JPH04332131A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04332131A
JPH04332131A JP10227491A JP10227491A JPH04332131A JP H04332131 A JPH04332131 A JP H04332131A JP 10227491 A JP10227491 A JP 10227491A JP 10227491 A JP10227491 A JP 10227491A JP H04332131 A JPH04332131 A JP H04332131A
Authority
JP
Japan
Prior art keywords
wiring
uneven surface
crystal
crystalline
angle formed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227491A
Other languages
Japanese (ja)
Inventor
Koichi Akimoto
秋本 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10227491A priority Critical patent/JPH04332131A/en
Publication of JPH04332131A publication Critical patent/JPH04332131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a metal wiring made of crystalline grains having rigid bondability by forming an uneven surface in which an angle formed between surfaces on a silicon oxide film is the same as an angle formed of crystalline surfaces of a metal crystal, and forming the wiring made of the grains on the uneven surface. CONSTITUTION:An uneven surface is fomed on an Si substrate 3 formed with an SiO2 film 2. For example, a length of one side of one surface of the uneven surface is, 1mum, and an angle formed between the surfaces is set to 141.058 degrees of twice as large as an angle formed at crystalline surface plane ¦111]of an Al crystalline grain. Then, after an Al solid film is vapor-deposited, an Al wiring 1 is patterned. Thus, since a grain boundary of the metal crystal for constituting the wiring coincides with trough or crest of the uneven surface of the silicon oxide film, the wiring having rigid bondability in which a disconnection scarcely occurs, can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置に関し、特に
多結晶薄膜からなる配線の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor devices, and more particularly to the structure of wiring made of polycrystalline thin films.

【0002】0002

【従来の技術】従来、半導体装置の微細配線として、絶
縁層上に多結晶薄膜を形成したのちパターニングする方
法が提案され試みられている。
2. Description of the Related Art Hitherto, a method has been proposed and attempted in which a polycrystalline thin film is formed on an insulating layer and then patterned for fine wiring in a semiconductor device.

【0003】0003

【発明が解決しようとする課題】しかしながら、形成さ
れる配線直下の層が平板である場合、その上に形成した
多結晶薄膜の配線は、アイイーイーイー・インターナシ
ョナルリライアビリティフィジックスシンポジウム(I
EEE  International  Relia
bilty  Physics  Symposium
)(1986)会議録253頁にハートマン・ヒーバー
(HartmannHieber)らにより報告されて
いるように、配線直下の層に垂直な方向にその結晶粒の
ある方向が揃う傾向がある。しかし結晶粒間の相互作用
のために結晶粒の方向は完全には揃わないし、結晶粒界
が特定の結晶面になることもない。そのため従来の方法
で作製した、配線幅が結晶粒と同程度の大きさになった
配線は、引っ張りあるいは圧縮応力に関して降伏応力の
値が小さいため断線等を生ずるという欠点がある。
[Problems to be Solved by the Invention] However, when the layer directly below the wiring to be formed is a flat plate, the polycrystalline thin film wiring formed thereon is
EEE International Relia
bilty physics symposium
) (1986), p. 253 of the conference proceedings, as reported by Hartmann Hieber et al., the direction of the crystal grains tends to be aligned in the direction perpendicular to the layer immediately below the wiring. However, due to the interaction between the crystal grains, the directions of the crystal grains are not perfectly aligned, and the grain boundaries do not become specific crystal planes. For this reason, wires manufactured by conventional methods, whose width is approximately the same size as crystal grains, have a drawback in that they have a small yield stress value with respect to tensile or compressive stress, resulting in wire breakage and the like.

【0004】0004

【課題を解決するための手段】本発明の半導体装置は、
半導体基板上に形成された酸化シリコン膜と、この酸化
シリコン膜の表面に形成され面と面のなす角が金属結晶
の結晶面のなす角と同一の角度を有する凹凸面と、この
凹凸面上に形成された金属結晶からなる配線とを含むも
のである。
[Means for Solving the Problems] A semiconductor device of the present invention includes:
A silicon oxide film formed on a semiconductor substrate, an uneven surface formed on the surface of this silicon oxide film whose angle between the surfaces is the same as an angle formed by a crystal plane of a metal crystal, and a surface on this uneven surface. This includes wiring made of metal crystals formed in

【0005】[0005]

