduce the physical activity is taken. In addition, when a pump with a small shearing force such as a diaphragm pump is used to reduce the crushing of bacterial cells by the pump, there is a problem that the pulsation of the pump is large and the effect of the cross flow filtration system is small.

【0006】[0006]

【課題を解決するための手段】本発明は、上述した従来
技術にあった問題点を解決するために為されたものであ
って、実用性のある高い膜透過流束を持ち菌体などの活
性低下を減少させる新規なデッドエンド型濾過方法を提
供することを目的とするものである。すなわち本発明
は、懸濁物質を含む流体からなる原流体を供給し濾過す
ることにより流体と懸濁物質を分離するデッドエンド型
濾過方式において、濾過膜の透過流体側の圧力を原流体
側の圧力より大きくして周期的に逆洗を行い、原流体側
へ通過した逆洗液及び濾過膜から脱着した懸濁物質を濾
過系外へ排出することを特徴とする濾過方法である。以
下、本発明を詳細に説明する。本発明の特徴は、従来技
術のデッドエンド型濾過方式に周期的な逆洗を行いさら
に逆洗によって濾過膜より脱着した懸濁物質を濾過系外
へ排出することである。従来のデッドエンド濾過では逆
洗を行うと濾過器内に濾過膜から脱着した懸濁物質が徐
々に堆積し、しだいに逆洗を行っても透過流束を十分回
復することができなくなるが、本発明では逆洗液ととも
に濾過膜から脱着した懸濁物質を系外へ排出することに
より周期的な逆洗が可能となる。また、デッドエンド型
濾過方式を用いることにより濾過システムが単純とな
り、クロスフロー型濾過方式のように原流体を循環する
際の剪断力がなくなり菌体の活性低下を防ぐことが可能
となる。
The present invention has been made in order to solve the above-mentioned problems in the prior art, and has a practically high membrane permeation flux, such as bacterial cells. It is an object of the present invention to provide a novel dead-end type filtration method that reduces the decrease in activity. That is, according to the present invention, in a dead end type filtration system in which a raw fluid composed of a fluid containing a suspended substance is supplied and filtered to separate the fluid and the suspended substance, the pressure on the permeable fluid side of the filtration membrane is set to The filtration method is characterized in that the backwash is periodically performed at a pressure higher than the pressure, and the backwash solution that has passed to the raw fluid side and the suspended substance desorbed from the filtration membrane are discharged to the outside of the filtration system. Hereinafter, the present invention will be described in detail. A feature of the present invention is that the conventional dead end type filtration system is subjected to periodic backwashing, and the suspended substances desorbed from the filtration membrane by the backwashing are discharged to the outside of the filtration system. In conventional dead-end filtration, when backwashing is performed, suspended substances desorbed from the filtration membrane gradually accumulate in the filter, and even if backwashing is gradually performed, the permeation flux cannot be sufficiently recovered. In the present invention, periodic backwash can be performed by discharging the suspended substance desorbed from the filtration membrane together with the backwash liquid to the outside of the system. Further, by using the dead end type filtration method, the filtration system is simplified, and the shearing force when circulating the raw fluid as in the cross flow type filtration method is eliminated, and it becomes possible to prevent the activity of the bacterial cells from being lowered.