【作用】一般的な性質として、結晶粒のある特定の結晶
面の方向が、基板に垂直な方向になるので、基板に凹凸
がある場合には、凹凸のそれぞれの面に垂直に結晶粒の
ある結晶面の方向が向くことになる。この凹凸の大きさ
を結晶粒の大きさ程度にすれば、配線の幅が結晶粒の大
きさと同程度の場合、凹凸面の一つ一つに結晶粒が一個
だけ成長するようになる。この凹凸面と面とのなす角を
ある特定の結晶面と面とのなす角に一致させておけば、
その上に成長している結晶粒は、ある特定の結晶面で隣
接する結晶粒とくっつくことになる。
[Operation] As a general property, the direction of a specific crystal plane of a crystal grain is perpendicular to the substrate, so if the substrate has unevenness, the direction of the crystal grain is perpendicular to each surface of the unevenness. The direction of a certain crystal plane will be oriented. If the size of this unevenness is made to be about the size of a crystal grain, only one crystal grain will grow on each uneven surface if the width of the wiring is about the same as the size of the crystal grain. If the angle between this uneven surface and the surface matches the angle between a certain crystal plane and the surface,
The crystal grains growing on it will stick together with neighboring crystal grains at certain crystal planes.

【0006】[0006]

【実施例】以下、本発明を図面を用いて説明する。図1
は本発明の一実施例の断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to the drawings. Figure 1
1 is a sectional view of one embodiment of the present invention.

【0007】熱酸化により厚さ約0.5μmのSiO2
 膜2を形成したSi基板1上に、スパッタリング法に
よりA1配線1を形成した例について述べる。SiO2
 膜2は凹凸面を有しており、この凹凸面の一つの面の
一辺の長さは1μmである。面と面とのなす角はAl結
晶粒の[111]結晶面のなす角の2倍である141.
058度にしてある。この凹凸は、幅1μmのパターン
を有するTa板をマスクとして1kWの電子ビームを斜
めに照射することにより形成する。次でスパッタリング
法でAlのべた膜を蒸着した後、ウェットまたはドライ
エッチング法によるAl配線のパターンニングと400
℃30分のアロイとを行うと、結晶粒が成長し、図2に
示されるような、Al配線1中の結晶粒4の結晶面の方
位関係が実現され、〔111)〕結晶面に関連した結晶
面で隣の結晶粒と接続される。従って結晶粒界の結合性
が強固なAl配線を形成することができる。
[0007] SiO2 with a thickness of about 0.5 μm was formed by thermal oxidation.
An example will be described in which an A1 wiring 1 is formed by sputtering on a Si substrate 1 on which a film 2 is formed. SiO2
The film 2 has an uneven surface, and the length of one side of one of the uneven surfaces is 1 μm. The angle between the planes is twice the angle formed by the [111] crystal plane of the Al crystal grain, 141.
It is set to 058 degrees. The unevenness is formed by obliquely irradiating a 1 kW electron beam using a Ta plate having a pattern of 1 μm width as a mask. Next, after depositing a solid Al film by sputtering, patterning of Al wiring by wet or dry etching was performed.
When alloying is carried out for 30 minutes at ℃, the crystal grains grow, and the orientation relationship of the crystal planes of the crystal grains 4 in the Al wiring 1 is realized as shown in FIG. It is connected to neighboring crystal grains through the crystal planes. Therefore, an Al wiring with strong grain boundary bonding can be formed.

【0008】このように構成された本実施例によるAl
配線は、粒界が凹凸の谷または山に一致するようになり
、また、特定の結晶面で粒界が結合するようになる。 この方法を用いればAl配線の場合、500℃、100
時間程度のアニールにより従来例では切断したものが切
断しなくなった。
[0008] The Al according to this embodiment configured as described above
In the wiring, the grain boundaries coincide with the valleys or peaks of the unevenness, and the grain boundaries combine at specific crystal planes. Using this method, in the case of Al wiring, 500°C, 100°C
After annealing for about an hour, the parts that were cut in the conventional example no longer cut.

【0009】尚、上記実施例においては、配線を形成す
る金属としてAlを用いた場合について説明したが、S
iやCuを含むAl合金やWを用いることができる。
[0009] In the above embodiment, the case where Al was used as the metal forming the wiring was explained, but S
An Al alloy containing i and Cu or W can be used.