【0007】逆洗はガスよりも液体で行う方が効果が大
きく、逆洗液として透過液を用いても良いが透過液を逆
流させた分だけ透過量が減少するばかりでなく、膜透過
流束が十分回復するために透過した液量相当の逆洗液量
が必要となった場合は実質的に全く透過液が得られない
危険も生じるため、濾過系外より洗浄液を供給して必要
に応じた逆洗液量で逆洗を行うことが好ましい。濾過系
外より供給する洗浄液は濾過膜の特性を低下させたり原
流体の特性を変化させなければ基本的には何でも良い
が、原流体が水溶液である場合には一般的には滅菌水を
用いることが好ましい。また、逆洗終了後逆洗液を濾過
系内に残したくない場合はガスによる脱水を行うことが
好ましい。定圧濾過を行う場合は膜透過流束が極端に低
くなってから逆洗を行うと逆洗後の膜透過流束の回復性
は悪くなるため、濾過初期の透過流束の1/50に達す
る前に逆洗を行う。好ましくは濾過初期の透過流束の1
/10に達する前に逆洗を行うことにより、さらに高い
透過流束が得られる。また、定速濾過を行う場合は濾過
膜間差圧が極端に高くなってから逆洗を行うと逆洗後の
濾過膜間差圧の回復性すなわち洗浄性が悪くなるため、
濾過初期の濾過膜間差圧の50倍に達する前に逆洗を行
う。好ましくは濾過初期の濾過膜間差圧の10倍に達す
る前に逆洗を行うことにより、透過流束の条件をさらに
高くすることができる。逆洗液は高い膜透過流束で多量
に濾過膜内を通過させる方が洗浄性は高くなるが、逆洗
液の透過流束は1×10−4/m/sec以上で
あることが好ましく、また逆洗時間は1秒以上であるこ
とが好ましい。
It is more effective to carry out backwashing with a liquid rather than gas, and although a permeate may be used as the backwashing liquid, not only the amount of permeation is reduced by the amount of backflow of the permeate, but also the permeation flow through the membrane When the amount of backwash liquid equivalent to the amount of permeated liquid is required to fully recover the bundle, there is a danger that virtually no permeated liquid will be obtained, so it is necessary to supply the cleaning liquid from outside the filtration system. It is preferable to carry out backwashing with an appropriate backwashing liquid amount. The washing liquid supplied from outside the filtration system can be basically anything as long as it does not deteriorate the characteristics of the filtration membrane or change the characteristics of the raw fluid, but if the raw fluid is an aqueous solution, generally use sterile water. Preferably. Further, if it is not desired to leave the backwash solution in the filtration system after the backwashing, it is preferable to perform dehydration with gas. When constant pressure filtration is performed, if backwashing is performed after the membrane permeation flux becomes extremely low, the recoverability of the membrane permeation flux after backwashing deteriorates, reaching 1/50 of the permeation flux at the initial stage of filtration. Backwash before. Preferably one of the permeation fluxes at the beginning of filtration
Higher permeate flux is obtained by backwashing before reaching / 10. Further, when performing constant-rate filtration, if the backwashing is performed after the pressure difference between the filtration membranes becomes extremely high, the recoverability of the pressure difference between the filtration membranes after the backwashing, that is, the cleaning property deteriorates.
Backwash is performed before reaching 50 times the differential pressure between filtration membranes at the initial stage of filtration. Preferably, backwashing is performed before reaching 10 times the differential pressure between filtration membranes at the initial stage of filtration, whereby the condition of permeation flux can be further increased. The backwashing liquid has a high membrane permeation flux and a large amount of water is passed through the filtration membrane to enhance the cleaning property, but the permeation flux of the backwashing liquid is 1 × 10 −4 m 3 / m 2 / sec or more. The backwash time is preferably 1 second or more.

【0008】次に本発明のデッドエンド型濾過方式を図
面に基づいて説明する。図1は従来のデッドエンド型濾
過を行った際に濾過膜に堆積する懸濁物の様子を示して
おり、経時とともに堆積する懸濁物質量は増加し、最終
的には透過流束はゼロに近づく。図2はクロスフロー濾
過を行った際に濾過膜に堆積する懸濁物質の様子を示し
ており、濾過開始初期においては懸濁物質が徐々に増加
するが原流体の剪断力によって堆積する懸濁物質量は一
定値をとり透過流束も最終的には一定値に近づく。図3
は本発明のデッドエンド型濾過方式のフローを示してい
る。濾過を一定時間行った後透過流体側から原流体側に
滅菌水を流して濾過膜から脱着した懸濁物質と共に排出
する。その後ガスにより濾過系内に残留している滅菌水
を排出し、再び濾過を行う。このサイクルを繰り返すこ
とによって原流体の懸濁物質濃度も上昇せずに高い透過
流束を維持することが可能となる。
Next, the dead end type filtration system of the present invention will be described with reference to the drawings. Fig. 1 shows the state of suspended solids deposited on the filtration membrane during the conventional dead end filtration. The amount of suspended solids deposited increases with time, and finally the permeation flux becomes zero. Approach. Fig. 2 shows the state of suspended solids deposited on the filtration membrane during cross-flow filtration. Suspended solids gradually increase at the beginning of filtration, but the suspension builds up due to the shearing force of the original fluid. The amount of substance takes a constant value, and the permeation flux finally approaches a constant value. Figure 3
Shows a flow of the dead end type filtration system of the present invention. After filtration for a certain period of time, sterilized water is caused to flow from the permeated fluid side to the raw fluid side and discharged together with the suspended substances desorbed from the filtration membrane. After that, sterile water remaining in the filtration system is discharged by gas, and filtration is performed again. By repeating this cycle, it is possible to maintain a high permeation flux without increasing the concentration of suspended matter in the raw fluid.

【0009】[0009]

【実施例】以下に具体例をあげて本発明をさらに詳しく
説明するが、発明の主旨を越えない限り本発明は実施例
に限定されるものではない。 実施例1 大腸菌(IFO3301)を0.9wt%の生理食塩水
に1dryg/lの含有率で分散させたものを懸濁液と
して用い、公称孔径0.2μmの精密濾過膜を用いて本
発明の逆洗を周期的に行うデッドエンド型濾過を行っ
た。使用した濾過器は有効膜面積100cmで、実験
条件は圧力差0.5×10Pa、液温度25℃であ
り、濾過時間120秒、逆洗流束1×10−3/m
/sec、逆洗時間3秒で行い逆洗液は滅菌水で行っ
た。図4にクロスフロー型濾過方式でしかも透過液を逆
洗液として用い逆洗を行った(迎転時間120秒、逆洗
時間3秒)比較例と従来のデッドエンド型濾過を行った
場合の比較例と共に、本発明の濾過方法で行った結果を
示した。従来のデッドエンド型濾過を行った際の透過流
束は時間と共にゼロに近づき、また逆洗を伴うクロスフ
ロー濾過では透過流束は逆洗で十分回復せず透過流束は
徐々に減少している。それに対し本発明の逆洗を周期的
に行うデッドエンド型濾過では透過流束は高い値を維持
した。
The present invention will be described in more detail with reference to specific examples below, but the present invention is not limited to the examples as long as the gist of the invention is not exceeded. Example 1 Escherichia coli (IFO3301) was dispersed in 0.9 wt% physiological saline at a content rate of 1 dryg / l as a suspension, and a microfiltration membrane having a nominal pore diameter of 0.2 μm was used. Dead end type filtration was carried out in which backwashing was periodically performed. The filter used had an effective membrane area of 100 cm 2 , the experimental conditions were a pressure difference of 0.5 × 10 4 Pa, a liquid temperature of 25 ° C., a filtration time of 120 seconds, and a backwash flux of 1 × 10 −3 m 3 / m.
The backwash was performed at a rate of 2 / sec and a backwash time of 3 seconds, and the backwash solution was sterilized water. Fig. 4 shows a cross flow type filtration method and back washing using the permeated liquid as a back washing liquid (advance time 120 seconds, back washing time 3 seconds) and the case of performing the conventional dead end type filtration. The results obtained by the filtration method of the present invention are shown together with the comparative examples. The permeation flux when performing conventional dead-end filtration approaches zero with time, and in cross-flow filtration with backwashing, the permeation flux is not sufficiently recovered by backwashing and the permeation flux gradually decreases. There is. On the other hand, the permeation flux remained high in the dead end type filtration of the present invention in which backwashing was periodically performed.