【0010】0010

【発明の効果】以上説明したように本発明によれば、配
線を構成する金属結晶の粒界が酸化シリコン膜表面の凹
凸の谷または山に一致するようになるため、断線の生じ
にくい結合性の強固な金属配線を有する半導体装置が得
られる。
As explained above, according to the present invention, the grain boundaries of the metal crystals constituting the wiring coincide with the valleys or peaks of the unevenness on the surface of the silicon oxide film. A semiconductor device having strong metal wiring can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す断面図。FIG. 1 is a sectional view showing one embodiment of the present invention.

【図2】Al配線中の結晶粒の方位関係を示す図。FIG. 2 is a diagram showing the orientation relationship of crystal grains in Al wiring.

【符号の説明】[Explanation of symbols]

1    Al配線 2    SiO2 膜 3    Si基板 4    Al結晶粒 1 Al wiring 2 SiO2 film 3 Si substrate 4 Al crystal grains

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に形成された酸化シリコ
ン膜と、この酸化シリコン膜の表面に形成され面と面の
なす角が金属結晶の結晶面のなす角と同一の角度を有す
る凹凸面と、この凹凸面上に形成された金属結晶からな
る配線とを含むことを特徴とする半導体装置。
1. A silicon oxide film formed on a semiconductor substrate, and an uneven surface formed on the surface of the silicon oxide film, the angle between the surfaces being the same as the angle formed by the crystal plane of a metal crystal. , and wiring made of metal crystal formed on the uneven surface.
JP10227491A 1991-05-08 1991-05-08 Semiconductor device Pending JPH04332131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227491A JPH04332131A (en) 1991-05-08 1991-05-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227491A JPH04332131A (en) 1991-05-08 1991-05-08 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04332131A true JPH04332131A (en) 1992-11-19

Family

ID=14323027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227491A Pending JPH04332131A (en) 1991-05-08 1991-05-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04332131A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175582A (en) * 2004-11-26 2006-07-06 Fujikura Ltd Nano-structure and manufacturing method thereof
US8163084B2 (en) 2004-11-26 2012-04-24 Fujikura Ltd. Nanostructure and manufacturing method for same
WO2023085110A1 (en) * 2021-11-10 2023-05-19 株式会社村田製作所 Module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175582A (en) * 2004-11-26 2006-07-06 Fujikura Ltd Nano-structure and manufacturing method thereof
US8163084B2 (en) 2004-11-26 2012-04-24 Fujikura Ltd. Nanostructure and manufacturing method for same
WO2023085110A1 (en) * 2021-11-10 2023-05-19 株式会社村田製作所 Module

Similar Documents

Publication Publication Date Title
JPS6089953A (en) Manufacture of layered semiconductor device
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
JP3838359B2 (en) SEMICONDUCTOR ELEMENT HAVING LAYER ALIGNMENT FOR CONVERTING ACOUSTIC SIGNAL OR HEAT SIGNAL AND VOLTAGE CHANGE AND ITS MANUFACTURING METHOD
JPH04332131A (en) Semiconductor device
JPS6199372A (en) Electrode wiring
JPH05206120A (en) Semiconductor device and manufacture thereof
JP3168400B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3207957B2 (en) Method for forming InSb thin film
JPH03262127A (en) Manufacture of semiconductor device
JP3357456B2 (en) Method of manufacturing semiconductor integrated circuit device and semiconductor integrated circuit device
JP2001035854A (en) Method for formation of film and electrode or wiring
JPH02268443A (en) Semiconductor device
JP2003133542A (en) Si SEMICONDUCTOR DEVICE HAVING QUANTUM STRUCTURE INCLUDING METAL LAYER AND MANUFACTURING METHOD THEREFOR
JP2001176796A (en) Forming method of semiconductor film, and semiconductor device
JPS6362893B2 (en)
JPS63227038A (en) Manufacture of semiconductor device
JPH0472732A (en) Semiconductor device
JP2680696B2 (en) Wiring method of semiconductor element
JPH02205031A (en) Semiconductor device and wiring film
JPH02267940A (en) Wiring of semiconductor integrated circuit and its manufacture
JP2000150423A (en) Manufacture of compound semiconductor device
JPS59111321A (en) Compound semiconductor thin-film structure and its manufacture
JPH02294035A (en) Manufacture of semiconductor device
JPH0797555B2 (en) Method for manufacturing SOI substrate
JPH02260456A (en) Manufacture of semiconductor device