【0010】実施例2 市販のビールにタンニン酸20ppmを溶かして、タン
パク質を凝集させたものを懸濁液として用い、公称孔径
2.0μmの精密濾過膜を用いて本発明の逆洗を周期的
に行うデッドエンド型濾過を行った。使用した濾過器は
有効膜面積100cmで、実験条件は圧力差0.5×
10Pa、液温度25℃であり、濾過時間60秒、逆
洗流束5×10−3/m/sec、逆洗時間4秒
で行い逆洗液には滅菌水用いた。図5にクロスフロー型
濾過方式でしかも透過液を逆洗液として用い逆洗を行っ
た(運転時間60秒、逆洗時間3秒)比較例と従来のデ
ッドエンド型濾過を行った場合の比較例と共に、本発明
の濾過方法で行った結果を示した。従来のデッドエンド
型濾過を行った際の透過流束は時間と共にゼロに近づ
き、また逆洗を伴うクロスフロー濾過では透過流束は逆
洗で十分回復せず透過流束は徐々に減少している。それ
に対し本発明の逆洗を周期的に行うデッドエンド型濾過
では透過流束は高い値を維持した
Example 2 20 ppm of tannic acid was dissolved in commercially available beer, and a protein aggregate was used as a suspension, and a backwash of the present invention was carried out periodically using a microfiltration membrane having a nominal pore size of 2.0 μm. The dead end type filtration was performed. The filter used had an effective membrane area of 100 cm 2 and the experimental conditions were a pressure difference of 0.5 ×.
It was performed at 10 4 Pa, a liquid temperature of 25 ° C., a filtration time of 60 seconds, a backwash flux of 5 × 10 −3 m 3 / m 2 / sec, and a backwash time of 4 seconds, and sterile water was used as the backwash solution. FIG. 5 shows a comparison between a comparative example in which the permeated liquid was used as the backwash liquid in the cross-flow type filtration method and backwashing was performed (operating time: 60 seconds, backwashing time: 3 seconds), and a conventional dead end type filtration was performed. The results obtained by the filtration method of the present invention are shown together with examples. The permeation flux when performing conventional dead-end filtration approaches zero with time, and in cross-flow filtration with backwashing, the permeation flux is not sufficiently recovered by backwashing and the permeation flux gradually decreases. There is. On the other hand, the permeation flux was maintained at a high value in the dead end type filtration of the present invention in which backwashing was periodically performed.

【0011】実施例3 市販のビールにタンニン酸20ppmを溶かして、タン
パク質を凝集させたものを懸濁液として用い、公称孔径
2.0μmの精密濾過膜を用いて本発明の逆洗を周期的
に行うデッドエンド型濾過を行った。使用した濾過器は
有効膜面積100cmで、実験条件は圧力差0.5×
10Pa、液温度25℃であり、逆洗流束5×10
−3/m/sec、逆洗時間4秒で行い逆洗液に
は滅菌水用いた。透過流束が濾過開始直後の透過流束の
1/10に達したところで逆洗を行った場合と1/5
0、1/100に達したところで逆洗を行った場合の透
過液量の比較を図6に示した。1/10の場合は1/5
0の約3倍の透過液量が得られ、1/100では透過流
束が十分回復しないため、透過液量の増加は徐々に遅く
なる。
Example 3 20 ppm of tannic acid was dissolved in commercially available beer and the protein aggregated was used as a suspension, and the backwashing of the present invention was carried out periodically using a microfiltration membrane having a nominal pore size of 2.0 μm. The dead end type filtration was performed. The filter used had an effective membrane area of 100 cm 2 and the experimental conditions were a pressure difference of 0.5 ×.
10 4 Pa, liquid temperature 25 ° C., backwash flux 5 × 10
-3 m 3 / m 2 / sec, backwash time was 4 seconds, and sterilized water was used as the backwash solution. 1/5 when backwashing is performed when the permeation flux reaches 1/10 of the permeation flux immediately after the start of filtration.
FIG. 6 shows a comparison of the amount of permeated liquid in the case of backwashing when reaching 0, 1/100. 1/5 if 1/10
A permeated liquid amount about 3 times that of 0 was obtained, and at 1/100, the permeated flux was not sufficiently recovered, so the increase in the permeated liquid amount gradually slowed down.

【0012】実施例4 市販のビールにタンニン酸20ppmを溶かして、タン
パク質を凝集させたものを懸濁液として用い、公称孔径
2.0μmの精密濾過膜を用いて本発明の逆洗を周期的
に行うデッドエンド型濾過を行った。使用した濾過器は
有効膜面積100cmで、実験条件は圧力差0.5×
10Pa、液温度25℃であり、濾過時間60秒、ま
た逆洗液には滅菌水用いた。逆洗量を200ml一定と
して逆洗液の膜透過流束を変化させたときの透過液量の
比較を行ない図7に示した。逆洗液の膜透過流束が1×
10−4/m/sec以下では逆洗により透過流
束は十分回復せず、透過液量の増加は徐々に遅くなっ
た。
Example 4 20 ppm of tannic acid was dissolved in commercially available beer and the protein aggregated was used as a suspension, and the backwashing of the present invention was carried out periodically using a microfiltration membrane with a nominal pore size of 2.0 μm. The dead end type filtration was performed. The filter used had an effective membrane area of 100 cm 2 and the experimental conditions were a pressure difference of 0.5 ×.
It was 10 4 Pa, the liquid temperature was 25 ° C., the filtration time was 60 seconds, and sterile water was used as the backwash liquid. The amount of permeated liquid was compared when the backwash amount was constant at 200 ml and the membrane permeation flux of the backwash liquid was changed, and the results are shown in FIG. 7. Membrane permeation flux of backwash liquid is 1 ×
At 10 −4 m 3 / m 2 / sec or less, the permeation flux was not sufficiently recovered by backwashing, and the increase in the amount of permeate was gradually delayed.

【0013】[0013]

【発明の効果】本発明によれば、逆洗を周期的に行うデ
ッドエンド型濾過方式において高い膜透過流束が得ら
れ、それによって種々の懸濁物質を含有する液体から各
懸濁成分の分離、回収、精製、濃縮などがきわめて効率
的しかも経済的に行われる。そしてさらにプロセスの連
続化及び装置の小型化が可能であり、膜の選択性を利用
して目的物のみを連続的に選択的に分離することがで
き、酵母や菌体などのバイオリアクターへの応用がで
き、従来技術に比べて運転管理が容易であるなど諸々の
効果が奏せられる
INDUSTRIAL APPLICABILITY According to the present invention, a high membrane permeation flux can be obtained in a dead end type filtration system in which backwashing is periodically carried out, whereby liquids containing various suspending substances can be separated from each suspension component. Separation, recovery, purification, concentration, etc. are performed extremely efficiently and economically. Further, the process can be continued and the device can be downsized, and the selectivity of the membrane can be used to continuously and selectively separate only the target substance, which can be applied to bioreactors such as yeast and cells. It can be applied and has various effects such as easier operation management than the conventional technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のデッドエンド型濾過における懸濁物質の
堆積状態を示している。
FIG. 1 shows a deposition state of suspended matter in a conventional dead end type filtration.

【図2】従来のクロスフロー濾過における懸濁物質の堆
積状態を示している。
FIG. 2 shows the state of deposition of suspended matter in conventional cross-flow filtration.

【図3】本発明の逆洗を周期的に行うデッドエンド型濾
過方式のフローを示している。
FIG. 3 shows a flow of a dead end type filtration system of the present invention in which backwashing is periodically performed.

【図4】大腸菌分散液を用いて本発明の逆洗を周期的に
行うデッドエンド型濾過、逆洗を伴うクロスフロー濾
過、従来のデッドエンド濾過を行った際の透過流束の変
化の比較を示している。
FIG. 4 is a comparison of changes in permeation flux when performing dead-end filtration in which the backwashing of the present invention is carried out cyclically using Escherichia coli dispersion, cross-flow filtration accompanied by backwashing, and conventional dead-end filtration. Is shown.

【図5】タンパク凝集ビールを用いて本発明の逆洗を周
期的に行うデッドエンド型濾過、逆洗を伴うクロスフロ
ー濾過、従来のデッドエンド濾過を行った際の透過流束
の変化の比較を示している。
FIG. 5: Comparison of changes in permeation flux when dead-end type filtration in which the backwashing of the present invention is carried out periodically using protein-aggregated beer, cross-flow filtration with backwashing, and conventional dead-end filtration is performed. Is shown.

【図6】本発明の濾過方式を用いて逆洗にいたるまでの
透過流束が与える透過量の違いを示している。
FIG. 6 shows a difference in permeation amount given by permeation flux up to backwashing using the filtration system of the present invention.

【図7】本発明の濾過方式を用いた場合の逆洗液の透過
流束の違いによる透過液量に与える影響を示している。
FIG. 7 shows the influence on the amount of permeated liquid due to the difference in permeation flux of the backwash liquid when the filtration system of the present invention is used.

【符号の説明】[Explanation of symbols]

1 デッドエンド濾過の原流体の流れ 2 デッドエンド濾過の透過液の流れ 3 デッドエンド濾過の懸濁物質の移動方向 4 濾過膜上に堆積している懸濁物質 5 濾過膜 6 クロスフロー濾過の原流体の流れ 7 クロスフロー濾過の透過液の流れ 8 クロスフロー濾過の懸濁物質の移動方向 9 濾過膜上に堆積している懸濁物質 10 濾過膜 11 原流体入口 12 透過液出口 13 逆洗液入口 14 排液出口 15 濾過器 16 濾過膜 17 ガス入口 18 圧力計 19 ポンプ 20 滅菌フィルター 21 電磁弁 1 Flow of raw fluid for dead-end filtration 2 Flow of permeate for dead-end filtration 3 Movement direction of suspended solids for dead-end filtration 4 Suspended solids deposited on filtration membrane 5 Filtration membrane 6 Cross-flow filtration raw material Flow of fluid 7 Flow of permeate in cross-flow filtration 8 Direction of movement of suspended matter in cross-flow filtration 9 Suspended substance deposited on filter membrane 10 Filter membrane 11 Raw fluid inlet 12 Permeate outlet 13 Backwash liquid Inlet 14 Drainage outlet 15 Filter 16 Filter membrane 17 Gas inlet 18 Pressure gauge 19 Pump 20 Sterilizing filter 21 Solenoid valve

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 濾過膜を用いて、懸濁物質を含む流体か
らなる原流体を供給し濾過することにより流体と懸濁物
質とを分離するデッドエンド型濾過方式において、濾過
膜の透過流体側の圧力を原流体側の圧力より大きくして
周期的に逆洗を行うことを特徴とする濾過方法。
1. A dead-end type filtration system for separating a fluid and a suspended substance by supplying a raw fluid consisting of a fluid containing a suspended substance and filtering the same by using a filter membrane. The method of filtration is characterized in that the backwashing is periodically performed by increasing the pressure of the above to be higher than the pressure of the raw fluid side.
【請求項2】 濾過膜の透過液側から原流体側へ通過し
た逆洗液および濾過膜から脱着した懸濁物質を濾過系外
へ排出することを特徴とする特許請求項第1項記載の濾
過方法。
2. The backwash solution that has passed from the permeate side of the filtration membrane to the raw fluid side and the suspended substance desorbed from the filtration membrane are discharged to the outside of the filtration system. Filtration method.
【請求項3】 該逆洗液に滅菌水を用いることを特徴と
する特許請求第1項記載の濾過方法。
3. The filtration method according to claim 1, wherein sterile water is used as the backwash solution.
【請求項4】 該逆洗を行った後にガスを用いて脱水を
行うことを特徴とする特許請求第1項記載の濾過方法。
4. The filtration method according to claim 1, wherein dehydration is performed using gas after the backwashing.
【請求項5】 濾過膜を用いて固体粒子を含む流体から
なる原流体を供給し一定圧力量で濾過することにより流
体と固体粒子とを分離し、濾過膜の透過流体側の圧力を
原流体側の圧力より大きくして周期的に逆洗を行うデッ
ドエンド型濾過方式において、膜透過流束が濾過初期の
膜透過流束の1/50に達する前に逆洗を行うことを特
徴とする濾過方法。
5. A raw fluid consisting of a fluid containing solid particles is supplied using a filtration membrane and filtered at a constant pressure to separate the fluid and solid particles, and the pressure on the permeable fluid side of the filtration membrane is adjusted to the raw fluid. In a dead-end type filtration system in which backwash is periodically performed at a pressure higher than that on the side, backwash is performed before the membrane permeation flux reaches 1/50 of the membrane permeation flux at the initial stage of filtration. Filtration method.
【請求項6】 該逆洗液の膜透過流束が1×10−4
/m/sec以上であることを特徴とする特許請求
項第5項記載の濾過方法。
6. The membrane permeation flux of the backwash solution is 1 × 10 −4 m
The filtration method according to claim 5, wherein the filtration method is 3 / m 2 / sec or more.
【請求項7】 濾過膜を用いて固体粒子を含む流体から
なる原流体を供給し一定流量で濾過することにより流体
と固体粒子とを分離し、濾過膜の透過流体側の圧力を原
流体側の圧力より大きくして周期的に逆洗を行うデッド
エンド型濾過方式において、濾過開始時の濾過膜間差圧
を0.1Kg/cm以下とし、濾過膜間差圧が濾過開
始時の濾過膜間差圧の50倍に達する前に逆洗を行うこ
とを特徴とする濾過方法。
7. A raw fluid consisting of a fluid containing solid particles is supplied using a filtration membrane and filtered at a constant flow rate to separate the fluid and the solid particles, and the pressure on the permeable fluid side of the filtration membrane is adjusted to the raw fluid side. In the dead end type filtration system in which backwashing is performed periodically by increasing the pressure higher than the pressure of, the pressure difference between the filtration membranes at the start of filtration is set to 0.1 Kg / cm 2 or less, and the pressure difference between the filtration membranes at the start of filtration is A filtration method comprising performing backwashing before reaching 50 times the transmembrane pressure difference.
【請求項8】 該逆洗液の膜透過流束が1×10−4
/m/sec以上であることを特徴とする特許請求
項第7項記載の濾過方法。
8. The membrane permeation flux of the backwash solution is 1 × 10 −4 m
The filtration method according to claim 7, wherein the filtration method is 3 / m 2 / sec or more.
JP9467591A 1991-01-29 1991-01-29 Filtering apparatus Pending JPH05329339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9467591A JPH05329339A (en) 1991-01-29 1991-01-29 Filtering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9467591A JPH05329339A (en) 1991-01-29 1991-01-29 Filtering apparatus

Publications (1)

Publication Number Publication Date
JPH05329339A true JPH05329339A (en) 1993-12-14

Family

ID=14116801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9467591A Pending JPH05329339A (en) 1991-01-29 1991-01-29 Filtering apparatus

Country Status (1)

Country Link
JP (1) JPH05329339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179058A (en) * 1999-12-24 2001-07-03 Nitto Denko Corp Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP2003094058A (en) * 2001-09-27 2003-04-02 Daicel Chem Ind Ltd Method for treating water
JP2015500202A (en) * 2011-11-16 2015-01-05 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Apparatus for filtering, drying and storing solids from suspension
WO2023109493A1 (en) * 2021-12-17 2023-06-22 邻得膜(厦门)医疗科技有限公司 Track-etched membrane solid-liquid separation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141587A (en) * 1987-11-26 1989-06-02 Nitto Denko Corp Method for enzymic reaction using immobilized enzyme membrane
JPH0275311A (en) * 1988-09-09 1990-03-15 Toshiba Corp Filtering apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141587A (en) * 1987-11-26 1989-06-02 Nitto Denko Corp Method for enzymic reaction using immobilized enzyme membrane
JPH0275311A (en) * 1988-09-09 1990-03-15 Toshiba Corp Filtering apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179058A (en) * 1999-12-24 2001-07-03 Nitto Denko Corp Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP4660918B2 (en) * 2000-10-03 2011-03-30 株式会社村田製作所 Removal method of coarse metal particles
JP2003094058A (en) * 2001-09-27 2003-04-02 Daicel Chem Ind Ltd Method for treating water
JP2015500202A (en) * 2011-11-16 2015-01-05 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Apparatus for filtering, drying and storing solids from suspension
WO2023109493A1 (en) * 2021-12-17 2023-06-22 邻得膜(厦门)医疗科技有限公司 Track-etched membrane solid-liquid separation device

Similar Documents

Publication Publication Date Title
Singh Membrane technology and engineering for water purification: application, systems design and operation
Singh et al. Introduction to membrane processes for water treatment
Moslehyani et al. Recent progresses of ultrafiltration (UF) membranes and processes in water treatment
Aptel et al. Categories of membrane operations
US5221479A (en) Filtration system
Gironès et al. Protein aggregate deposition and fouling reduction strategies with high-flux silicon nitride microsieves
Wang et al. Understand the basics of membrane filtration
JPH05329339A (en) Filtering apparatus
Gullinkala et al. Membranes for water treatment applications–an overview
Singh et al. Membrane and membrane-based processes for wastewater treatment
JP2009148661A (en) Filtration apparatus of solution containing impurities and filtration method
JPH04190834A (en) Cross-flow type filter
JPH04271818A (en) Hollow yarn membrane filtering system
Liu et al. Membranes: technology and applications
JPH04145929A (en) Cross-flow filter
JPH06102136B2 (en) Backwash method in cross-flow type microfiltration
JP2717458B2 (en) Filtration method
JPH0557149A (en) Filter system
JPH04271819A (en) Method for regeneration of filter membrane
JPS63126511A (en) Cross flow type precision filtering method
JPH04317730A (en) Composite filtration membrane
JPH04265130A (en) Back washing method for filtration system
US20230019509A1 (en) Methods and apparatus for removing contaminants from an aqueous material
JPH04271817A (en) Filtering method
JPH04260419A (en) Filtration system